

Failure Detectors

Seif Haridi

haridi@kth.se

Modeling Timing Assumptions

- Tedious to model eventual synchrony (partial synchrony)
- Timing assumptions mostly needed to detect failures
 - Heartbeats, timeouts, etc...

- Use failure detectors to encapsulate timing assumptions
 - Black box giving suspicions regarding process failures
 - Accuracy of suspicions depends on model strength

Implementation of Failure Detectors

Typical Implementation

- Periodically exchange heartbeat messages
- Timeout based on worst case message round trip
- If timeout, then suspect process
- If received message from suspected node, revise suspicion and increase time-out

Completeness and Accuracy

- Two important types of requirements
 - 1. Completeness requirements
 - Requirements regarding actually crashed nodes
 - When do they have to be detected?
 - 2. Accuracy requirements
 - Requirements regarding actually alive nodes
 - When are they allowed to be suspected?

Completeness and Accuracy

- In asynchronous system
 - Is it possible to achieve completeness?
 - Yes, suspect all processes
 - Is it possible to achieve accuracy?
 - Yes, refrain from suspecting any process!
 - Is it possible to achieve both?
 - NO!
- Failure detectors are feasible only in synchronous and partially synchronous systems

Requirements: Completeness

- Strong Completeness
 - Every crashed process is *eventually* detected by all correct processes
- There exists a time after which all crashed processes are detected by all correct processes
 - We only study failure detectors with this property
- Is it realistic? [d]

Requirements: Completeness

- Weak Completeness
 - Every crashed process is *eventually* detected by some correct process

- There exists a time after which all crashed nodes are detected by some correct nodes
 - Possibly detected by different correct nodes

Requirements: Accuracy

- Strong Accuracy
 - No correct process is ever suspected
- For all process p and q,
 - p does not suspect q, unless q has crashed
- Is it realistic? [d]
 - Strong assumption, requires synchrony
 - I.e. no premature timeouts

Requirements: Accuracy

- Weak Accuracy
 - There exists a correct process which is never suspected by any process
- There exists a correct node P
 - All nodes will never suspect P
- Still strong assumption
 - One node is always "wellconnected"

Requirements: Accuracy

- Eventual Strong Accuracy
 - After some finite time the FD provides strong accuracy
- Eventual Weak Accuracy
 - After some finite time the detector provides weak accuracy
- After some time, the requirements are fulfilled
 - Prior to that, any behavior is possible!
- Quite weak assumptions [d]
 - When can eventual weak accuracy be achieved?

Failure Detectors Classes

Four Main Established Detectors

- Four detectors with strong completeness
 - Perfect Detector (P)
 - Strong Accuracy
 - Strong Detector (S)
 - Weak Accuracy

Synchronous Systems

- Eventually Perfect Detector (◊P)
 - Eventual Strong Accuracy
- Eventually Strong Detector (◊S)
 - Eventual Weak Accuracy

Partially Synchronous Systems

Four Less Interesting Detectors

- Four detectors with weak completeness
 - Detector Q
 - Strong Accuracy
 - Weak Detector (W)
 - Weak Accuracy

Synchronous Systems

- Eventually Detector Q (◊Q)
 - Eventual Strong Accuracy
- Eventually Weak Detector (◊W)
 - Eventual Weak Accuracy

Partially Synchronous Systems

Prefect Failure Detector P

15

Interface of Perfect Failure Detector

- Module:
 - Name: PerfectFailureDetector, instance P
- Events:
 - Indication (out): $\langle P, Crash | p_i \rangle$
 - Notifies that process p_i has crashed
- Properties:
 - PFD1 (strong completeness)
 - PFD2 (strong accuracy)

Crash p _i ▲	
Ρ	

Properties of P

- Properties:
 - PFD1 (strong completeness)
 - Eventually every process that crashes is permanently detected by every correct process

(liveness)

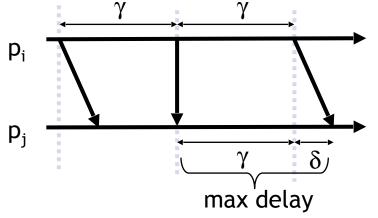
- PFD2 (strong accuracy)
 - If a node p is detected by any node, then p has crashed

(safety)

• Safety or Liveness?

