
Replicated State Machines, 
Sequence Consensus

Seif Haridi

S. Haridi, KTHx ID2203.2x

Motivation
● We wish to implement a Replicated State

Machine (RSM)
● Processes need to agree on the sequence of

commands (or messages) to execute
● The standard approach is to use multiple

instances of Paxos for single-value
consensus

2

S. Haridi, KTHx ID2203.2x

What is a state machine?
● A state machine
● Executes a sequence of commands
● Transform its state and may produce 

 some output
● Commands are deterministic
● Outputs of the state machine are solely determined by

the initial state and by the sequence of commands
that it has executed

3

S. Haridi, KTHx ID2203.2x

Replicated State Machine

● Replicated log ensures state machines execute same commands in
same order

● Consensus module guarantees agreement on command sequence in the
replicated log

● System makes progress as long as any majority of servers are up

4

S. Haridi, KTHx ID2203.2x

 Our Trial (1)
● Consensus is an agreement on a single value/command
● Let us use multiple instances of Paxos

● Single-value consensus has two events
● Request: Propose(C)
● Indication/Response: Decide(C’)

5

S. Haridi, KTHx ID2203.2x

Single Value Consensus Properties
● Validity

● Only proposed values may be decided
● Uniform Agreement

● No two processes decide different values
● Integrity

● Each process can decide at most one value
● Termination

● Every correct process eventually decides a value

6

S. Haridi, KTHx ID2203.2x

 Our Trial (Informal)
● Consensus is agreement on a single value
● Let us use multiple instances of Paxos
● Organize the algorithm in rounds
● Initially all processes pj (servers) are at round 1

● ProCmds := ∅; Log := ⟨⟩; s0 (initial state); proposed := false
● A client q that wants to execute a command C, it reliably  

rb-broadcast ⟨C, Pidq⟩ to all servers

● upon delivery ⟨C, Pidq⟩ at pj , the command pair is added to ProCmds
unless it is already in Log

7

S. Haridi, KTHx ID2203.2x

 Our Trial
● At round i, each server pj:

● Start new instance i of Paxos (single-value)
● If ProCmds ≠ ∅ ∧ not proposed:

● Choose a command ⟨C, Pid⟩ in ProCmds
● Propose ⟨C, Pid, i⟩ in instance i; proposed := true

● upon Decide(⟨Cd, Pid’,i⟩):

● remove ⟨Cd, Pid’⟩ from ProCmds; Append (Cd, Pid’, i) to Log
● Execute Cd on si-1 to get (si , resi) and return resi to Pid’
● Proposed := false;
● Move to the next round i+1

8

S. Haridi, KTHx ID2203.2x

Problems with our Trial !
● The algorithms works
● This algorithm is sequential!

● In order to select a command at round i any process (learner)
have to agree on the sequence of commands C1 … Ci-1

● Using Paxos every round takes 4 communication steps, 2 for
the prepare phase, and 2 for the accept phase

● Not easy to pipeline proposals
● Same proposal C might end decided in different slots
● Holes in the Log might arise

9

Sequence Consensus

S. Haridi, KTHx ID2203.2x

What is the problem?
● We need to agree on each command
● Handled well by Paxos

● We also need to agree on the sequence
of commands
● A mismatch with the consensus specification

● We would like to agree on a growing
sequence of commands

11

S. Haridi, KTHx ID2203.2x

Consensus Mismatch
● Integrity property says that a process can decide

at most one value
● ”Cannot change one’s mind”

● But, we don’t want to change what’s been decided
before

● Just extend it with more information
● This is allowed by Sequence Consensus

● Can decide again if old decided sequence is a prefix of the
new one

12

S. Haridi, KTHx ID2203.2x

Consensus Properties
● Validity

● Only proposed values may be decided
● Uniform Agreement

● No two processes decide different values
● Integrity

● Each process can decide at most one value
● Termination

● Every correct process eventually decides a value

13

S. Haridi, KTHx ID2203.2x

Sequence Consensus Properties
● Validity

● If process p decides v then v is a sequence of proposed commands
(without duplicates)

● Uniform Agreement
● If process p decides u and process q decides v then one is a prefix of

the other
● Integrity

● If process p decides u and later decides v then u is a strict prefix of v

● Termination (liveness)
● If command C is proposed by a correct process then eventually every

correct process decides a sequence containing C

14

S. Haridi, KTHx ID2203.2x

Sequence Consensus
● Event Interface

● propose(C)
● request event to append single command C to the sequence of

decided command
● decide(CS)

