Replicated State Machines, Sequence Consensus

Seif Haridi

Motivation

- We wish to implement a Replicated State Machine (RSM)
- Processes need to agree on the sequence of commands (or messages) to execute
- The standard approach is to use multiple instances of Paxos for single-value consensus

What is a state machine?

- A state machine
- Executes a sequence of commands
- Transform its state and may produce some output

- Commands are deterministic
- Outputs of the state machine are solely determined by the initial state and by the sequence of commands that it has executed

Replicated State Machine

- Replicated log ensures state machines execute same commands in same order
- Consensus module guarantees agreement on command sequence in the replicated log
- System makes progress as long as any majority of servers are up

Our Trial (1)

- Consensus is an agreement on a single value/command
- Let us use multiple instances of Paxos
- Single-value consensus has two events
- Request: Propose(C)
- Indication/Response: Decide(C')

Single Value Consensus Properties

- Validity
- Only proposed values may be decided
- Uniform Agreement
- No two processes decide different values
- Integrity
- Each process can decide at most one value
- Termination
- Every correct process eventually decides a value

Our Trial (Informal)

- Consensus is agreement on a single value
- Let us use multiple instances of Paxos
- Organize the algorithm in rounds
- Initially all processes p_{j} (servers) are at round 1
- ProCmds := \varnothing; Log := $\left\rangle ; \mathrm{s}_{0}\right.$ (initial state); proposed := false
- A client q that wants to execute a command C, it reliably rb-broadcast $\left\langle C\right.$, Pid $\left._{q}\right\rangle$ to all servers
- upon delivery $\left\langle C\right.$, Pid $\left._{q}\right\rangle$ at p_{j}, the command pair is added to ProCmds unless it is already in Log

Our Trial

－At round i ，each server p_{j} ：
－Start new instance i of Paxos（single－value）
－If ProCmds $\neq \varnothing \wedge$ not proposed：

- Choose a command 〈C，Pid〉 in ProCmds
- Propose 〈C，Pid，i〉 in instance i；proposed ：＝true
－upon Decide（ $\left\langle\mathrm{C}_{\mathrm{d}}\right.$, Pid＇，,$\left.\left.i\right\rangle\right)$ ：
－remove $\left\langle\mathrm{C}_{\mathrm{d}}\right.$ ，Pid’ from ProCmds；Append（ C_{d} ，Pid＇，i ）to Log
－Execute C_{d} on $\mathrm{s}_{\mathrm{i}-1}$ to get（ s_{i} ， res $_{\mathrm{i}}$ ）and return res to Pid＇
－Proposed ：＝false；
－Move to the next round $\mathrm{i}+1$

Problems with our Trial!

- The algorithms works
- This algorithm is sequential!
- In order to select a command at round i any process (learner) have to agree on the sequence of commands $C_{1} \ldots C_{i-1}$
- Using Paxos every round takes 4 communication steps, 2 for the prepare phase, and 2 for the accept phase
- Not easy to pipeline proposals
- Same proposal C might end decided in different slots
- Holes in the Log might arise

Sequence Consensus

What is the problem?

- We need to agree on each command
- Handled well by Paxos
- We also need to agree on the sequence of commands
- A mismatch with the consensus specification
- We would like to agree on a growing sequence of commands

Consensus Mismatch

- Integrity property says that a process can decide at most one value
- "Cannot change one's mind"
- But, we don't want to change what's been decided before
- Just extend it with more information
- This is allowed by Sequence Consensus
- Can decide again if old decided sequence is a prefix of the new one

Consensus Properties

- Validity
- Only proposed values may be decided
- Uniform Agreement
- No two processes decide different values
- Integrity
- Each process can decide at most one value
- Termination
- Every correct process eventually decides a value

Sequence Consensus Properties

- Validity
- If process p decides v then v is a sequence of proposed commands (without duplicates)
- Uniform Agreement
- If process p decides u and process q decides v then one is a prefix of the other
- Integrity
- If process p decides u and later decides v then u is a strict prefix of v
- Termination (liveness)
- If command C is proposed by a correct process then eventually every correct process decides a sequence containing C

Sequence Consensus

- Event Interface
- propose(C)
- request event to append single command C to the sequence of decided command
- decide(CS)
- Indication event where CS is a decided command sequence
- Abortable Sequence Consensus adds
- abort
- Indication event

Sequence-Paxos

Roadmap: From Paxos to Sequence-Paxos

- Make the minimal modifications to Paxos to obtain correct Sequence-Paxos algorithm
- Then add optimizations to make the algorithm efficient
- In Paxos each process may assume any or all of the three roles: proposer, acceptor, and learner

