Open loop amplifier model and parameters

The operational amplifiers used in this class can be modeled for many practical applications, with a linear circuit. That is to say, we can use linear elements we've already learned about to build a simple model of how an amplifier would respond to changes in currents and voltages.

- In the model above, v_{p} and v_{n} are referred to as the non-inverting and inverting terminals, respectively. R_{i} and R_{o} are the input and output resistances, respectively.
- In an ideal amplifier, R_{i} is infinite (that is, the input is an open circuit); $R_{0}=0 \Omega$ (that is, the voltage source is shorted directly to v_{0}) and A is infinite (more on this soon).
- In typical op-amps, $R_{i}>10^{8} \Omega, R_{0}<10 \Omega, A>10^{6} \mathrm{~V} / \mathrm{V}$.
- The power rails (the two terminals through which op amps receive power from an external supply) are not shown in the model above. Sometimes they are drawn into the figure.
- The positive rail (historically labelled V_{DD} or V_{CC}) sets the highest voltage the amplifier can output (under any condition).
- The negative rail (historically labelled V_{SS} or V_{EE}) sets the lowest voltage the amplifier can output (under any condition).

The Comparator

Notice that if A is very high, the open loop amplifier above will likely be railed. That is, its output will be either $\mathrm{V}_{D D}$ or $\mathrm{V}_{S S}$. Why? Consider an amplifier with an A of $10^{6} \mathrm{~V} / \mathrm{V}, \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$ and $\mathrm{V}_{S S}=-10 \mathrm{~V}$. For simplicity, assume R_{i} is infinite and R_{0} is 0Ω. For any input where $v_{p}-v_{n}>10 \mu \mathrm{~V}$, the output will be 10 V . Conversely, for any input where $v_{p}-v_{n}<-10 \mu \mathrm{~V}$, the output will be -10 V . This means for any reasonable input voltage difference, the output will either be 10 V or -10 V (there is a very narrow range, between -10 $\mu \mathrm{V}$ and $10 \mu \mathrm{~V}$, where the output is exactly $\mathrm{A}^{*}\left(\mathrm{~V}_{\mathrm{p}}-\mathrm{V}_{n}\right)$ but it is negligible; the larger this A , the smaller this linear range is). In this mode, the amplifier acts as a comparator; that is, it compares the inputs: if v_{p} is larger than v_{n}, it outputs $V_{D D}$; if vn is larger than vp, it outputs $V_{S S}$.

Some material reproduced with permission from Ulaby, F. T., \& Maharbiz, M. M. (2012). Circuits. ${ }^{\text {nd }}$ Edition, NTS Press.