● Indication event where CS is a decided command sequence
● Abortable Sequence Consensus adds

● abort
● Indication event

15

Sequence-Paxos

S. Haridi, KTHx ID2203.2x

Roadmap: From Paxos to Sequence-Paxos

● Make the minimal modifications to Paxos to
obtain correct Sequence-Paxos algorithm

● Then add optimizations to make the algorithm
efficient

● In Paxos each process may assume any or all of
the three roles: proposer, acceptor, and learner

17

S. Haridi, KTHx ID2203.2x

Initial State for Paxos
● Proposer

● np := 0 Proposer’s current round number
● vp := ⊥ Proposer’s current value

● Acceptor
● nprom := 0 Promise not to accept in lower rounds
● na := 0 Round number in which a value is accepted
● va := ⊥ Accepted value

● Learner
● vd := ⊥ Decided value

18

S. Haridi, KTHx ID2203.2x

Proposer
● On 〈Propose, C〉 :

● np := unique higher proposal number
● S := ∅, acks := 0
● send 〈Prepare, np〉 to all acceptors

● On 〈Promise, n, n’, v’〉 s.t. n = np:
● add (n’, v’) to S (multiset union)
● if |S|= ⎡(N+1)/2⎤:
● (k, v) := max(S) // adopt v
● vp := if v ≠ ⊥ then v else C
● send 〈Accept, np, vp〉 to all acceptors

● On 〈Accepted, n〉 s.t. n = np:
● acks := acks + 1
● if acks = ⎡(N+1)/2⎤:
● send 〈Decide, vp〉 to all learners

● On 〈Nack, n〉 s.t. n = np:
● trigger Abort()
● np := 0

Acceptor
● On 〈Prepare, n〉:

● if nprom < n:
● nprom := n
● send 〈Promise, n, na, va〉 to Proposer
● else: send 〈Nack, n〉 to Proposer

● On 〈Accept, n, v〉:
● if nprom ≤ n:
● nprom := n
● (na, va) := (n, v)
● send 〈Accepted, n〉 to Proposer
● else: send 〈Nack, n〉 to Proposer

Learner
■ On 〈Decide, v〉:

❑ If vd = ⊥:
❑ vd := v
❑ trigger Decide(vd)

Paxos Algorithm

max(S) is any element (k, v) of S s.t. k is highest
proposal number 19

S. Haridi, KTHx ID2203.2x

From Paxos to Sequence-Paxos
● Values are sequences

● ⊥ is the empty sequence (⊥ = 〈〉)
● We make two changes:

● After adopting a value (seq) with highest proposal
number, the proposer is allowed to extend the sequence
with (nonduplicate) new command(s)

● Learner that receives 〈Decide, v〉 will decide v if v is
longer sequence than previously decided sequence

20

S. Haridi, KTHx ID2203.2x

Agreeing on (non-duplicate) commands
●

21

S. Haridi, KTHx ID2203.2x

Initial State for Sequence Paxos
● Proposer

● np := 0 Proposer’s current round number
● vp := ⟨⟩ Proposer’s current value (empty sequence)

● Acceptor
● nprom := 0 Promise not to accept in lower rounds
● na := 0 Round number in which a value is accepted
● va := ⟨⟩ Accepted value (empty sequence)

● Learner
● vd := ⟨⟩ Decided value (empty sequence) 22

S. Haridi, KTHx ID2203.2x

Acceptor
● On 〈Prepare, n〉:

● if nprom < n:
● nprom := n
● send 〈Promise, n, na, va〉 to Proposer
● else: send 〈Nack, n〉 to Proposer

● On 〈Accept, n, v〉:
● if nprom ≤ n:
● nprom := n
● (na, va) := (n, v)
● send 〈Accepted, n〉 to Proposer
● else: send 〈Nack, n〉 to Proposer

Learner
■ On 〈Decide, v〉:

❑ If |vd| < |v|:
❑ vd := v
❑ trigger Decide(vd)

Sequence Paxos Algorithm

23

Proposer
● On 〈Propose, C〉 :

● np := unique higher proposal number
● S := ∅, acks := 0
● send 〈Prepare, np〉 to all acceptors

● On 〈Promise, n, n’, v’〉 s.t. n = np:
● add (n’, v’) to S (multiset union)
● if |S|= ⎡(N+1)/2⎤:
● (k, v) := max(S) // adopt v
● vp := if v ≠ ⊥ then v else ⟨⟩
● vp := v ⊕ ⟨C⟩
● send 〈Accept, np, vp〉 to all acceptors

