
• Understand concepts of loops
• Different types of loops

– while loop
– do-while loop
– for loop

Lecture 5

Motivation

• Very often a program would repeat the
same set of procedures several times

– To compute the grades for different students

– To move the car continuously

– To create a moving sequence of images

• Loops allow a block of code to be
executed repeatedly

2

 Introduction to Loops

• Three types of loops

– while loop

– do-while loop

– for loop

• Nested Loops

– Similar to if statements, loops can also be
nested

3

while Loop

condition

action

true

false • Syntax

 while (condition) {

 // action ;

 }

• How does it work?

– if condition is true then execute action

– repeat action until condition becomes
false

• Action can be a group of statements or a
single statement.

A Loop Statement

condition

action

true

condition

action

false

true

false

while (condition)
{
 action ;
}

Compute n!
• n! (n factorial) is defined as the product of all the

integers from 0 to n:
 n! = 1*2*3*…*n (or n! = (n-1)!*n) and 0! = 1
• For example, 5! = 1*2*3*4*5 = 120
• Algorithm for computing n!

– Initialize the intermediate result t to 1 (or 0!) and a counter to
1.

– As long as counter is less than or equal n, repeat the
computation of t*counter and increase counter by one.
• 1! = 0!*1 = t*1 (set t to 1, which is 0!)
• 2! = 1!*2 = t*2 (update t to this new value, which is 2!)
• 3! = 2!*3 = t*3 (update t to this new value, which is 3!)
• 4! = 3!*4 = t*4 (update t to this new value, which is 4!)
• 5! = 4!*5 = t*5 (update t to this new value, which is 5!)

1st 2nd 3rd

Implement n! using a while loop

• Initialize the intermediate result t to 1 (or 0!) and a counter to 1

• As long as counter is less than or equal n, repeat the computation
of t*counter and increase counter by one.

public static int factorial(int number) {

 int t = 1; // initialize t to 1

 int counter = 1; // initialize counter to 1

 while(counter <= number){

 t = t * counter;

 counter = counter + 1;

 }

 return t;

}

Compute 2n
• 2n is 2 raised to the n-th power:

 2n = 2n-1 *2

• For example, 20 = 1, 21 = 2, 22 = 4, 23 = 8 …

• Algorithm for computing 2n

– Initialize the intermediate result t to 1 (or 20) and counter to 1.

– As long as counter is less than or equal to n, repeat the
computation of t*2 and update counter.

• 20 = 1 = t (set t to 1, which is 20)

• 21 = 20 *2 = t*2 (update t to this new value, which is 21)

• 22 = 21 *2 = t*2 (update t to this new value, which is 22)

• 23 = 22 *2 = t*2 (update t to this new value, which is 23)

• 24 = 23 *2 = t*2 (update t to this new value, which is 24)

Implement 2n using a while loop

• Initialize the intermediate result t to 1 (or 20) and counter to 1.

• As long as counter is less than or equal to n, repeat the
computation of t*2 and update counter.

public static int powerTwo(int number) {

 int t = 1; // initialize t to 1

 int counter = 1; // initialize counter to 1

 while(counter <= number) {

 t = t * 2;

 counter = counter + 1;

 }

 return t;

}

How to compute mn ?

Class or static method
• Class (or static) methods are declared using the static modifier.

For example: public static int factorial(int number)

 public static int powerTwo (int number)

• Class methods can be invoked without the need for creating an
instance of the class. They can be invoked outside the class with the
class name:

– ClassName.staticMethodName(parameters);

• Instance methods can access instance variable and methods as well
as class variable and methods directly.

• Class methods can access class variables methods directly but not
instance variables and instance methods – they must use an object
reference.

10

11

 Increment and Decrement Operators

• Java has special operators for incrementing (++)
and decrementing (--) an integer by one.

• The ++ operator functions as follows:

– ++a increments the value of a by one and the
incremented value is used in the expression.

– a++ uses the initial value of a in the expression and
increments afterwards.

Increment and decrement operators
Operator Name Description

++a
{y = ++a;}

Pre-
increment

Increase a by 1 and then use the value of
a in the assignment
{a = a + 1; y = a;}

a++
{y = a++;}

Post-
increment

Use the initial value of a in the
assignment and then increase a by 1
{y = a; a = a + 1;}

--a
{y = --a;}

Pre-
decrement

Decrease a by 1 and then use the value
of a in the assignment
{a = a - 1; y = a;}

a--
{y = a--;}

Post-
decrement

Use the initial value of a in the
assignment then decrease a by 1
{y = a; a = a - 1;}

// Prefix and Postfix Increment operators

public void testPrePost () {

 int a;

 int y;

 a = 4;

 IO.outputln("value of a: " + a);

 y = a++ + 5;

 IO.outputln ("value of y: " + y);

 IO.outputln ("new value of a: " + a);

 a = 4;

 IO.outputln ("value of a: " + a);

 y = ++a + 5;

 IO.outputln ("value of y: " + y);

 IO.outputln ("new value of a: " + a);

}

Example

/*

Results:

value of a: 4

value of y: 9

new value of a: 5

value of a: 4

value of y: 10

new value of a: 5

*/

14

Shortcut Assignments

• Java has a set of shortcut operators for applying an

 operation to a variable and then assigning the
 result back to that variable.