Initial State for Paxos

- Proposer
- $n_{p}:=0$ Proposer's current round number
- $v_{p}:=\perp$ Proposer's current value
- Acceptor
- $n_{\text {prom }}:=0 \quad$ Promise not to accept in lower rounds
- $n_{\mathrm{a}}:=0$ Round number in which a value is accepted
- $v_{a}:=\perp$ Accepted value
- Learner
- $v_{d}:=\perp$ Decided value

Paxos Algorithm

On \langle Propose，C〉： n_{p} ：＝unique higher proposal number $S:=\varnothing$ ，acks ：＝ 0 send $\left\langle\right.$ Prepare，$\left.n_{\mathrm{p}}\right\rangle$ to all acceptors On 〈Promise，n，n＇，v＇〉 s．t．$n=n_{p}$ ： add（ $\mathrm{n}^{\prime}, \mathrm{v}^{\prime}$ ）to S （multiset union） if $\|S\|=\lceil(N+1) / 2\rceil$ ： （ k, v ）：＝max（S）／／adopt v $v_{p}:=$ if $v \neq \perp$ then v else C send $\left\langle\right.$ Accept，$\left.n_{p}, v_{p}\right\rangle$ to all acceptors On \langle Accepted，$n\rangle$ s．t．$n=n_{p}$ ： acks ：＝acks＋ 1 if acks $=[(\mathrm{N}+1) / 2]$ ： send $\left\langle\right.$ Decide，v_{p} ）to all learners		Acceptor ```On \(\langle\) Prepare, n〉: if \(n_{\text {prom }}<\mathrm{n}\) : \(n_{\text {prom }}:=n\) send \(\left\langle\right.\) Promise, \(\left.\mathrm{n}, n_{\mathrm{a}}, v_{\mathrm{a}}\right\rangle\) to Proposer else: send \(\langle\) Nack, \(n\rangle\) to Proposer On \(\langle\) Accept, n, v〉: if \(n_{\text {prom }} \leq n\) : \(\mathrm{n}_{\text {prom }}:=\mathrm{n}\) \(\left(\mathrm{n}_{\mathrm{a}}, \mathrm{v}_{\mathrm{a}}\right):=(\mathrm{n}, \mathrm{v})\) send \(\langle\) Accepted, \(n\rangle\) to Proposer else: send \(\langle\) Nack, \(n\rangle\) to Proposer```
$\text { - } \begin{aligned} & \text { On }\langle\text { Nack, } \mathrm{n}\rangle \text { s.t. } \mathrm{n}=\mathrm{n}_{\mathrm{p}} \text { : } \\ & \quad \text { trigger Abort() } \\ & \mathrm{n}_{\mathrm{p}}:=0 \end{aligned}$		Learner On \langle Decide，v〉： $\begin{aligned} \text { If } v_{d} & =\perp: \\ v_{d} & :=\mathrm{v} \end{aligned}$ trigger Decide $\left(v_{d}\right)$

$\max (\mathrm{S})$ is any element (k, v) of S s．t． k is highest proposal number

From Paxos to Sequence-Paxos

- Values are sequences
- \perp is the empty sequence $(\perp=\langle \rangle)$
- We make two changes:
- After adopting a value (seq) with highest proposal number, the proposer is allowed to extend the sequence with (nonduplicate) new command(s)
- Learner that receives 〈Decide, v\rangle will decide v if v is longer sequence than previously decided sequence

Agreeing on (non-duplicate) commands

- As a client is allowed to issue the same (instance) command C multiple times we cannot avoid proposing the same command C multiple times
- We hide this issue in the sequence append operator \oplus :
- Non-duplicate \oplus :
- $\left\langle\mathrm{C}_{1}, \ldots, \mathrm{C}_{m}\right\rangle \oplus \mathrm{C} \underset{\underline{\underline{ \pm}}}{\left\{\mathrm{C}_{1}, \ldots, \mathrm{C}_{m}\right\rangle \text { if } \mathrm{C} \text { is equal some } \mathrm{C}_{1}} \begin{gathered} \\ \left\langle\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{m}}, \mathrm{C}\right\rangle \text {, otherwise }\end{gathered}$
- Duplication allowed \oplus

Initial State for Sequence Paxos

- Proposer

$$
\begin{aligned}
& -n_{p}:=0 \\
& -v_{p}:=\langle \rangle
\end{aligned}
$$

Proposer's current round number
Proposer's current value (empty sequence)

