Symbol list The index "i" in the symbol list can represent any of the following compounds: | Indices for i | Meaning | |---------------|----------------| | S | Substrate | | - | | | Х | Biomass | | p | Product | | W | Water | | 0 | Oxygen | | С | Carbon dioxide | | n | N-Source | | h | H⁺ | | Q | Heat | | (t) | Time dependent | | a | Parameter Herbert-Pirt substrate | mol s/mol X | 3 | |------------------------|---|--|---| | | distribution relation | | J | | ^ | Total area of all gas bubbles in the whole | m^2 | 4 | | Α | fermentor | m | | | | Specific gas/liquid interface area per unit of | m^2/m^3 | 4 | | а | liquid volume | | | | A٠ | Cross-sectional reactor area | m ² | 4 | | A_c | Cooling surface | m^2 | 4 | | h | Parameter Herbert-Pirt substrate | mol s/ mol p | 2 | | b | distribution relation | | 3 | | _ | De dista | mol/mol, kg/kg, mol/m³ etc. | 5 | | С | Particles | (Depends on flow rate) | | | C _i | Concentration of compound i in fermenter | mol i/m³ broth | 2 | | C _{i,in} | Concentration of compound i in the feed | mol i/m³ feed | 2 | | | solution | | | | C _{i,out} | Concentration of compound i in the broth | mol i/m³ broth outflow | 2 | | | outflow | | | | c_{o}^{*}, c_{c}^{*} | O ₂ and CO ₂ -solubility in broth | molO ₂ or molCO ₂ per m ³ broth | 4 | | Cp | Specific heat | J/kg/K | 4 | | D | Reactor diameter | m | 4 | | d_B | Bubble diameter | m | 4 | | е | Total power input | W/kg | 4 | | F | Feed flow mechanical separation | mol/h, kg/h, m³/h | 5 | | • | | (Depends on concentrations) | | | F_{cw} | Cooling water flow rate | m³/h | 4 | | Fg | Gas flow rate | m³/s | 2 | | F_{in} | Volumetric liquid feed inflow into fermenter | m³ feed/h | 2 | | | broth | | | | $F_{N,in}$ | Molar gas flow rate in | mol/h | 2 | | $F_{N,out}$ | Molar gas flow rate out | mol/h | 2 | | F _{out} | Volumetric broth outflow | m ³ broth/h | 2 | | <u>H</u> | Reactor height | m | 4 | | H/D | Aspect ratio | - | 4 | |---------------------------------|---|---------------------------------------|---| | k | Reaction rate constant | (Depends on kinetics) | 5 | | K | Partitioning coefficient | - | 5 | | K _L | Mass transfer coefficient | m/h | 4 | | Ks | Substrate affinity | mol s/m³ broth | 3 | | | · | mol/h, kg/h, m³/h | 5 | | L | Feed phase | (Depends on concentrations) | | | | Parameter Herbert-Pirt substrate | mol S/h | | | m _s | distribution relation | mol x present in the fermenter | 3 | | N _G | Total molar amount of gas in fermenter | mol | 2 | | G | (bubbles + headspace) | | | | N _i | Total amount of compound i in the fermenter | moli | 2 | | | broth (=V _L c _i) | | | | N _{mix} | Mixing number | - | 4 | | р | Pressure | Bar | 3 | | p | Pressure | bar | | | рH | Measurement of the acidity or basicity | - | 2 | | p _o , p _c | Partial pressure O ₂ and CO ₂ | bar | 2 | | P _s | Power input impeller | W | 4 | | Q | Heat | J | 4 | | q _i | Biomass specific rate | mol i/h | 2 | | • | · | <i>mol x present in the fermenter</i> | | | | | mol i/h | 3 | | $q_{i,opt}$ | Other biomass specific rate's at μ_{opt} | mol x present in the fermenter | | | | | mol P/h | | | $q_{p,ss}$ | Steady state specific production rate | mol x present in the fermenter | 3 | | | | mol S/h | | | $q_{s,max}$ | Maximum substrate uptake rate | mol x present in the fermenter | 3 | | | | mol S/h | | | $q_{s,ss}$ | Steady state specific substrate uptake rate | mol x present in the fermenter | 3 | | R _i | Conversion rate of i in the whole fermenter | mol i/h | 2 | | S | Separation factor | - | 5 | | St_{heat} | Stanton number for heat removal | - | 4 | | Т | Temperature | K or °C | | | t _m | 95% mixing time | S | 4 | | $T_{N,i}$ | Transfer rate of compound i in the whole | mol i/h | 2 | | , | fermenter | | | | U | Heat transfer rate | kJ/h/(K*m²) | 4 | | V | Auvilianumbaaa | mol/h, kg/h, m³/h | 5 | | V | Auxiliary phase | (Depends on concentrations) | | | ., | Volume of all gas bubbles present in the | m^3 | 4 | | V_{g} | whole fermentor | III | | | V _{gs} | Superficial gas velocity | m/s | 4 | | V _L | Broth volume | m ³ | 2 | | ., | Mast officient solvent use | mol/h, kg/h, m³/h | 5 | | V_{min} | Most efficient solvent use | (Depends on concentrations) | | | 14/ | Wash stroom | mol/h, kg/h, m³/h | 5 | | W | Wash stream | (Depends on concentrations) | | | v | Food phase concentration | mol/mol, kg/kg, mol/m³ etc. | 5 | | X | Feed phase concentration | (Depends on flow rate) | | | У | Auxiliary phase concentration | mol/mol, kg/kg, mol/m³ etc. | 5 | | | | | | | | | (Depends on flow rate) | | |---|---|--|---| | y i | mol fraction of compound i in the gas phase | - | 2 | | y i,in | y _i in gas inflow | - | 2 | | y i,out | y _i in gas outflow | - | 2 | | y _o , y _c | mol fraction O ₂ and CO ₂ in bubbles in the fermentor | - | 2 | | αC | Particles with adherent liquid | mol/mol, kg/kg, mol/m³ etc.
(Depends on flow rate) | 5 | | ΔΗ | Heat | Joule | 3 | | μ | Growth rate (biomass specific) | $mol \ x/h$ | 2 | | | | <i>mol x present in the fermenter</i> | | | | Optimal growth rate | $mol \ x/h$ | 3 | | μ_{opt} | | <i>mol x present in the fermenter</i> | | | μ_{ss} | Steady state growth rate (during chemostat) | $mol \ x/h$ | 2 | | , | | <i>mol x present in the fermenter</i> | | | ρ | Density | kg/m ³ | | | | Parameter $q_p(\mu)$ function | mol P/h | 3 | | α | | <i>mol x present in the fermenter</i> | | | $\alpha_{\text{o,}}\alpha_{\text{c}}$ | Henry coefficient O ₂ and CO ₂ solubility | $(\text{mol O}_2 / \text{m}^3 \text{ broth}) / \text{O}_2$ | 4 | | β | Parameter $q_p(\mu)$ function | Aerobic: 1/h or Anerobic: mol P/h | 3 | | | | mol x present in the fermenter | |