• Shortcut assignments :

 shortcut same as

 *= a *= b; a = a*b;

 /= a /= b; a = a/b;

 += a += b; a = a+b;

 -= a -= b; a = a-b;

 %= a %= b; a = a%b;

15

Shortcut Assignments

 Examples

 int i = 3;

i += 4; // i = i + 4

IO.outputln(" i = " + i); // i is now 7

 double a = 3.2;

a *= 2.0; // a = a * 2.0

IO.outputln(" a = " + a); // a is now 6.4

 int b = 15;

 b %= 10; // b = b % 10

 IO.outputln(" b = " + b); // b is now 5

do-while Loop

• Syntax

 do {

 action;

 } while (condition);

• How does it work?

– execute action

– if condition is true then

execute action again

– repeat this process until

condition evaluates to false

action

true

false

condition

do-while Loop

do {

 action;

} while (condition);

action

true

false

condition
true

false

action

condition

Implement n! using a do-while loop

• Initialize the intermediate result t to 1 (or 0!) and a counter to 1

• Compute t*counter and increment counter by 1

• As long as counter is less than or equal to n, repeat the
computation of t*counter and update counter

public static int factorial(int number) {

 int t = 1, counter = 1;

 do {

 t *= counter; // t = t * counter

 counter += 1; //counter = counter + 1

 } while(counter <= number); //don’t forget the ‘;’

 return t;

}

Implement 2n using a do-while loop

• Initialize the intermediate result t to 1 (or 20) and counter to 1.

• Compute t*2 and increment counter by 1

• As long as counter is less than or equal to n, repeat the
computation of t*2 and update counter.

public static int powerTwo(int number) {

 int t = 1, counter = 1;

 do {

 t *= 2; // t = t*2

 counter += 1; //counter = counter+ 1

 } while (counter <= number); //don’t forget the ‘;’

 return t;

}

for Loop

condition

action

true

false

initialization

update

• Syntax:
 for (initialization;

 condition;

 update)

 {

 action ;

 }

• How does it work?
– initialization

– while condition is true,

execute action and

update

For Loop

condition

action

true

false

initialization

update

true

false

initialization

condition

action

update

for (initialization;

 condition;

 update)

{

 action ;

}

Implement n! using a for loop

• Initialize the intermediate result t to 1 (or 0!) and counter is
initialized in the for loop

• As long as counter is less than or equal to n, repeat the
computation of t*counter and update counter using counter++

public static int factorial(int number) {

 int t = 1; int counter;

 //set up counter, condition check, update together

 for(counter=1; counter<=number; counter++) {

 t *= counter;

 }

 return t;

}

Implement n! using a for loop

• Initialize the intermediate result t to 1 (or 0!) and counter is
initialized in the for loop

• As long as counter is less than or equal to n, repeat the
computation of t*counter and update counter using counter++

public static int factorial(int number) {

 int t = 1;

 //set up counter, condition check, update together

 for(int counter=1; counter<=number; counter++) {

 t *= counter;

 }

 return t;

}

Implement 2n using a for loop

• Initialize the intermediate result t to 1 (or 20) and counter is
initialized in the for loop.

• As long as counter is less than or equal to n, repeat the
computation of t*2 and update counter using counter++

public static int powerTwo(int number) {

 int t = 1;

 //set up counter, condition check, update together

 for(int counter=1; counter<=number; counter++) {

 t *= 2;

 }

 return t;

}

Common Mistakes: Floating-point numbers

• Neither use == (equal) nor !=
(not equal) on floating point
numbers

• Reasons
– Floating-point values are

approximated

– In this example, item !=0 may
never be false

– Infinite loop is resulted if the
loop condition is always true

25

Item starts with 1 and is
reduced by 0.1 every time
the loop body is executed

double item = 1;
double sum = 0;

while (item != 0) {
 sum = sum + item;
 item = item – 0.1;
}

26

Common Loop Errors
while(balance != 0.0);

{

 balance = balance - amount;

}

// This will lead to an infinite loop!

for(int n=1; n<=count; n++);

{

 IO.outputln("hello");

}

// "hello" only printed once!

Which loop to use?
• Programmers are free to choose one of the

three loops

• In general
– while loop

• The number of iterations is unknown (or unclear), and
the loop body may not need to be executed

– do-while loop
• The number of iterations is unknown (or unclear), and

the loop body is always executed at least once

– for loop
• The number of iterations is known (e.g. 100 times)

27

Array Applications

• Given a list of test scores, determine the
average, maximum and minimum scores.

