Foundations of Computer Graphics

Online Lecture 9: Ray Tracing 1
History and Basic Ray Casting

Ravi Ramamoorthi

Ray Tracing

- Different Approach to Image Synthesis as compared to Hardware pipeline (OpenGL)
- Pixel by Pixel instead of Object by Object
- Easy to compute shadows/transparency/etc

Outline

- History
- Basic Ray Casting (instead of rasterization)
- Comparison to hardware scan conversion
- Shadows / Reflections (core algorithm)
- Ray-Surface Intersection
- Optimizations

Ray Tracing History

" "An improved illumination model for shaded display" by T. Whitted, CACM 1980

- 512x512, VAX 11/780
- 74 min , today real-time

Turner Whitted 1980.
Spheres and Checkerboard

- History
- Basic Ray Casting (instead of rasterization)
" Comparison to hardware scan conversion
- Shadows / Reflections (core algorithm)
- Ray-Surface Intersection
- Optimizations

Comparison to hardware scan-line

[^0]- More complex shading, lighting effects possible

Foundations of Computer Graphics

Online Lecture 9: Ray Tracing 1
Core Algorithm: Shadows and Reflections

Ravi Ramamoorthi

Outline

- History
- Basic Ray Casting (instead of rasterization)
- Comparison to hardware scan conversion
- Shadows / Reflections (core algorithm)
- Ray-Surface Intersection
- Optimizations

Shadows: Numerical Issues

- Numerical inaccuracy may cause intersection to be below surface (effect exaggerated in figure)
- Causing surface to incorrectly shadow itself
- Move a little towards light before shooting shadow ray

Mirror Reflections/Refractions

Recursive Ray Tracing

```
For each pixel
    " Trace Primary Eye Ray, find intersection
    - Trace Secondary Shadow Ray(s) to all light(s)
        " Color = Visible ? Illumination Model : 0
    - Trace Reflected Ray
        - Color += reflectivity * Color of reflected ray
```


Problems with Recursion

- Reflection rays may be traced forever
- Generally, set maximum recursion depth
- Same for transmitted rays (take refraction into account)

Effects needed for Realism

- (Soft) Shadows
- Reflections (Mirrors and Glossy)
- Transparency (Water, Glass)
- Interreflections (Color Bleeding)
- Complex Illumination (Natural, Area Light)

Discussed in this lecture
Not discussed but possible with distribution ray tracing
Hard (but not impossible) with ray tracing; radiosity methods
Foundations of Computer Graphics
Online Lecture 9: Ray Tracing 1 Ray-Surface Intersection

Ravi Ramamoorthi

Outline

- History
- Basic Ray Casting (instead of rasterization)
- Comparison to hardware scan conversion
- Shadows / Reflections (core algorithm)
- Ray-Surface Intersection
- Optimizations

Ray/Object Intersections

- Heart of Ray Tracer
- One of the main initial research areas
- Optimized routines for wide variety of primitives
- Various types of info
- Shadow rays: Intersection/No Intersection
- Primary rays: Point of intersection, material, normals
- Texture coordinates
- Work out examples
- Triangle, sphere, polygon, general implicit surface

Ray-Sphere Intersection
ray $\equiv \vec{P}=\vec{P}_{0}+\vec{P}_{1} t$
sphere $\equiv(\vec{P}-\vec{C}) \cdot(\vec{P}-\vec{C})-r^{2}=0$
Substitute

Ray-Sphere Intersection

ray $\equiv \vec{P}=\vec{P}_{0}+\vec{P}_{1} t$
sphere $\equiv(\vec{P}-\vec{C}) \cdot(\vec{P}-\vec{C})-r^{2}=0$
Substitute
ray $\equiv \vec{P}=\vec{P}_{0}+\vec{P}_{1} t$
sphere $\equiv\left(\vec{P}_{0}+\vec{P}_{1} t-\vec{C}\right) \cdot\left(\vec{P}_{0}+\vec{P}_{1} t-\vec{C}\right)-r^{2}=0$
Simplify

Ray-Sphere Intersection

ray $\equiv \vec{P}=\vec{P}_{0}+\vec{P}_{1} t$
sphere $\equiv(\vec{P}-\vec{C}) \cdot(\vec{P}-\vec{C})-r^{2}=0$
Substitute
ray $\equiv \vec{P}=\vec{P}_{0}+\vec{P}_{1} t$
sphere $\equiv\left(\vec{P}_{0}+\vec{P}_{1} t-\vec{C}\right) \cdot\left(\vec{P}_{0}+\vec{P}_{1} t-\vec{C}\right)-r^{2}=0$
Simplify

$$
t^{2}\left(\vec{P}_{1} \cdot \vec{P}_{1}\right)+2 t \vec{P}_{1} \cdot\left(\vec{P}_{0}-\vec{C}\right)+\left(\vec{P}_{0}-\vec{C}\right) \cdot\left(\vec{P}_{0}-\vec{C}\right)-r^{2}=0
$$