- Acceptor
- $n_{\text {prom }}:=0$
Promise not to accept in lower rounds
- $n_{a}:=0$
Round number in which a value is accepted
- $v_{a}:=\langle \rangle$
Accepted value (empty sequence)
- Learner

$$
\text { - } V_{d}:=\langle \rangle \quad \text { Decided, _yaluelkerommpty sequence) }
$$

Sequence Paxos Algorithm

Proposer

－On \langle Propose，C \rangle ：
－$n_{\mathrm{p}}:=$ unique higher proposal number
－$S:=\varnothing$ ，acks $:=0$
－send $\left\langle\right.$ Prepare，$\left.n_{\mathrm{p}}\right\rangle$ to all acceptors
－On $\left\langle\right.$ Promise，n, n^{\prime}, v \rangle s．t．$n=n_{p}$ ：
－add（ $\mathrm{n}^{\prime}, \mathrm{v}^{\prime}$ ）to S （multiset union）
－if $|S|=[(N+1) / 2]:$
－（k，v）：＝max（S）／／adopt v
－$v_{p}:=$ if $v \neq \perp$ then v else \rangle
－$\quad \mathbf{v}_{\mathrm{p}}:=\mathbf{v} \oplus\langle\mathbf{C}\rangle$
－send $\left\langle A c c e p t, n_{p}, v_{p}\right\rangle$ to all acceptors
－On \langle Accepted，$n\rangle$ s．t．$n=n_{p}$ ：
－acks ：＝acks＋1
－if acks $=\lceil(\mathrm{N}+1) / 2\rceil$ ：
－\quad send $\left\langle\right.$ Decide，$\left.v_{p}\right\rangle$ to all learners
－On \langle Nack，n \rangle s．t．$n=n_{p}$ ：
－trigger Abort（）
－ $\mathrm{n}_{\mathrm{p}}:=0$

Acceptor

－On \langle Prepare， n\rangle ：
－if $n_{\text {prom }}<\mathrm{n}$ ：
$n_{\text {prom }}:=\mathrm{n}$
send $\left\langle\right.$ Promise， $\mathrm{n}, n_{\mathrm{a}}, v_{\mathrm{a}}$ 〉 to Proposer
－else：send \langle Nack，$n\rangle$ to Proposer
－On \langle Accept， $\mathrm{n}, \mathrm{v}\rangle$ ：
－if $n_{\text {prom }} \leq n$ ：
－$n_{\text {prom }}:=n$
－$\quad\left(\mathrm{n}_{\mathrm{a}}, \mathrm{v}_{\mathrm{a}}\right):=(\mathrm{n}, \mathrm{v})$
－send \langle Accepted，$n\rangle$ to Proposer
－else：send \langle Nack，n〉 to Proposer

Learner

On 〈Decide，v〉：
－If $\left|\mathrm{v}_{\mathrm{d}}\right|<|\mathrm{v}|$ ：
v_{d} ：$=\mathrm{v}$
trigger Decide $\left(\mathrm{v}_{\mathrm{d}}\right)$

Sequence Paxos Algorithm

Proposer

\& On \langle Propose, C\rangle :

- $n_{p}:=$ unique higher proposal number
- On \langle Prepare, n\rangle :
- send Prepare, $\left.n_{p}\right\rangle$ to all acceptors

On 〈Promise, n, n', v'〉 s.t. $\mathrm{n}=\mathrm{n}_{\mathrm{p}}$:

- add (n^{\prime}, v^{\prime}) to S (multiset union)
- if $|S|=\Gamma(N+1) / 2$:
- (k, v) := max(S)// adopt v
- $\quad \mathbf{v}_{\mathrm{p}}:=\mathrm{v} \oplus$ (C)
- send $\left\langle\right.$ Accept, $\left.n_{p}, v_{p}\right\rangle$ to all acceptors
- if $n_{\text {prom }}<\mathrm{n}$:
- $\quad n_{\text {prom }}:=\mathrm{n}$
- send $\left\langle\right.$ Promise, $\left.\mathrm{n}, n_{\mathrm{a}}, v_{\mathrm{a}}\right\rangle$ to Proposer
- else: send \langle Nack, n\rangle to Proposer

Acceptor

- $S=\left\{\left(n_{1}, v_{1}\right), \ldots .,\left(n_{k}, v_{k}\right)\right\}$
- fun $\max (\mathrm{S})$:
- $(\mathrm{n}, \mathrm{v})=:(0,\langle \rangle)$
- for $\left(n^{\prime}, v^{\prime}\right)$ in S :
- if $n<n^{\prime}$ or ($n=n^{\prime}$ and $\left.|v|<\left|v^{\prime}\right|\right)$:
$(n, v):=\left(n^{\prime}, v^{\prime}\right)$
- return (n, v)

Where to go from here?

