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Modeling Timing Assumptions
● Tedious to model eventual synchrony (partial synchrony) 
● Timing assumptions mostly needed to detect failures 

● Heartbeats, timeouts, etc… 

● Use failure detectors to encapsulate timing assumptions 
● Black box giving suspicions regarding process failures 
● Accuracy of suspicions depends on model strength
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Implementation of Failure Detectors
Typical Implementation 

● Periodically exchange heartbeat messages 

● Timeout based on worst case message round trip 

● If timeout, then suspect process 

● If received message from suspected node, revise 
suspicion and increase time-out
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Completeness and Accuracy
● Two important types of requirements 

● 1. Completeness requirements 
● Requirements regarding actually crashed nodes 

▪ When do they have to be detected? 
● 2. Accuracy requirements 

● Requirements regarding actually alive nodes  
▪ When are they allowed to be suspected?
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Completeness and Accuracy
● In asynchronous system 

● Is it possible to achieve completeness? 
● Yes, suspect all processes 

● Is it possible to achieve accuracy? 
● Yes, refrain from suspecting any process! 

● Is it possible to achieve both? 
● NO! 

● Failure detectors are feasible only in synchronous and partially 
synchronous systems
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Requirements: Completeness
● Strong Completeness 

● Every crashed process is eventually detected by all correct 
processes 

● There exists a time after which all crashed processes 
are detected by all correct processes 
● We only study failure detectors with this property 

● Is it realistic? [d]
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Requirements: Completeness
● Weak Completeness 
● Every crashed process is eventually detected by 

some correct process 

● There exists a time after which all crashed 
nodes are detected by some correct nodes 

● Possibly detected by different correct nodes
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Requirements: Accuracy
● Strong Accuracy 

● No correct process is ever suspected 
● For all process p and q,  

● p does not suspect q, unless q has crashed 
● Is it realistic? [d] 

● Strong assumption, requires synchrony  
● I.e. no premature timeouts 
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Requirements: Accuracy
● Weak Accuracy 

● There exists a correct process which 
is never suspected by any process 

● There exists a correct node P 
● All nodes will never suspect P 

● Still strong assumption  
● One node is always “well-

connected”
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Requirements: Accuracy
● Eventual Strong Accuracy 

● After some finite time the FD provides strong accuracy 
● Eventual Weak Accuracy 

● After some finite time the detector provides weak accuracy 
● After some time, the requirements are fulfilled 

● Prior to that, any behavior is possible! 
  

● Quite weak assumptions [d] 
● When can eventual weak accuracy be achieved?
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Four Main Established Detectors
● Four detectors with strong completeness 

● Perfect Detector (P)  
● Strong Accuracy 

● Strong Detector (S)  
● Weak Accuracy 

● Eventually Perfect Detector (◊P)  
● Eventual Strong Accuracy 

● Eventually Strong Detector (◊S)  
● Eventual Weak Accuracy

Synchronous Systems

Partially Synchronous 
Systems
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Four Less Interesting Detectors
● Four detectors with weak completeness 

● Detector Q  
● Strong Accuracy 

● Weak Detector (W)  
● Weak Accuracy 

● Eventually Detector Q (◊Q)  
● Eventual Strong Accuracy 

● Eventually Weak Detector (◊W)  
● Eventual Weak Accuracy

Synchronous Systems

Partially Synchronous 
Systems
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Prefect Failure 
Detector P
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Interface of Perfect Failure Detector 

● Module: 
● Name: PerfectFailureDetector, instance P 

● Events: 
● Indication (out): 〈P, Crash | pi〉 

● Notifies that process pi has crashed 
● Properties: 

● PFD1 (strong completeness) 
● PFD2 (strong accuracy)
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Properties of P 
● Properties: 

● PFD1 (strong completeness) 
● Eventually every process that crashes is permanently 

detected by every correct process 

● PFD2 (strong accuracy) 
● If a node p is detected by any node, then p has crashed 

● Safety or Liveness?

