Open and Short Circuits

An **open circuit** is a condition of discontinuity between two points, like points 1 and 2 below.

For an open circuit:

• The current across the open circuit is definitionally zero.

$$i_{oc} = 0$$

- The voltage across the open is not defined by the open circuit (this can only be found from an analysis of the open circuit and the rest of the circuit). It is a common mistake to think that $v_{oc} = 0$ or $v_{oc} = \infty$ definitionally, but this is wrong. As an example, note that in the circuit below, points 1 and 2 are also connected via R₁; once we solve for the voltage across R₁, we'd also know the voltage across the open circuit.
- Lastly, $R = \infty$ for an open circuit.

A short circuit is a condition of perfect continuity between two points, like points 3 and 4, above.

For a short circuit:

• The voltage across the short circuit is definitionally zero.

$$v_{sc} = 0$$

- The current across the short is not defined by the short circuit (this can only be found from an analysis of the short circuit and the rest of the circuit). It is a common mistake to think that $i_{sc} = 0$ or $i_{sc} = \infty$ definitionally, but this is wrong. As an example, note that in the circuit above, points 3 and 4 are connected to the rest of the circuit and also in parallel to R₂ and; once we solve for the current across R₁, we'd also know the current across the short circuit.
- Lastly, R = 0 for a short circuit

Some material reproduced with permission from Ulaby, F. T., & Maharbiz, M. M. (2012). Circuits. 2nd Edition, NTS Press.