Foundations of Computer Graphics

Online Lecture 5: Viewing Orthographic Projection

Ravi Ramamoorthi

Motivation

- We have seen transforms (between coord systems)
- But all that is in 3D
- We still need to make a 2D picture
- Project 3D to 2D. How do we do this?
- This lecture is about viewing transformations

Demo (Projection Tutorial)

- Nate Robbins OpenGL tutors
- Projection tutorial
- Download others

0.00 , 1.00 , 0.00); <- up on the arguments and move the mouse to modify values.

What we' ve seen so far

- Transforms (translation, rotation, scale) as 4x4 homogeneous matrices
- Last row always 0 0 0 1. Last w component always 1
- For viewing (perspective), we will use that last row and w component no longer 1 (must divide by it)

Outline

- Orthographic projection (simpler)
- Perspective projection, basic idea
- Derivation of gluPerspective (handout: glFrustum)
- Brief discussion of nonlinear mapping in z

Projections

- To lower dimensional space (here 3D -> 2D)
- Preserve straight lines
- Trivial example: Drop one coordinate (Orthographic)

Transformation Matrix									
-	Scale			Translation (centering)					
$M = \left(\frac{2}{r-l}\right)$	0	0	0	1	0	0	$-\frac{l+r}{2}$		
0	$\frac{2}{t-b}$	0	0	0	1	0	$-\frac{1}{2}$ $-\frac{t+b}{2}$		
0	0	$\frac{2}{f-n}$	0	0	0	1	$-\frac{f+n}{2}$		
lo	0	0	1)	lo	0	0	1		

Foundations of Computer Graphics

Online Lecture 5: Viewing Perspective Projection

Ravi Ramamoorthi

Outline

- Orthographic projection (simpler)
- Perspective projection, basic idea
- Derivation of gluPerspective (handout: glFrustum)
- Brief discussion of nonlinear mapping in z

In Matrices							
 Note negation of z coord (focal plane –d) 							
 (Only) last row affected (no longer 0 0 0 1) 							
w coord will no longer = 1. Must divide at end							
P = 1	0	0	0				
0	1	0	0				
0	0	1	0				
0	0	$-\frac{1}{d}$	0				

	Verify							
(1 0 0 0	0 1 0 0	1	$ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} $) = ?				

Foundations of Computer Graphics

Online Lecture 5: Viewing Derivation of gluPerspective

Ravi Ramamoorthi

Outline

- Orthographic projection (simpler)
- Perspective projection, basic idea
- Derivation of gluPerspective (handout: glFrustum)
- Brief discussion of nonlinear mapping in z

- gluPerspective(fovy, aspect, zNear > 0, zFar > 0)
- Fovy, aspect control fov in x, y directions
- zNear, zFar control viewing frustum

In Matrices								
• Simplest form:	1 aspect	0	0	0				
	0	1	0	0				
	0	0	1	0				
	0	0	$-\frac{1}{d}$	0				
 Aspect ratio taken into account 								
 Homogeneous, simpler to multiply through by d 								
 Must map z vals based on near, far planes (not yet) 								

In Matrices								
P =	$\frac{1}{aspect}$	0	0	0	$\stackrel{\rightarrow}{\longrightarrow} \left(\frac{d}{aspect} 0 0 0 \right)$			
	0	1	0	0	0 d 0 0			
	0	0	1	0	0 0 <i>A B</i>			
	0	0	$-\frac{1}{d}$	0	0 0 -1 0			
• A and B selected to map n and f to -1, +1 respectively								

Z mapping derivation

 $\begin{pmatrix} A & B \\ -1 & 0 \end{pmatrix} \begin{pmatrix} z \\ 1 \end{pmatrix} = ?$

Mapping of Z is nonlinear

$$\begin{pmatrix} Az+B\\ -z \end{pmatrix} = -A - \frac{B}{z}$$

- Many mappings proposed: all have nonlinearities
- Advantage: handles range of depths (10cm 100m)
- Disadvantage: depth resolution not uniform
 More close to near plane, less further away
- Common mistake: set near = 0, far = infty. Don't do this. Can't set near = 0; lose depth resolution.