- Correctness ?
- Follow the steps of Lamport
- Correctness in modeled after the single-value Paxos correctness proof
- Efficiency?
- Every proposal takes two round-trips
- Proposals are not pipelined
- Sequences are sent back and forth
- Decide carries sequences

Prepare phase

Accept phase

- On \langle Propose, C\rangle :
- $n_{\mathrm{p}}:=$ unique higher proposal number
- $\quad S:=\varnothing$, acks $:=0$
- send $\left\langle\right.$ Prepare, $\left.n_{\mathrm{p}}\right\rangle$ to all acceptors
- On $\left\langle\right.$ Promise, n, n^{\prime}, v $\left.{ }^{\prime}\right\rangle$ s.t. $n=n_{p}$:
- add (n^{\prime}, v^{\prime}) to S (multiset union)
- if $|S|=\lceil(N+1) / 2\rceil:$
- $(\mathrm{k}, \mathrm{v}):=\max (\mathrm{S}) / /$ adopt v
- $\quad v_{p}:=$ if $v \neq \perp$ then v else C
- $\quad \mathbf{v}_{\mathrm{p}}:=\mathbf{v} \oplus\langle\mathbf{C}\rangle$
send $\left\langle\right.$ Accept, $\left.n_{p}, v_{p}\right\rangle$ to all acceptors
- On \langle Accepted, $n\rangle$ s.t. $n=n_{p}$:
- acks := acks +1
- if acks $=\lceil(\mathrm{N}+1) / 2\rceil$:
- send $\left\langle\right.$ Decide, $\left.\mathrm{v}_{\mathrm{p}}\right\rangle$ to all learners
- $\quad \mathbf{O n}\langle$ Nack, n\rangle s.t. $\mathrm{n}=\mathrm{n}_{\mathrm{p}}$:
- trigger Abort()
- $\mathrm{n}_{\mathrm{p}}:=0$
- On \langle Prepare, n\rangle :
- if $n_{\text {prom }}<\mathrm{n}$:
- $\quad n_{\text {prom }}:=n$
- send $\left\langle\right.$ Promise, $\left.n, n_{a}, v_{\mathrm{a}}\right\rangle$ to Proposer
- else: send \langle Nack, n\rangle to Proposer

On \langle Accept, $\mathrm{n}, \mathrm{v}\rangle$:
if $n_{\text {prom }} \leq n$:
$\mathrm{n}_{\text {prom }}:=\mathrm{n}$

- $\quad\left(n_{a}, v_{a}\right):=(n, v)$
- send \langle Accepted, $n\rangle$ to Proposer
- else: send \langle Nack, $n\rangle$ to Proposer

Correctness of Sequence Paxos

Correctness

- How do we know that algorithm is correct?
- Build on proof structure for Paxos

Prepare phase

Accept phase

- On \langle Propose, C\rangle :
- $n_{\mathrm{p}}:=$ unique higher proposal number
- $\quad S:=\varnothing$, acks $:=0$
- send $\left\langle\right.$ Prepare, $\left.n_{\mathrm{p}}\right\rangle$ to all acceptors
- On $\left\langle\right.$ Promise, n, n^{\prime}, v $\left.{ }^{\prime}\right\rangle$ s.t. $n=n_{p}$:
- add (n^{\prime}, v^{\prime}) to S (multiset union)
- if $|S|=\lceil(N+1) / 2\rceil:$
- $(\mathrm{k}, \mathrm{v}):=\max (\mathrm{S}) / /$ adopt v
- $\quad v_{p}:=$ if $v \neq \perp$ then v else C
- $\quad \mathbf{v}_{\mathrm{p}}:=\mathbf{v} \oplus\langle\mathbf{C}\rangle$
send $\left\langle\right.$ Accept, $\left.n_{p}, v_{p}\right\rangle$ to all acceptors
- On \langle Accepted, $n\rangle$ s.t. $n=n_{p}$:
- acks := acks +1
- if acks $=\lceil(\mathrm{N}+1) / 2\rceil$:
- send $\left\langle\right.$ Decide, $\left.\mathrm{v}_{\mathrm{p}}\right\rangle$ to all learners
- $\quad \mathbf{O n}\langle$ Nack, n\rangle s.t. $\mathrm{n}=\mathrm{n}_{\mathrm{p}}$:
- trigger Abort()
- $\mathrm{n}_{\mathrm{p}}:=0$
- On \langle Prepare, n\rangle :
- if $n_{\text {prom }}<\mathrm{n}$:
- $\quad n_{\text {prom }}:=n$
- send $\left\langle\right.$ Promise, $\left.n, n_{a}, v_{\mathrm{a}}\right\rangle$ to Proposer
- else: send \langle Nack, n\rangle to Proposer