Implementing P in Synchrony

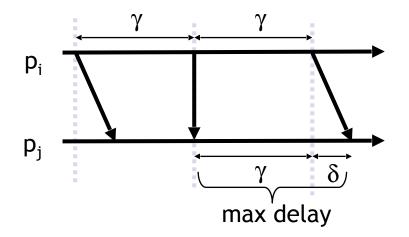
- Assume synchronous system
 - Max transmission delay between 0 and $\delta time$ units
- Each process every γ time units
 - Send <heartbeat> to all processes
- Each process waits γ + δ time units
 - If did not get <heartbeat> from p_i
 - Detect <crash | p_i>



Correctness of P

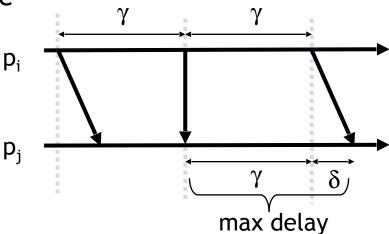
• PFD1 (strong completeness)

- A crashed process doesn't send <heartbeat>
- Eventually every process will notice the absence of <heartbeat>



Correctness of P

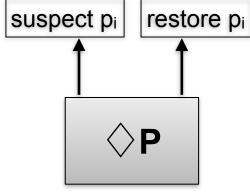
- PFD2 (strong accuracy)
- Assuming local computation is negligible
- Maximum time between 2 heartbeats
 - γ+δtime units
- If alive, all process will receive hb in time
 - No inaccuracy



Eventually Prefect Failure Detector 🔗

Interface of $\Diamond P$

- Module:
 - Name: EventuallyPerfectFailureDetector, instance ◊P
- Events:
 - Indication: $\langle \Diamond P, \text{ suspect } | p_i \rangle$
 - Notifies that process p_i is suspected to have crashed
 - Indication: $\langle \Diamond P, restore | p_i \rangle$
 - Notifies that process p_i is not suspected anymore
- Properties:
 - PFD1 (strong completeness)
 - *PFD2 (eventual strong accuracy)*. Eventually, no correct process is suspected by any correct process



Implementing $\Diamond P$

- Assume partially synchronous system
 - Eventually some bounds exists
- Each process every γ time units
 - Send <heartbeat> to all processes
- Each process waits T time units
 - If did not get <heartbeat> from p_i
 - Indicate <suspect | p_i > if p_i is not in suspected set
 - Put p_i in **suspected** set
 - If get HB from p_i, and p_i is in **suspected**
 - Indicate <restore | p_i> and remove p_i from suspected
 - Increase timeout T

S. Haridi, KTHx ID2203.1x

Correctness of $\Diamond P$

- EPFD1 (strong completeness)
 - Same as before

- EPFD2 (eventual strong accuracy)
 - Each time p is inaccurately suspected by a correct q
 - Timeout T is increased at q
 - Eventually system becomes synchronous, and T becomes larger than the unknown bound δ (T>\gamma+\delta)
 - q will receive HB on time, and never suspect p again

Leader Election

Leader Election versus Failure Detection

- Failure detection captures failure behavior
 - Detect failed processes
- Leader election (LE) also captures failure behavior
 - Detect correct processes (a single and same for all)
- Formally, leader election is a FD
 - Always suspects all processes except one (leader)
 - Ensures some properties regarding that process

Leader Election vs. Failure Detection

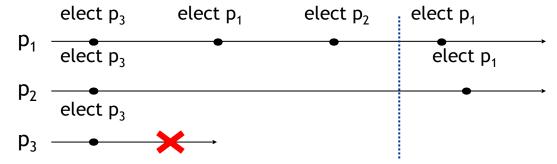
- We will define two leader election abstraction and algorithms
 - Leader election (LE) which "matches" P
 - Eventual leader election (Ω) which "matches" \Diamond P

Matching LE and P

- **P**'s properties
 - P always eventually detects failures (strong completeness)
 - P never suspects correct nodes (strong accuracy)
- Completeness of LE
 - Informally: eventually ditch failed leaders
 - Formally: every correct process trusts some correct node
- Accuracy of LE
 - Informally: never ditch a correct leader
 - Formally: No two correct processes trust different correct nodes
 - Is this really accuracy? [d]
 - Yes! Assume two processes trust different correct processes
 - One of them must eventually switch, i.e. leaving a correct node

LE desirable properties

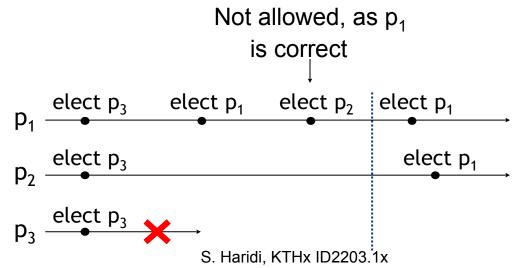
- LE always eventually detects failures
 - Eventually every correct process trusts some correct node
- LE is always accurate
 - No two correct processes trust different correct processes
- But the above two permit the following