• Read in a list of student names and
rearrange them in alphabetical order
(sorting).

• Track the ups and downs of a stock index.

• Represent and analysis a digital image as a
2D array.

Array Declaration

• An array is a collection of homogenous data
objects.

• Syntax

– DataType[] nameOfVariable;
• DataType: The data type of array elements

• []: We need to write a pair of square brackets next to
the data type when declaring an array

Creating an Array
• Some examples of array declarations:

– double[] testScores;

– int[] studentID;

– double[] stockIndex;

• The above declarations do not actually create an array.
They declare a reference variable to an array.

• To create an array:
– testScores = new double[100];
– studentID = new int[50];

– double[] stockIndex = new double[365]; // create an array
 // during declaration

Initializing an Array

• Declare, define and initialize an
array using a single statement:
– double[] testScore = {100.0, 90.0,

85.0, 72.0 };

• This shorthand initialization must
be in ONE statement
– For example, the following is wrong:

double[] testScore;

testScore = {100.0, 90.0, 85.0, 72.0};

90.0

85.0

72.0

100.0

double[] testScore

0

Index

1

2

3

Access an array element

• The array elements are accessed through
indices

• The first index starts with 0

– In the testScore example, we have

 4 elements in an array

– The valid indices are 0, 1, 2 and 3

• testScore[0]

• testScore[1]

• testScore[2]

• testScore[3]

90.0

85.0

72.0

100.0

double[] testScore

0

Index

1

2

3

Example
/**

 * Create an array for storing a set of scores

 * /

public class Scores {

 double[] scoreArray; // declare a reference

 // variable to an array

 public Scores (int size) {

 scoreArray = new double[size];

 }

double[] scoreArray

0

Index

1

2

3
scoreArray

Example: setScore
 /*
 * SetScore asks user to enter score for each array element
 */

public void setScore () {

 // length is a constant instance variable for each array that

 // gives the number of elements in the array.

 int size = scoreArray.length;

 for (int i = 0; i < scoreArray.length; i++) {

 IO.output("Enter score for student " + i + ": ");

 scoreArray[i] = IO.inputDouble();
 }
 } double[] scoreArray

0

Index

1

2

3

100.0

90.0

80.0

70.0

Example: getScore
/*
 * getScore retrieves the value of an element of the array
 */

public double getScore(int index) {

 // check to make sure that index is within 0 and array size -1

 if (index >= 0 && index < scoreArray.length)

 return scoreArray[index];

 else {

 IO.outputln("Error: index out of range");

 return -1;
 }
 }

double[] scoreArray

0

Index

1

2

3

100.0

90.0

80.0

70.0

if index = 1

 Example: Compute Average
 /*
 * aveScore computes the average of the values in an array
 */

public double aveScore() {

 double sum = 0; // for storing the cumulative sum

 int size = scoreArray.length; // size of the array

 for (int i = 0; i < size; i++)

 sum = sum + scoreArray[i];

 return sum / size;

 }

 Example: Find Maximum
/*
 * maxIndex finds the location of the largest values in an array
 * up to index size - 1
 */

 public int maxIndex(int size){

 int mIndex = 0; // index for the current maximum

 if (size > scoreArray.length) size = scoreArray.length;

 for (int i = 0; i < size; i++) {

 if (scoreArray[i] > scoreArray[mIndex]) mIndex = i;

 }

 return mIndex;

 }

Swapping

double[] scoreArray

0

Index

1

2

3

100.0

90.0

70.0

80.0

Swapping

double[] A

0

Index

1

2

3

100.0

90.0

70.0

80.0

 public void badSwap (double n1, double n2) {

 n1 = n2;

 n2 = n1;

 }

 badSwap (A[1] , A[2]);

90.0

80.0

n1

n2

Swapping

double[] A

0

Index

1

2

3

100.0

90.0

70.0

80.0

 public void badSwap (double n1, double n2) {

 n1 = n2;

 n2 = n1;

 }

 badSwap (A[1] , A[2]);

90.0

80.0

n1

n2

80.0

Swapping

double[] A

0

Index

1

2

3

100.0

90.0

70.0

80.0

 public void swap2 (double n1, double n2) {

 double temp;

 temp = n1;

 n1 = n2;

 n2 = temp;

 }

 swap2 (A[1] , A[2]);

90.0 n1

n2

80.0

temp 90.0

90.0 80.0

Swapping

double[] A

0

Index

1

2

3

100.0

90.0

70.0

80.0

 public void swap (double[] arr, int index1, int index2) {

 double temp;

 temp = arr[index1];

 arr[index1] = arr[index2];

 arr[index2] = temp;

 }

 swap (A, 1, 2);

1
arr

index1

 // double temp;

 // temp = n1;

 // n1 = n2;

 // n2 = temp;

temp

2 index2

90.0

80.0

90.0