Ray-Sphere Intersection

$t^{2}\left(\vec{P}_{1} \cdot \vec{P}_{1}\right)+2 t \vec{P}_{1} \cdot\left(\vec{P}_{0}-\vec{C}\right)+\left(\vec{P}_{0}-\vec{C}\right) \cdot\left(\vec{P}_{0}-\vec{C}\right)-r^{2}=0$
Solve quadratic equations for t

- 2 real positive roots: pick smaller root
- Both roots same: tangent to sphere
- One positive, one negative root: ray origin inside sphere (pick + root)
- Complex roots: no intersection (check discriminant of equation first)

Ray-Sphere Intersection

- Intersection point: ray $\equiv \vec{P}=\vec{P}_{0}+\vec{P}_{1} t$
- Normal (for sphere, this is same as coordinates in sphere frame of reference, useful other tasks)

$$
\text { normal }=\frac{\vec{P}-\vec{C}}{|\vec{P}-\vec{C}|}
$$

Ray-Triangle Intersection

" One approach: Ray-Plane intersection, then check if inside triangle

$$
n=\frac{(C-A) \times(B-A)}{|(C-A) \times(B-A)|}
$$

- Plane equation:

Ray-Triangle Intersection

- One approach: Ray-Plane intersection, then check if inside triangle $n=\frac{(C-A) \times(B-A)}{|(C-A) \times(B-A)|}$
- Plane equation:
plane $\equiv \vec{P} \cdot \vec{n}-\vec{A} \cdot \vec{n}=0$

Ray inside Triangle

- Once intersect with plane, need to find if in triangle
- Many possibilities for triangles, general polygons
- We find parametrically [barycentric coordinates]. Also useful for other applications (texture mapping)

$P=\alpha A+\beta B+\gamma C$
$\alpha \geq 0, \beta \geq 0, \gamma \geq 0$
$\alpha+\beta+\gamma=1$

Other primitives

[^1]
Ray-Tracing Transformed Objects

We have an optimized ray-sphere test

- But we want to ray trace an ellipsoid.

Solution: Ellipsoid transforms sphere
" Apply inverse transform to ray, use ray-sphere

- Allows for instancing (traffic jam of cars)

Mathematical details worked out next

Transformed Objects

Transformed Objects

- Consider a general 4×4 transform M (matrix stacks)
- Apply inverse transform M^{-1} to ray
" Locations stored and transform in homogeneous coordinates
- Vectors (ray directions) have homogeneous coordinate set to 0 [so there is no action because of translations]
- Do standard ray-surface intersection as modified
- Transform intersection back to actual coordinates
- Intersection point p transforms as Mp
- Normals n transform as $M^{-t} n$. Do all this before lighting

Foundations of Computer Graphics

Online Lecture 9: Ray Tracing 1
Optimizations

Ravi Ramamoorthi

Outline

- History
- Basic Ray Casting (instead of rasterization)
- Comparison to hardware scan conversion
- Shadows / Reflections (core algorithm)
- Ray-Surface Intersection
- Optimizations
- Current Research

Acceleration

Testing each object for each ray is slow
" Fewer Rays
Adaptive sampling, depth control

- Generalized Rays

Beam tracing, cone tracing, pencil tracing etc.

- Faster Intersections (more on this later)
" Optimized Ray-Object Intersections
- Fewer Intersections

Acceleration Structures

Bounding boxes (possibly hierarchical)
If no intersection bounding box, needn't check objects

[^2]Acceleration Structures: Grids

Acceleration and Regular Grids

- Simplest acceleration, for example $5 \times 5 \times 5$ grid
- For each grid cell, store overlapping triangles
- March ray along grid (need to be careful with this), test against each triangle in grid cell
- More sophisticated: kd-tree, oct-tree bsp-tree
- Or use (hierarchical) bounding boxes

[^0]: - Per-pixel evaluation, per-pixel rays (not scan-convert each object). On face of it, costly
 - But good for walkthroughs of extremely large models (amortize preprocessing, low complexity)

[^1]: - Much early work in ray tracing focused on ray-primitive intersection tests
 - Cones, cylinders, ellipsoids
 - Boxes (especially useful for bounding boxes)
 - General planar polygons
 - Many more

[^2]: Spatial Hierarchies (Oct-trees, kd trees, BSP trees)