• But P₁ is "inaccurately" leaving a correct leader

LE desirable properties

- To avoid "inaccuracy" we add
 - Local Accuracy:
 - If a process is elected leader by p_i, all previously elected leaders by p_i have crashed



Interface of Leader Election

- Module:
 - Name: LeaderElection (le)
- Events:
 - Indication: $\langle leLeader | p_i \rangle$
 - Indicate that leader is node p_i
- Properties:
 - **LE1 (eventual completeness).** Eventually every correct process trusts some correct process
 - *LE2 (agreement)*. No two correct processes trust different correct processes
 - *LE3 (local accuracy)*. If a process is elected leader by p_i, all previously elected leaders by p_i have crashed

Implementing LE

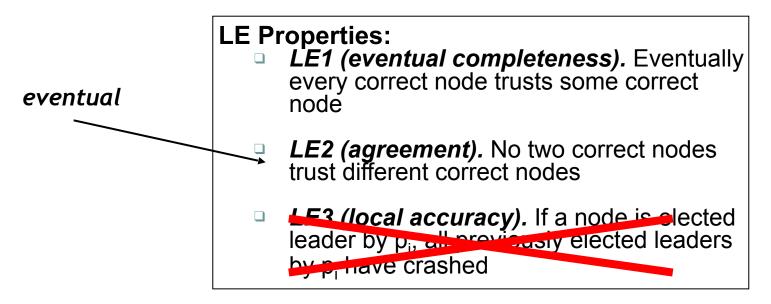
- Globally rank all processes
 - E.g. rank ordering rank(p₁)>rank(p₂)>rank(p₃)> ...
- maxrank(S)
 - The process $p \in S$, with the largest rank

Implementing LE

- LeaderElection, **instance** le
- Uses:
 - PerfectFailureDetector, instance P
- upon event <le, Init> do
 - suspected := \emptyset
 - leader := \perp
- upon event (P, Crash |p) do
 - suspected := suspected U {p}
- **upon** leader \neq maxrank($\Pi \setminus$ suspected) **do**
 - leader := maxrank(Π \ suspected)
 - trigger (le, Leader | leader) S. Haridi, KTHx ID2203.1x

Eventual Leader Election $\boldsymbol{\Omega}$

- $\Diamond P$ weakens P by only providing eventual accuracy
 - Weaken LE to Ω by only guaranteeing eventual agreement



Interface of Eventual Leader Election

- Module:
 - Name: EventualLeaderElection (Ω)
- Events:
 - Indication (out): $\langle \Omega$, Trust | $p_i \rangle$
 - Notify that p_i is trusted to be leader
- Properties:
 - **ELD1 (eventual completeness).** Eventually every correct node trusts some correct node
 - **ELD2 (eventual agreement).** Eventually no two correct nodes trust different correct node

Eventual Leader Detection $\boldsymbol{\Omega}$

- In crash-stop process abstraction
 - Ω is obtained directly from $\Diamond P$

- Each process trusts the process with highest rank among all processes not suspected by ◊P
- Eventually, exactly one correct process will be trusted by all correct processes

Implementing Ω

- EventualLeaderElection, instance $\boldsymbol{\Omega}$
- Uses: EventuallyPerfectFailureDetector, instance ◊P
- upon event $\langle \ \Omega, \ Init \rangle \ do$
 - suspected := \emptyset ; leader := \bot
- upon event (◊P, Suspect |p) do
 - suspected := suspected ∪ {p}
- upon event (\Diamond P, Restore | p> do
 - suspected := suspected \ {p}
- upon leader ≠ maxrank(Π \ suspected) do
 - leader := maxrank(Π \ suspected)
 - **trigger** $\langle \Omega, Trust | leader \rangle$

Ω for Crash Recovery

- Can we elect a recovered process? [d]
 - Not if it keeps crash-recovering infinitely often!
- Basic idea
 - Count number of times you've crashed (epoch)
 - Distribute your **epoch** periodically to all nodes
 - Elect leader with lowest (epoch, rank(node))
- Implementation
 - Similar to $\Diamond P$ and Ω for crash-stop
 - Piggyback **epoch** with heartbeats
 - Store **epoch**, upon recovery load **epoch** and increment

Reductions

Reductions

- We say X≤Y if
 - X can be solved given a solution of Y
 - Read X is reducible to Y
 - Informally, problem X is easier or as hard as Y

KTH vetenskap och konst

Preorders, partial orders...