● On 〈Accepted, n〉 s.t. n = np:
● acks := acks + 1
● if acks = ⎡(N+1)/2⎤:
● send 〈Decide, vp〉 to all learners

● On 〈Nack, n〉 s.t. n = np:
● trigger Abort()
● np := 0

S. Haridi, KTHx ID2203.2x

● Acceptor
● On 〈Prepare, n〉:

● if nprom < n:
● nprom := n
● send 〈Promise, n, na, va〉 to Proposer
● else: send 〈Nack, n〉 to Proposer

Sequence Paxos Algorithm

● S = {(n1, v1), …., (nk,vk)}
● fun max(S):

● (n,v) =: (0,⟨⟩)
● for (n’,v’) in S:

● if n < n’ or (n = n’ and ∣v∣ < ∣v’∣):
● (n,v) := (n’,v’)

● return (n,v)

24

S. Haridi, KTHx ID2203.2x

Where to go from here?

● Correctness ?
● Follow the steps of Lamport
● Correctness in modeled after the single-value Paxos

correctness proof

25

S. Haridi, KTHx ID2203.2x

Where to go from here?
● Efficiency ?

● Every proposal takes two round-trips
● Proposals are not pipelined
● Sequences are sent back and forth
● Decide carries sequences

26

S. Haridi, KTHx ID2203.2x

Acceptor
● On 〈Prepare, n〉:

● if nprom < n:
● nprom := n
● send 〈Promise, n, na, va〉 to Proposer
● else: send 〈Nack, n〉 to Proposer

● On 〈Accept, n, v〉:
● if nprom ≤ n:
● nprom := n
● (na, va) := (n, v)
● send 〈Accepted, n〉 to Proposer
● else: send 〈Nack, n〉 to Proposer

Learner
■ On 〈Decide, v〉:

❑ If |vd| < |v|:
❑ vd := v
❑ trigger Decide(vd)

max(S) is any element (k, v) of S s.t. k is highest
proposal number and v is a sequence

Accept phase

27

Proposer
● On 〈Propose, C〉 :

● np := unique higher proposal number
● S := ∅, acks := 0
● send 〈Prepare, np〉 to all acceptors

● On 〈Promise, n, n’, v’〉 s.t. n = np:
● add (n’, v’) to S (multiset union)
● if |S|= ⎡(N+1)/2⎤:
● (k, v) := max(S) // adopt v
● vp := if v ≠ ⊥ then v else C
● vp := v ⊕ ⟨C⟩
● send 〈Accept, np, vp〉 to all acceptors

● On 〈Accepted, n〉 s.t. n = np:
● acks := acks + 1
● if acks = ⎡(N+1)/2⎤:
● send 〈Decide, vp〉 to all learners

● On 〈Nack, n〉 s.t. n = np:
● trigger Abort()
● np := 0

Prepare phase

Correctness of
Sequence Paxos

S. Haridi, KTHx ID2203.2x

Correctness
● How do we know that algorithm is correct?

● Build on proof structure for Paxos

29

S. Haridi, KTHx ID2203.2x

Acceptor
● On 〈Prepare, n〉:

● if nprom < n:
● nprom := n
● send 〈Promise, n, na, va〉 to Proposer
● else: send 〈Nack, n〉 to Proposer

● On 〈Accept, n, v〉:
● if nprom ≤ n:
● nprom := n
● (na, va) := (n, v)
● send 〈Accepted, n〉 to Proposer
● else: send 〈Nack, n〉 to Proposer

Learner
■ On 〈Decide, v〉:

❑ If |vd| < |v|:
❑ vd := v
❑ trigger Decide(vd)

max(S) is any element (k, v) of S s.t. k is highest
proposal number and v is a sequence

Accept phase

30

Proposer
● On 〈Propose, C〉 :

● np := unique higher proposal number
● S := ∅, acks := 0
● send 〈Prepare, np〉 to all acceptors

● On 〈Promise, n, n’, v’〉 s.t. n = np:
● add (n’, v’) to S (multiset union)
● if |S|= ⎡(N+1)/2⎤:
● (k, v) := max(S) // adopt v
● vp := if v ≠ ⊥ then v else C
● vp := v ⊕ ⟨C⟩
● send 〈Accept, np, vp〉 to all acceptors

● On 〈Accepted, n〉 s.t. n = np:
● acks := acks + 1
● if acks = ⎡(N+1)/2⎤:
● send 〈Decide, vp〉 to all learners