On \langle Accept, $\mathrm{n}, \mathrm{v}\rangle$:
if $n_{\text {prom }} \leq n$:
$\mathrm{n}_{\text {prom }}:=\mathrm{n}$

- $\quad\left(n_{a}, v_{a}\right):=(n, v)$
- send \langle Accepted, $n\rangle$ to Proposer
- else: send \langle Nack, $n\rangle$ to Proposer

Ballot (round) Array

- Replicas $\mathrm{p}_{1}, \mathrm{p}_{2}$ and p_{3}

Round	Accepted by p_{1}	Accepted by p_{2}	Accepted by p_{3}
$n=5$	$\left\langle\mathrm{C}_{2}, \mathrm{C}_{3}\right\rangle$	$\left\langle\mathrm{C}_{2}, \mathrm{C}_{3}\right\rangle$	
\ldots			
$\mathrm{n}=2$		$\left\langle\mathrm{C}_{2}\right\rangle$	$\left\langle\mathrm{C}_{2}\right\rangle$
$\mathrm{n}=1$	$\left\langle\mathrm{C}_{1}\right\rangle$		
$\mathrm{n}=0$	\rangle	\rangle	\rangle

- We looking at the state of acceptors at each p_{i}
- Empty sequence accepted in round 0

Chosen Sequence v

- Let $\mathrm{v}_{\mathrm{a}}[\mathrm{p}, \mathrm{n}]$ is the sequence accepted by acceptor p at round n
- A sequence \mathbf{v} is chosen at round \mathbf{n}
- if there exists an quorum Q of acceptors at round n such that v is prefix $v_{a}[p, n]$, for $n=2$ every acceptor q in Q
- A sequence v is chosen
- if v is chosen at n, for some round n

Round	Accepted by p_{1}	Accepted by p_{2}	Accepted by p_{3}
$\mathrm{n}=5$	$\left\langle\mathrm{C}_{2}, \mathrm{C}_{3}\right\rangle$	$\left\langle\mathrm{C}_{2}, \mathrm{C}_{3}\right\rangle$	

$n=2$
$\mathrm{n}=1 \quad\left\langle\mathrm{C}_{1}\right\rangle$
$\mathrm{n}=0$

Chosen Sequences

- When request arrives from proposer at round 5 the chosen sequences are

Round	Accepted by p_{1}	Accepted by p_{2}	Accepted by p_{3}
$\mathrm{n}=5$	$\left\langle\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C} 1\right\rangle$	$\left\langle\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{1}\right\rangle$	
\ldots			
$\mathrm{n}=2$		$\left\langle\mathrm{C}_{2}\right\rangle$	$\left\langle\mathrm{C}_{2}\right\rangle$
$\mathrm{n}=1$	$\left\langle\mathrm{C}_{1}\right\rangle$		
$\mathrm{n}=0$	\rangle	\rangle	\rangle

Paxos Invariants

- P2c. For any vand n, if a proposal with value v and number n is issued, then there is a Quorum S of acceptors such that either (a) no acceptor in S has accepted any proposal numbered less than n , or (b) v is the value of the highest-numbered proposal among all proposals numbered less than n accepted by the acceptors in S
- $\Rightarrow P 2 b$. If a proposal with value v is chosen, then every highernumbered proposal issued by any proposer has value v
- $\Rightarrow \mathrm{P} 2 \mathrm{a}$. If a proposal with value v is chosen, then every highernumbered proposal accepted by any acceptor has value v
- $\Rightarrow P 2$. If a proposal with value v is chosen, then every highernumbered proposal that is chosen has value v

Multi-Paxos Invariants

- P2c. if a proposal with seq v and number n is issued, then there is a quorum S of acceptors such that seq v is an extension of the sequence of the highest-numbered proposal less than n accepted by any acceptor in S