- A relation \leq is a preorder on a set A if for any x,y,z in A
 - x ≤ x (reflexivity)
 - $x \le y$ and $y \le z$ implies $x \le z$ (transitivity)
- Difference between preorder and partial order
 - Partial order is a preorder with anti-symmetry
 - $x \le y$ and $y \le x$ implies x = y
- For preorder two different objects x and y can be symmetric
 - It is possible that $x \le y$ and $y \le x$ for two different x and y, $(x \ne y)$

Reducibility < is a preorder

- ≤ is a preorder
 - **Reflexivity.** X≼X
 - X can be solved given a solution to X
 - Transitivity. X < Y and Y < Z implies X < Z
 - Since Y≤Z, use implementation of Z to implement Y.
 use that implementation of Y to implement X.
 Hence we implemented X from Z's implementation
- < is not anti-symmetric, thus not a partial order
 - Two different X and Y can be equivalent
 - Distinct problems X and Y can be solved from the other's solution

Shortcut definitions

- We write X≃Y if
 - $X \leq Y$ and $Y \leq X$
 - Problem X is equivalent to Y
- We write X<Y if
 - X≤Y and not X≃Y
 - or equivalently, X≤Y and not Y≤X
 - Problem X is strictly weaker than Y, or
 - Problem Y is strictly stronger than X

- It is true that ◊P≤P
 - Given P, we can implement $\Diamond P$
 - We just return P's suspicions.
 - P always satisfies ◊P's properties
- In fact, **OP**<**P** in the asynchronous model
 - Because not P<◊P is true
- Reductions common in computability theory
 - If X≤Y, and if we know X is impossible to solve
 - Then Y is impossible to solve too
 - If $\Diamond P \leq P$, and some problem Z can be solved with $\Diamond P$
 - Then Z can also be solved with P

Weakest FD for a problem?

- Often P is used to solve problem X
 - But P is not very practical (needs synchrony)
 - Is X a "practically" solvable problem?
 - Can we implement X with ◊P?
 - Sometimes a weaker FD than P will not solve X
 - Proven using reductions

Weakest FD for a problem

- Common proof to show P is weakest FD for X
 - Prove that P≤X
 - I.e. P can be solved given X
- If P≤X then ◊P<X
 - Because we know $\Diamond P < P$ and $P \simeq X$, i.e. $\Diamond P < P \simeq X$
 - If we can solve X with ◊P, then
 - we can solve P with OP, which is a contradiction

How are the detectors related

Trivial Reductions

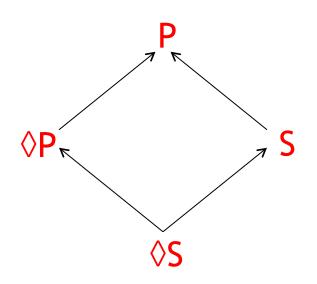
- Strongly complete
 - - P is always strongly accurate, thus also eventually strongly accurate

• S is always weakly accurate, thus also eventually weakly accurate

• S≼P

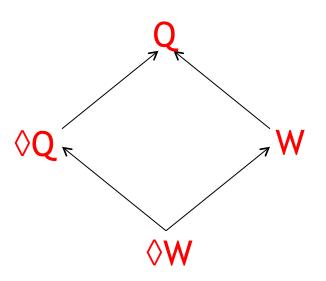
 P is always strongly accurate, thus also always weakly accurate

> OP is always eventually strongly accurate, thus also always eventually weakly accurate



Trivial Reductions (2)

- Weakly complete
 - - Q is always strongly accurate, thus also eventually strongly accurate
 - ◇₩≼₩
 - W is always weakly accurate, thus also eventually weakly accurate
 - W≼Q
 - Q is always strongly accurate, thus also always weakly accurate
 - ◊₩≼◊Q
 - OQ is always eventually strongly accurate, thus also always eventually weakly accurate



Completeness "Irrelevant"

Weak completeness trivially reducible to strong

Strong completeness reducible to weak

- □ i.e. can get strong completeness from weak P≤Q, S≤W, ◊P≤◊Q, ◊S≤◊W,
- □ They're equivalent! P≃Q, S≃W, ◊P≃◊Q, ◊S≃◊W

	Accuracy			
Completeness	Strong	Weak	Eventual Strong	Eventual Weak
Strong	Р	S	¢₽	◊S
Weak	Q	w	¢Q	¢₩
S Haridi KTHy ID2203 1y				

Accuracy

Proving Irrelevance of Completeness

- Weak completeness ensures
 - every crash is eventually detected by some correct node
- Simple idea
 - Every process q broadcast suspicions **Susp** periodically
 - upon event receive <**S**,q>
 - Susp := (Susp \cup S) {q}

- also works like a heartbeat
- Every crash is eventually detected by all correct p
 - Can this violate some accuracy properties?

