Foundations of Computer Graphics

Online Lecture 5: Viewing
Orthographic Projection

Ravi Ramamoorthi

- Derivation of gluPerspective (handout: glFrustum)
- Brief discussion of nonlinear mapping in z

Motivation

- We have seen transforms (between coord systems)
- But all that is in 3D
- We still need to make a 2D picture
- Project 3D to 2D. How do we do this?
- This lecture is about viewing transformations

What we' ve seen so far

- Transforms (translation, rotation, scale) as 4×4 homogeneous matrices
- Last row always 0001 . Last w component always 1
- For viewing (perspective), we will use that last row and w component no longer 1 (must divide by it)
- Orthographic projection (simpler)
- Perspective projection, basic idea

Projections

- To lower dimensional space (here 3D -> 2D)
- Preserve straight lines
- Trivial example: Drop one coordinate (Orthographic)

Orthographic Projection

- Characteristic: Parallel lines remain parallel
- Simplest form: project onto x-y plane, drop z coordinate
- Useful for technical drawings etc.

Orthographic Matrix

- First center cuboid by translating
- Then scale into unit cube

In general

- We have a cuboid that we want to map to the normalized or square cube from $[-1,+1]$ in all axes
- We have parameters of cuboid (l,r ; t,b; n,f)

Transformation Matrix

$$
M=\left(\begin{array}{cccc}
\text { Scale } & \\
\frac{2}{r-l} & 0 & 0 & 0 \\
0 & \frac{2}{t-b} & 0 & 0 \\
0 & 0 & \frac{2}{f-n} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & -\frac{l+r}{2} \\
0 & 1 & 0 & -\frac{t+b}{2} \\
0 & 0 & 1 & -\frac{f+n}{2} \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

Orthographic Matrix

- Looking down -z, f and n are negative ($n>f$)
- OpenGL convention: positive n, f, negate internally

Translate

Scale

Outline

- Orthographic projection (simpler)
- Perspective projection, basic idea
- Derivation of gluPerspective (handout: gIFrustum)
- Brief discussion of nonlinear mapping in z

In Matrices

- Note negation of z coord (focal plane -d)
- (Only) last row affected (no longer 0001)
- w coord will no longer $=1$. Must divide at end

$$
P=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -\frac{1}{d} & 0
\end{array}\right)
$$

$\frac{\text { Verify }}{\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -\frac{1}{d} & 0\end{array}\right)\left(\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right)=?}$

$\frac{\text { Verify }}{\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -\frac{1}{d} & 0\end{array}\right)\left(\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right)=? \quad\left(\begin{array}{c}x \\ y \\ z \\ -\frac{z}{d}\end{array}\right)=\left(\begin{array}{c}-\frac{d^{*} x}{z} \\ -\frac{d^{*} y}{z} \\ -d \\ 1\end{array}\right)}$

gluPerspective

- gluPerspective(fovy, aspect, zNear >0, zFar >0)
- Fovy, aspect control fov in x, y directions
- zNear, zFar control viewing frustum

In Matrices
- Simplest form: $\quad\left(\begin{array}{cccc}\frac{1}{\text { aspect }} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -\frac{1}{d} & 0\end{array}\right)$
- Aspect ratio taken into account
- Homogeneous, simpler to multiply through by d
- Must map z vals based on near, far planes (not yet)

Z mapping derivation

$$
\left(\begin{array}{cc}
A & B \\
-1 & 0
\end{array}\right)\binom{z}{1}=?
$$

Z mapping derivation

$$
\left(\begin{array}{cc}
A & B \\
-1 & 0
\end{array}\right)\binom{z}{1}=? \quad\binom{A z+B}{-z}=-A-\frac{B}{z}
$$

- Simultaneous equations?

Z mapping derivation

$\left(\begin{array}{cc}A & B \\ -1 & 0\end{array}\right)\binom{z}{1}=? \quad\binom{A z+B}{-z}=-A-\frac{B}{z}$

- Simultaneous equations?

$$
\begin{aligned}
& -A+\frac{B}{n}=-1 \\
& -A+\frac{B}{f}=+1
\end{aligned}
$$

Outline

- Orthographic projection (simpler)
- Perspective projection, basic idea
- Derivation of gluPerspective (handout: gIFrustum)
- Brief discussion of nonlinear mapping in z

Z mapping derivation

$\left(\begin{array}{cc}A & B \\ -1 & 0\end{array}\right)\binom{z}{1}=? \quad\binom{A z+B}{-z}=-A-\frac{B}{z}$

- Simultaneous equations?

$$
\left.\begin{array}{ll}
-A+\frac{B}{n}=-1 & A
\end{array}\right)-\frac{f+n}{f-n}, ~ B=-\frac{2 f n}{f-n}
$$

Mapping of \mathbf{Z} is nonlinear

$$
\binom{A z+B}{-z}=-A-\frac{B}{z}
$$

- Many mappings proposed: all have nonlinearities
- Advantage: handles range of depths (10cm - 100m)
- Disadvantage: depth resolution not uniform
- More close to near plane, less further away
- Common mistake: set near $=0$, far $=$ infty. Don't do this. Can' t set near $=0$; lose depth resolution.