Round	Accepted by p_{1}	Accepted by p_{2}	Accepted by p_{3}
$\mathrm{n}=5$	$\left\langle\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{~b}, \mathrm{~d}\right\rangle$	$\left\langle\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{~b}, \mathrm{~d}\right\rangle$	
$\mathrm{n}=4$	$\left\langle\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{a}\right\rangle$		
$\mathrm{n}=3$	$\left\langle\mathrm{C}_{2}, \mathrm{C}_{3}\right\rangle$		$\left\langle\mathrm{C}_{2}, \mathrm{C}_{3}\right\rangle$
$\mathrm{n}=2$		$\left\langle\mathrm{C}_{2}\right\rangle$	$\left\langle\mathrm{C}_{2}\right\rangle$
$\mathrm{n}=1$	$\left\langle\mathrm{C}_{1}\right\rangle$		
$\mathrm{n}=0$	\rangle	\rangle	\rangle

```
Highest numbered proposal
accepted before round 4 is
<c2,c3>
It is ok to issue <c2,c3,a> at
4, or <c2,c3,b,d> at 5

\section*{Prepare phase}

\section*{Accept phase}

8 On \(\langle\) Append, C \(\rangle\) :
- \(n_{\mathrm{p}}:=\) unique higher proposal number
- \(\quad S:=\varnothing\), acks \(:=0\)
- send (Prepare, \(n_{p}\) ) to all acceptors

On 〈Promise \(\mathrm{n}, \mathrm{n}^{\prime}\), v'〉 s.t. \(\mathrm{n}=\mathrm{r}_{\mathrm{p}}\) :
- add ( \(\mathrm{n}^{\prime}, \mathrm{v}^{\prime}\) ) to S (multiset union)
- if \(|S|=\lceil(N+1) / 2]\) :
e \((\mathrm{k}, \mathrm{v}):=\max (\mathrm{S}) / /\) adopt v \(\mathbf{v}_{\mathrm{p}}:=\mathbf{v} \oplus\langle\mathbf{C}\rangle\)
- send \(\left\langle\right.\) Accept \(\left.n_{p}, v_{n}\right\rangle\) to all acceptors
- On \(\left\langle\right.\) Accepted, nj s.t. \(\mathrm{n}=\mathrm{n}_{\mathrm{p}}\).
- acks := acks + 1
- if acks \(=\lceil(\mathrm{N}+1) / 2\rceil\) :
- send \(\left\langle\right.\) Decide, \(\left.v_{\mathrm{D}}\right\rangle\) to all leamers
- \(\quad \mathrm{On}\) (Nack, n) s.t. \(\mathrm{n}=\mathrm{n}_{\mathrm{p}}\) :
- trigger Abort()
- \(\mathrm{n}_{\mathrm{p}}:=0\)
Accept phase
\(\max (\mathbf{S})\) is any element \((\mathrm{k}, \mathrm{v})\) of S s.t. k is highest proposal number and \(v\) is a sequence

\section*{If a sequence is chosen}
- Replicas \(p_{1}, p_{2}\) and \(p_{3}\)
\begin{tabular}{l|l|l|l|}
\hline Round & Accepted by \(p_{1}\) & Accepted by \(p_{2}\) & Accepted by \(p_{3}\) \\
\hline\(n=5\) & \(\left\langle C_{2}, C_{3}\right\rangle\) & \(\left\langle C_{2}, C_{3}\right\rangle\) & \\
\hline\(\ldots\) & & & \\
\hline\(n=2\) & & \(\left\langle C_{2}\right\rangle\) & \(\left\langle C_{2}\right\rangle\) \\
\hline\(n=1\) & \(\left\langle C_{1}\right\rangle\) & & \\
\hline\(n=0\) & \(\rangle\) & \(\rangle\) & \(\rangle\) \\
\hline
\end{tabular}
- If sequence \(v\) is issued in round \(n\) then \(v\) is an extension of all sequences chosen in rounds \(\leq n\)

\section*{Paxos to Sequence-Paxos Invariants}
- P2b. If a proposal with value \(v\) is chosen, then every higher-numbered proposal issued by any proposer has value \(v\)

- P2b. If a proposal with seq v is chosen, then every higher-numbered proposal issued by any proposer has v as a prefix

\section*{Paxos to Sequence-Paxos Invariants}
- P2a. If a proposal with value \(v\) is chosen, then every higher-numbered proposal accepted by any acceptor has value \(v\)

- P2a. If a proposal with seq \(v\) is chosen, then every higher-numbered proposal accepted by any acceptor has v as a prefix

\section*{Paxos to Sequence-Paxos Invariants}
- P2. If a proposal with value \(v\) is chosen, then every higher-numbered proposal that is chosen has value v
- P2. If a proposal with seq v is chosen, then every higher-numbered proposal that is chosen has v as a prefix

\section*{Multi-Paxos Invariants}

Initially, the empty sequence is chosen in round \(n=0\)
P2c. If a proposal with seq \(v\) and number \(n\) is issued, then there is a set \(S\) consisting of a majority of acceptors such that seq \(v\) is an extension of the sequence of the highest-numbered proposal less than \(n\) accepted by the acceptors in \(S\)