● On 〈Nack, n〉 s.t. n = np:
● trigger Abort()
● np := 0

Prepare phase

S. Haridi, KTHx ID2203.2x

Ballot (round) Array
● Replicas p1, p2 and p3

■ We looking at the state of acceptors at each pi
■ Empty sequence accepted in round 0

Round Accepted by p1 Accepted by p2 Accepted by p3

n = 5 〈C2,C3〉 〈C2,C3〉

...
n=2 〈C2〉 〈C2〉

n=1 〈C1〉

n=0 〈〉 〈〉 〈〉

31

S. Haridi, KTHx ID2203.2x

Chosen Sequence v
● Let va[p,n] is the sequence accepted

by acceptor p at round n

● A sequence v is chosen at round n
● if there exists an quorum Q of acceptors

at round n such that v is prefix va[p,n], for
every acceptor q in Q

● A sequence v is chosen
● if v is chosen at n, for some round n

32

Round Accepted by
p1

Accepted by
p2

Accepted
by p3

n = 5 〈C2,C3〉 〈C2,C3〉

...

n=2 〈C2〉 〈C2〉

n=1 〈C1〉

n=0 〈〉 〈〉 〈〉

S. Haridi, KTHx ID2203.2x

● When request arrives from
proposer at round 5 the
chosen sequences are
● <>,
● <C2>,
● <C2,C3>,
● <C2,C3,C1>

33

Chosen Sequences
Round Accepted by p1 Accepted by p2 Accepted by

p3

n = 5 〈C2,C3,C1,〉 〈C2,C3,C1〉

...

n = 2 〈C2〉 〈C2〉

n = 1 〈C1〉

n = 0 〈〉 〈〉 〈〉

S. Haridi, KTHx ID2203.2x

Paxos Invariants
● P2c. For any v and n, if a proposal with value v and number n is

issued, then there is a Quorum S of acceptors such that either (a)
no acceptor in S has accepted any proposal numbered less than
n, or (b) v is the value of the highest-numbered proposal among
all proposals numbered less than n accepted by the acceptors in
S

● ⇒ P2b. If a proposal with value v is chosen, then every higher-
numbered proposal issued by any proposer has value v

● ⇒ P2a. If a proposal with value v is chosen, then every higher-
numbered proposal accepted by any acceptor has value v

● ⇒ P2. If a proposal with value v is chosen, then every higher-
numbered proposal that is chosen has value v

34

S. Haridi, KTHx ID2203.2x

Multi-Paxos Invariants
● P2c. if a proposal with seq v and number n is issued, then there is a

quorum S of acceptors such that seq v is an extension of the sequence of
the highest-numbered proposal less than n accepted by any acceptor in S

Highest numbered proposal
accepted before round 4 is
<c2,c3>
It is ok to issue <c2,c3,a> at
4, or <c2,c3,b,d> at 5

Round
Accepted by

p1

Accepted by
p2

Accepted by
p3

n=5 〈C2,C3,b,d〉 〈C2,C3,b,d〉

n=4 〈C2,C3,a〉

n=3 〈C2,C3〉 〈C2,C3〉

n=2 〈C2〉 〈C2〉

n=1 〈C1〉

n=0 〈〉 〈〉 〈〉 35

S. Haridi, KTHx ID2203.2x

● Acceptor
● On 〈Prepare, n〉:

● if nprom < n:
● nprom := n
● send 〈Promise, n, na, va〉 to Proposer
● else: send 〈Nack, n〉 to Proposer

● On 〈Accept, n, v〉:
● if nprom ≤ n:
● nprom := n
● (na, va) := (n, v)
● send 〈Accepted, n〉 to Proposer
● else: send 〈Nack, n〉 to Proposer

Learner
■ On 〈Decide, v〉:

❑ If |vd| < |v|:
❑ vd := v
❑ trigger Decide(vd)

max(S) is any element (k, v) of S s.t. k is highest
proposal number and v is a sequence

Prepare phase Accept phase

36

S. Haridi, KTHx ID2203.2x

If a sequence is chosen
● Replicas p1, p2 and p3

■ If sequence v is issued in round n then v is an extension
of all sequences chosen in rounds ≤ n

Round Accepted by p1 Accepted by p2 Accepted by p3

n = 5 〈C2,C3〉 〈C2,C3〉

...

n=2 〈C2〉 〈C2〉

n=1 〈C1〉

n=0 〈〉 〈〉 〈〉

37

S. Haridi, KTHx ID2203.2x

Paxos to Sequence-Paxos Invariants

● P2b. If a proposal with value v is chosen, then
every higher-numbered proposal issued by any
proposer has value v