(liveness)

(safety)
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Implementing P in Synchrony
● Assume synchronous system 

● Max transmission delay between 0 and δ time units 

● Each process every γ time units  
● Send <heartbeat> to all processes 

● Each process waits γ+δ time units 
● If did not get <heartbeat> from pi 

● Detect <crash | pi>
17
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Correctness of P
● PFD1 (strong completeness) 

● A crashed process doesn’t 
send <heartbeat> 

● Eventually every process will 
notice the absence of 
<heartbeat> 

pi

γ γ

δγ
pj

max delay
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Correctness of P
● PFD2 (strong accuracy) 
● Assuming local computation is negligible 
● Maximum time between 2 heartbeats 

● γ+δ time units 
● If alive, all process will receive  hb in 

time 
● No inaccuracy

pi

γ γ

δγ
pj

max delay
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Eventually Prefect Failure 

Detector ♢P
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Interface of ♢P  
● Module: 

● Name: EventuallyPerfectFailureDetector, instance ◊P 

● Events: 
● Indication: 〈◊P, suspect | pi〉 

● Notifies that process pi is suspected to have crashed 
● Indication: 〈◊P, restore | pi〉 

● Notifies that process pi is not suspected anymore 

● Properties: 
● PFD1 (strong completeness) 
● PFD2 (eventual strong accuracy). Eventually, no correct process is suspected 

by any correct process
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Implementing ♢P
● Assume partially synchronous system 

● Eventually some bounds exists 

● Each process every γ time units  
● Send <heartbeat> to all processes 

● Each process waits T time units 
● If did not get <heartbeat> from pi 

● Indicate <suspect | pi> if pi is not in suspected set 
● Put pi in suspected set 

● If get HB from pi, and pi is in suspected 
● Indicate <restore | pi> and remove pi from suspected 
● Increase timeout T
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Correctness of ♢P
● EPFD1 (strong completeness) 

● Same as before 

● EPFD2 (eventual strong accuracy) 
● Each time p is inaccurately suspected by a correct q 

▪ Timeout T is increased at q 
▪ Eventually system becomes synchronous, and T becomes  

larger than the unknown bound δ (T>γ+δ) 
▪ q will receive HB on time, and never suspect p again
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Leader Election

24
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Leader Election versus Failure Detection
● Failure detection captures failure behavior 

● Detect failed processes 

● Leader election (LE) also captures failure behavior 
● Detect correct processes (a single and same for all) 

● Formally, leader election is a FD 
● Always suspects all processes except one (leader) 
● Ensures some properties regarding that process
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Leader Election vs. Failure Detection

We will define two leader election abstraction and 
algorithms 

● Leader election (LE) which “matches” P 

● Eventual leader election (Ω) which “matches” ♢P
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Matching LE and P
● P’s properties 

● P always eventually detects failures (strong completeness) 
● P never suspects correct nodes (strong accuracy) 

● Completeness of LE 
● Informally: eventually ditch failed leaders 
● Formally: eventually every correct process trusts some correct node 

● Accuracy of LE 
● Informally: never ditch a correct leader 
● Formally: No two correct processes trust different correct nodes 

● Is this really accuracy? [d] 
● Yes! Assume two processes trust different correct processes 

▪ One of them must eventually switch, i.e. leaving a correct node
27
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LE desirable properties
● LE always eventually detects failures 

● Eventually every correct process trusts some correct node 
● LE is always accurate 

● No two correct processes trust different correct processes 
● But the above two permit the following 

● But P1 is “inaccurately” leaving a correct leader

p1

p2

p3

elect p3

elect p3

elect p3

elect p1

elect p1 elect p2 elect p1
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LE desirable properties
● To avoid “inaccuracy” we add 

● Local Accuracy: 
● If a process is elected leader by pi, all previously 

elected leaders by pi have crashed 

p1

p2

p3

elect p3

elect p3

elect p3

elect p1

elect p1 elect p2 elect p1

Not allowed, as p1 
is correct



S. Haridi, KTHx ID2203.1x

Interface of Leader Election
● Module: 

● Name: LeaderElection (le) 
● Events: 

● Indication: 〈leLeader | pi〉 
● Indicate that leader is node pi 

● Properties: 
● LE1 (eventual completeness). Eventually every correct process 

trusts some correct process 

● LE2 (agreement). No two correct processes trust different 
correct processes 

● LE3 (local accuracy). If a process is elected leader by pi, all 
previously elected leaders by pi have crashed 
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Implementing LE

● Globally rank all processes  
● E.g. rank ordering rank(p1)>rank(p2)>rank(p3)> … 

● maxrank(S) 
● The process p ∊ S, with the largest rank
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Implementing LE
● LeaderElection, instance le 
● Uses: 

● PerfectFailureDetector, instance P 
● upon event  〈le, Init〉  do 

● suspected := ∅ 
● leader := ⊥ 

● upon event 〈P, Crash |p〉  do 
● suspected := suspected ∪ {p} 

● upon leader ≠ maxrank(Π \ suspected) do 
● leader := maxrank(Π \ suspected) 
● trigger 〈le, Leader | leader〉 
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Eventual Leader Election Ω
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Matching Ω and ◊P
● ◊P weakens P by only providing eventual accuracy 