\(\Rightarrow P 2 b\). If a proposal with seq \(v\) is chosen, then every highernumbered proposal issued by any proposer has v as a prefix \(\Rightarrow P 2 a\). If a proposal with seq \(v\) is chosen, then every highernumbered proposal accepted by any acceptor has v as a prefix
\(\Rightarrow P 2\). If a proposal with seq \(v\) is chosen, then every highernumbered proposal that is chosen has \(v\) as a prefix

\section*{Leader- Based Sequence Paxos}

\section*{Problems with current algorithm}

The previous algorithm as presented satisfies all the safety properties but may not make progress
- A proposer can run only one proposal until decide before taking the next proposal. No pipelining of proposals
- Multiple proposers may lead to live-locks (liveness violation)
- Two round-trips for each sequence chosen
- Entire sequences are sent back and forth
- \(\mathrm{v}_{\mathrm{p}}, \mathrm{v}_{\mathrm{a}}\) and \(\mathrm{v}_{\mathrm{d}}\) are mostly redundant

\section*{Assumptions}
- Assume eventual leader election abstraction with a ballot number BLE 〈Leader, L, n〉
- BLE satisfies completeness and eventually accuracy
- And also monotonically unique ballots
- The Leader-based Sequence Paxos is optimized for the case when a single proposer runs for a longer period of time as a leader
- Thus, will not be aborted for a while
- But must guarantee safety if aborted

\section*{Interface of Leader Election}
- Module:
- Name: BallotLeaderElection (Ble)
- Events:
- Indication: 〈ble, Leader | \(\mathrm{p}_{\mathrm{i}}\), n\(\rangle\)
- Indicate that leader is node \(p_{i}\) with ballot number \(n\)
- Properties:
- BLE1 (completeness). Eventually every correct process elects some correct process if a majority are correct
- BLE2 (eventual agreement). Eventually no two correct processes elect different correct processes
- BLE3 (monotonic unique ballots). If a process \(L\) with ballot \(n\) is elected as leader by \(p_{i}\), all previously elected leaders by \(p_{i}\) have ballot numbers less than n , and \((\mathrm{L}, \mathrm{n})\) is a unique number

\section*{BLE desirable properties}
- Ballot leader election elects a leader L with higher ballot number n than all previous leaders L'
- If a process \(p\) elects a leader \(\langle\text { Leader, } L, n\rangle_{p}\) then for previously elected leader at \(\mathrm{p}\left\langle\text { Leader, } \mathrm{L}^{\prime}, \mathrm{n}^{\prime}\right\rangle_{\mathrm{p}}, \mathrm{n}^{\prime}>\mathrm{n}\) and all pairs ( \(\mathrm{L}^{\prime}, \mathrm{n}^{\prime}\) ) are unique

\[
\mathrm{n}_{1}<\mathrm{n}_{2}<\mathrm{n}_{3}<\mathrm{n}_{4}
\]

\section*{The state of proposers}
- We still have a set of proposers
- Any proposer will be either a leader or a follower
- A leader may be in either:
- Prepare state, or
- Accept state
- Until overrun by a higher leader, and moves to a follower state
leader(L, n)


\section*{Ballot Leader Election BLE}

\section*{BLE desirable properties}
- We will allow a process p to "inaccurately" leave a correct leader as long as the new leader has a higher ballot number
- We will also require that a process is elected as a leader only if a majority of processes are correct and alive. This fits Sequence Paxos (see later)
- BLE1: Eventually every correct process trusts some correct correct process if a majority are correct
- BLE 2: Eventually no two correct correct processes trust different correct processes

\section*{Assumptions}
- We assume initially a Fail-Noisy model
- Processes fail by crashing
- Initial arbitrary network delays but eventually stabilizes (partially synchronous system)
- Perfect point-to-point links

\section*{Basic idea}
- Ballots are unique
- Each process \(p\) has its own ballot ( \(n\), pid \({ }_{p}\) ). This pair is always unique since pid \({ }_{p}\) is unique can comes from an totally ordered set
- A ballot is the rank of a process
- Max ballot is available at each correct process
- Each correct process periodically gossips its ballot to all processes