● P2b. If a proposal with seq v is chosen, then every
higher-numbered proposal issued by any proposer
has v as a prefix

38

S. Haridi, KTHx ID2203.2x

● P2a. If a proposal with value v is chosen, then
every higher-numbered proposal accepted by any
acceptor has value v

● P2a. If a proposal with seq v is chosen, then every
higher-numbered proposal accepted by any
acceptor has v as a prefix

Paxos to Sequence-Paxos Invariants

39

S. Haridi, KTHx ID2203.2x

● P2. If a proposal with value v is chosen, then every
higher-numbered proposal that is chosen has
value v

● P2. If a proposal with seq v is chosen, then every
higher-numbered proposal that is chosen has v as
a prefix

Paxos to Sequence-Paxos Invariants

40

S. Haridi, KTHx ID2203.2x

Multi-Paxos Invariants
● Initially, the empty sequence is chosen in round n = 0
● P2c. If a proposal with seq v and number n is issued, then there is

a set S consisting of a majority of acceptors such that seq v is an
extension of the sequence of the highest-numbered proposal less
than n accepted by the acceptors in S

● ⇒ P2b. If a proposal with seq v is chosen, then every higher-
numbered proposal issued by any proposer has v as a prefix

● ⇒ P2a. If a proposal with seq v is chosen, then every higher-
numbered proposal accepted by any acceptor has v as a prefix

● ⇒ P2. If a proposal with seq v is chosen, then every higher-
numbered proposal that is chosen has v as a prefix

41

Leader- Based
Sequence Paxos

S. Haridi, KTHx ID2203.2x

Problems with current algorithm
● The previous algorithm as presented satisfies all the

safety properties but may not make progress
● A proposer can run only one proposal until decide before taking the

next proposal. No pipelining of proposals
● Multiple proposers may lead to live-locks (liveness violation)
● Two round-trips for each sequence chosen
● Entire sequences are sent back and forth
● vp, va and vd are mostly redundant

43

S. Haridi, KTHx ID2203.2x

Assumptions
● Assume eventual leader election abstraction

with a ballot number BLE 〈Leader, L, n〉
● BLE satisfies completeness and eventually accuracy
● And also monotonically unique ballots

● The Leader-based Sequence Paxos is optimized
for the case when a single proposer runs for a
longer period of time as a leader
● Thus, will not be aborted for a while
● But must guarantee safety if aborted

44

S. Haridi, KTHx ID2203.2x

Interface of Leader Election
● Module:

● Name: BallotLeaderElection (Ble)
● Events:

● Indication: 〈ble, Leader | pi, n〉
● Indicate that leader is node pi with ballot number n

● Properties:
● BLE1 (completeness). Eventually every correct process elects

some correct process if a majority are correct
● BLE2 (eventual agreement). Eventually no two correct

processes elect different correct processes
● BLE3 (monotonic unique ballots). If a process L with ballot n is

elected as leader by pi, all previously elected leaders by pi have
ballot numbers less than n, and (L,n) is a unique number

45

S. Haridi, KTHx ID2203.2x

BLE desirable properties
● Ballot leader election elects a leader L with higher

ballot number n than all previous leaders L’

● If a process p elects a leader 〈Leader, L, n〉p then for
previously elected leader at p 〈Leader, L’, n’〉p , n’ > n and
all pairs (L’, n’) are unique

p1

p2

p3

elect p3,n1

elect p3,n1

elect p3,n1

elect p1,n4

elect p1,n2 elect p2,n3
elect p1,n4

n1<n2<n3<n4

46

S. Haridi, KTHx ID2203.2x

The state of proposers
● We still have a set of proposers
● Any proposer will be either a

leader or a follower
● A leader may be in either:

● Prepare state, or
● Accept state

● Until overrun by a higher leader,
and moves to a follower state

47

prepare

accept

leader(L, n)

follower

 
 Ballot Leader Election BLE

S. Haridi, KTHx ID2203.2x

BLE desirable properties

● We will allow a process p to “inaccurately” leave a
correct leader as long as the new leader has a
higher ballot number

● We will also require that a process is elected as a
leader only if a majority of processes are correct
and alive. This fits Sequence Paxos (see later)
● BLE1: Eventually every correct process trusts some correct

correct process if a majority are correct
● BLE 2: Eventually no two correct correct processes trust

different correct processes

49

S. Haridi, KTHx ID2203.2x

Assumptions
● We assume initially a Fail-Noisy model
● Processes fail by crashing
● Initial arbitrary network delays but eventually

stabilizes (partially synchronous system)
● Perfect point-to-point links

● However the algorithms works for a weaker
model where the network may drop
messages and processes crash and recover