Maintaining Accuracy

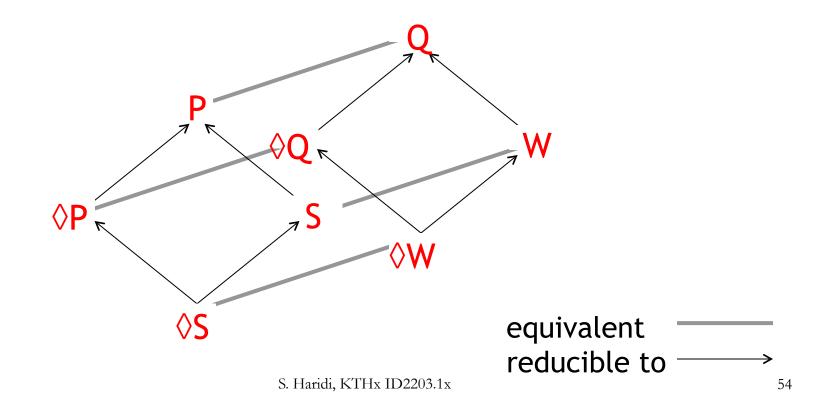
- Strong and Weak Accuracy aren't violated
- Strong accuracy
 - No one is ever inaccurate
 - Our reduction never spreads inaccurate suspicions
- Weak accuracy
 - Everyone is accurate about at least one process p
 - No one will spread inaccurate information about p

Maintaining Eventual Accuracy

 Eventual Strong and Eventual Weak Accuracy aren't violated

- Proof is almost same as previous page
 - Eventually all faulty processes crash
 - Inaccurate suspicions undone
 - Will get heartbeat from correct nodes and revise (-{q})

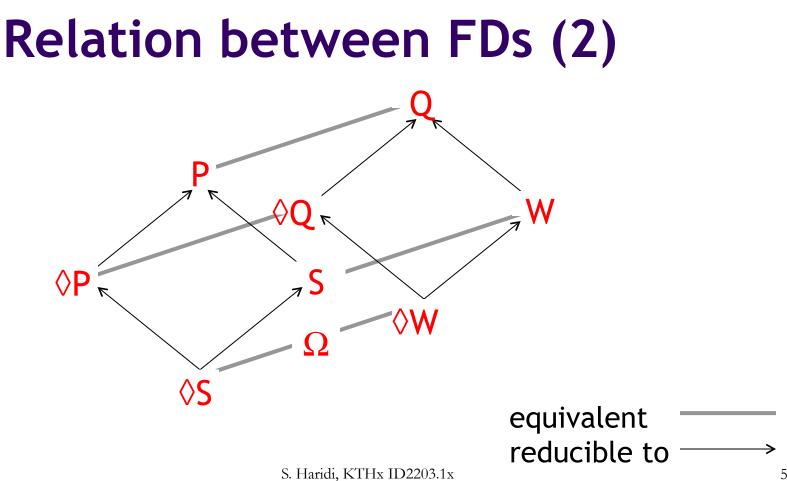
Relation between FDs



- Can we implement with Ω ? [d]
 - I.e. is it true that $S \leq \Omega$
 - Suspect all nodes except the leader given by $\boldsymbol{\Omega}$
 - Eventual Completeness
 - All nodes are suspected except the leader (which is correct)
 - Eventual Weak Accuracy
 - Eventually, one correct node (leader) is not suspected by anyone
 - Thus, ◊S≼Ω

Ω equivalent to \Diamond S (and \Diamond W)

- We showed $S \leq \Omega$, it turns out we also have $\Omega \leq S$
 - I.e. Ω≃◊S
- The famous CHT (Chandra, Hadzilocas, Toueg) result
 - If consensus implementable with detector D Then Omega can be implemented using D
 - I.e. if Consensus $\leq D$, then $\Omega \leq D$
 - Since \Diamond S can be used to solve consensus, we have $\Omega \leq D$
 - Implies ◊W is weakest detector to solve consensus



Combining Abstractions

Combining Abstractions

- (synchronous) • Fail-stop
 - Crash-stop process model
 - Perfect links + Perfect failure detector (P)
- Fail-silent (asynchronous)
 - Crash-stop process model
 - Perfect links
- Fail-noisy Crash-stop process model

 - Perfect links + Eventually Perfect failure detector ($\Diamond P$)
- Fail-recovery
 - Crash-recovery process model
 - Stubborn links + ...

The rest of course

- Assume crash-stop system with a perfect failure detector (fail-stop)
 - Give algorithms

- Try to make a weaker assumption
 - Revisit the algorithms