- Processes are ranked
- Eventually each correct process will elect the process with the highest rank (max ballot) given good network conditions (eventual agreement)

\section*{Basic idea}
- Majority requirement
- Each correct process will trust a leader only if the leader's max ballot is among the collected ballots from a majority of processes
- Monotonically increasing ballots
- Every process p that do not receive the leader's ballot ( \(n\), pid \(_{\mathrm{L}}\) ) among collected ballots consider the leader has crashes
- \(p\) increases his own ballot \(\left(n+1\right.\), pid \(\left._{p}\right)\)
- BLE3 (monotonic unique ballots) is satisfied and also BLE1 (completeness) assuming eventual synchrony

\section*{The algorithm I}
- Each process \(p_{i}\) is ranked with a ballot: \(\left(n, p_{i}\right)\) where \(n\) is an increasing epoch number and pid is a process identifier
- At any epoch n, 'under stable network conditions' the correct process with the highest pid is the leader and remains the leader if supported by a majority
- Periodically (delay \(\Delta\) ) each process collects the ballots of correct process in ballots (votes) and disseminates the known max ballot ballot \({ }_{\max }\)

\section*{The algorithm II}
- Each process pi starts as a follower
- Periodically each process pi collects ballots from a majority to check the leader
- If the leader's ballot is absent after collecting ballots from a majority at pi
- pi moves to become a candidate
- pi increases in own ballot to a value one higher than ballot \(\max\)
- The one with highest rank wins and is elected
- If message from a suspected process is received the delay is increased by \(\Delta\)


\section*{Implementing BLE}
- BallotLeaderElection, instance ble
- Uses: PerfectPointToPointLinks, instance pp2p
- upon event 〈ble, Init〉do
- round \(:=0\); ballots \(:=\varnothing\)
- ballot \(:=(0 ;\) pid); leader \(:=\perp\); ballot max \(:=\) ballot
- delay := \(\Delta\); startTimer(delay)
- upon event \(\langle\) Timeout \(\rangle\) do
- if ballots \(+1 \geq\lceil\Pi / 2\rceil\) then checkLeader()
- ballots := \(\varnothing\), round := round + 1
- for all \(p \in \Pi\) do
- if \(p \neq\) self then
- \(\quad\) trigger \(\langle p p 2 p\), Send \(| p,\left[\right.\) HeartbeatRequest, round, ballot \(\left.\left._{\max }\right]\right\rangle\)
- startTimer(delay)

\section*{Implementing BLE}
- upon event \(\langle p p 2 p\), Deliver । p, [HeartbeatRequest, \(r\), bmax ] \(\rangle\) do
- if bmax ballot \(_{\text {max }}\) then ballot max \(_{\text {max }}:=\) bmax
- trigger \(\langle\mathrm{pp} 2 \mathrm{p}\), Send \(| \mathrm{p}\), [HeartbeatRelpy, r, ballot] \(\rangle\)
- upon event \(\langle\langle\mathrm{pp2p}\), Deliver \(| \mathrm{p},[\) HeartbeatReply, \(\mathrm{r}, \mathrm{b}]\rangle\rangle\) do
- if \(r=\) round then ballots \(:=\) ballots \(\cup\{(p, b)\}\)
- else
delay := delay \(+\Delta\)

\section*{CheckLeader}
- Procedure CheckLeader()
- top := (topProcess, topBallot) := MaxByBallot(ballots \(u\{(\) self , ballot) \(\}\) )
- if topBallot < ballot \(_{\text {max }}\) then
- leader := \(\perp\)
- while ballot \(\leq\) ballot \(_{\max }\) do
- ballot := Increment(ballot)
- Else (topBallot \(\geq\) ballot \(_{\max }\)
- if top \(\neq\) leader then
- ballot \({ }_{\max }:=\) topBallot; leader := top
- trigger 〈ble, Leader । topProcess, topBallot >

\section*{BLE conclusions}
- The algorithm satisfies eventual agreement since the period \(\Delta\) will increase so that heartbeats are delivered to each correct process by all correct process
- Once a leader L crashes or is disconnected from a majority, this majority with increase their ballot to a number higher than that of L
- In the next round one of processes will be elected based on the highest rank among them satisfying eventual completeness and monotonic ballots
- The algorithm works even if messages even if messages are lost or a process crashes and recovers```