50

S. Haridi, KTHx ID2203.2x

Basic idea
● Ballots are unique

● Each process p has its own ballot (n, pidp). This pair is always
unique since pidp is unique can comes from an totally ordered set

● A ballot is the rank of a process
● Max ballot is available at each correct process

● Each correct process periodically gossips its ballot to all processes
● Processes are ranked

● Eventually each correct process will elect the process with the
highest rank (max ballot) given good network conditions (eventual
agreement)

51

S. Haridi, KTHx ID2203.2x

Basic idea
● Majority requirement

● Each correct process will trust a leader only if the leader’s max ballot
is among the collected ballots from a majority of processes

● Monotonically increasing ballots
● Every process p that do not receive the leader’s ballot (n, pidL)

among collected ballots consider the leader has crashes
● p increases his own ballot (n+1, pidp)

● BLE3 (monotonic unique ballots) is satisfied and also
BLE1 (completeness) assuming eventual synchrony

52

S. Haridi, KTHx ID2203.2x

The algorithm I
● Each process pi is ranked with a ballot: (n, pidi) where n is an

increasing epoch number and pidi is a process identifier

● At any epoch n, ‘under stable network conditions’ the
correct process with the highest pid is the leader and
remains the leader if supported by a majority

● Periodically (delay ∆) each process collects the ballots of
correct process in ballots (votes) and disseminates the
known max ballot ballotmax

53

S. Haridi, KTHx ID2203.2x

The algorithm II
● Each process pi starts as a follower
● Periodically each process pi collects ballots

from a majority to check the leader

● If the leader’s ballot is absent after collecting
ballots from a majority at pi
● pi moves to become a candidate
● pi increases in own ballot to a value one

higher than ballotmax
● The one with highest rank wins and is

elected
● If message from a suspected process is

received the delay is increased by ∆

54

follower

candidate

Leader

Leader detected

Leader absent in a majority

Increase ballot

Max ballot won

Lost vote

S. Haridi, KTHx ID2203.2x

Implementing BLE
● BallotLeaderElection, instance ble
● Uses: PerfectPointToPointLinks, instance pp2p
● upon event 〈ble, Init〉 do

● round := 0; ballots := ∅
● ballot := (0; pid); leader := ⊥; ballotmax := ballot
● delay := ∆; startTimer(delay)

● upon event 〈 Timeout 〉 do
● if ballots + 1 ≥ ⌈Π/2⌉ then checkLeader()
● ballots := ∅, round := round + 1
● for all p ∈ Π do

● if p ≠ self then
● trigger 〈pp2p, Send | p, [HeartbeatRequest, round, ballotmax] 〉

● startTimer(delay)
55

S. Haridi, KTHx ID2203.2x

Implementing BLE
● upon event 〈pp2p, Deliver ∣ p, [HeartbeatRequest, r, bmax] 〉 do

● if bmax > ballotmax then ballotmax := bmax
● trigger 〈pp2p, Send | p, [HeartbeatRelpy, r, ballot] 〉

● upon event 〈 〈pp2p, Deliver ∣ p, [HeartbeatReply, r, b] 〉 〉 do
● if r = round then ballots := ballots ∪ { (p,b) }
● else  

 delay := delay + ∆

56

S. Haridi, KTHx ID2203.2x

CheckLeader
● Procedure CheckLeader()

● top := (topProcess, topBallot) := MaxByBallot(ballots ∪{(self , ballot) })

● if topBallot < ballotmax then
● leader := ⊥
● while ballot ≤ ballotmax do
● ballot := Increment(ballot)
● Else (topBallot ≥ ballotmax
● if top ≠ leader then
● ballotmax := topBallot; leader := top
● trigger 〈ble, Leader ∣ topProcess, topBallot ⟩

57

S. Haridi, KTHx ID2203.2x

BLE conclusions
● The algorithm satisfies eventual agreement since the period ∆ will

increase so that heartbeats are delivered to each correct process
by all correct process

● Once a leader L crashes or is disconnected from a majority, this
majority with increase their ballot to a number higher than that of
L

● In the next round one of processes will be elected based on the
highest rank among them satisfying eventual completeness and
monotonic ballots

● The algorithm works even if messages even if messages are lost or a
process crashes and recovers

58