● Weaken LE to Ω by only guaranteeing eventual agreement

LE Properties: 
❑ LE1 (eventual completeness). Eventually 

every correct node trusts some correct 
node 

❑ LE2 (agreement). No two correct nodes 
trust different correct nodes 

❑ LE3 (local accuracy). If a node is elected 
leader by pi, all previously elected leaders 
by pi have crashed 

eventual
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Interface of Eventual Leader Election
● Module: 

● Name: EventualLeaderElection (Ω) 
● Events: 

● Indication (out): 〈Ω, Trust | pi〉 
● Notify that pi is trusted to be leader 

● Properties: 
● ELD1 (eventual completeness). Eventually every correct node 

trusts some correct node 

● ELD2 (eventual agreement). Eventually no two correct nodes 
trust different correct node
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Eventual Leader Detection Ω
● In crash-stop process abstraction 

● Ω is obtained directly from ◊P  

● Each process trusts the process with highest rank 
among all processes not suspected by ◊P  

● Eventually, exactly one correct process will be 
trusted by all correct processes
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Implementing Ω

● EventualLeaderElection, instance Ω 
● Uses: EventuallyPerfectFailureDetector, instance ◊P 
● upon event  〈 Ω, Init〉  do 

● suspected := ∅;  leader := ⊥ 
● upon event 〈◊P, Suspect |p〉  do 

● suspected := suspected ∪ {p} 
● upon event 〈◊P, Restore | p〉 do  

●  suspected :=  suspected \ {p} 
● upon leader ≠ maxrank(Π \ suspected) do 

● leader := maxrank(Π \ suspected) 
● trigger 〈 Ω, Trust | leader〉 
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Ω for Crash Recovery
● Can we elect a recovered process? [d] 

● Not if it keeps crash-recovering infinitely often! 
● Basic idea 

● Count number of times you’ve crashed (epoch) 
● Distribute your epoch periodically to all nodes 
● Elect leader with lowest (epoch, rank(node) ) 

● Implementation 
● Similar to ◊P and Ω for crash-stop 
● Piggyback epoch with heartbeats 
● Store epoch, upon recovery load epoch and increment
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Reductions

39
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Reductions

● We say X≼Y if  

● X can be solved given a solution of Y 

● Read X is reducible to Y 

● Informally, problem X is easier or as hard as Y
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Preorders, partial orders…
● A relation ≼ is a preorder on a set A if for any x,y,z in A 

● x ≼ x (reflexivity) 
● x ≼ y and y ≼ z implies x ≼ z (transitivity) 

● Difference between preorder and partial order 
● Partial order is a preorder with anti-symmetry 

● x ≤ y and y ≤ x implies x = y 
● For preorder two different objects x and y can be symmetric 

● It is possible that x ≼ y and y ≼ x for two different x and y, (x ≠ y)
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Reducibility ≼ is a preorder
● ≼ is a preorder 

● Reflexivity. X≼X 
● X can be solved given a solution to X 

● Transitivity. X≼Y and Y≼Z implies X≼Z  
● Since Y≼Z, use implementation of Z to implement Y.  
 use that implementation of Y to implement  X.  
Hence we implemented X from Z’s implementation 

● ≼ is not anti-symmetric, thus not a partial order 
● Two different X and Y can be equivalent 

● Distinct problems X and Y can be solved from the other’s solution
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Shortcut definitions
● We write X≃Y if 

● X≼Y and Y≼X 
● Problem X is equivalent to Y 

● We write X≺Y if 
● X≼Y and not X≃Y 
● or equivalently, X≼Y and not Y≼X 

● Problem X is strictly weaker than Y, or 
● Problem Y is strictly stronger than X
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Example
● It is true that ◊P≼P  

● Given P, we can implement ◊P 
● We just return P’s suspicions.  
● P always satisfies ◊P’s properties 

● In fact, ◊P≺P in the asynchronous model 
● Because not P≼◊P is true 

● Reductions common in computability theory 
● If X≼Y, and if we know X is impossible to solve 

● Then Y is impossible to solve too 

● If ◊P≼P, and some problem Z can be solved with ◊P 
● Then Z can also be solved with P
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Weakest FD for a problem?

● Often P is used to solve problem X 
● But P is not very practical (needs synchrony) 
● Is X a “practically” solvable problem?  

● Can we implement X with ◊P? 
● Sometimes a weaker FD than P will not solve X 

▪ Proven using reductions
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Weakest FD for a problem
● Common proof to show P is weakest FD for X 

● Prove that P≼X 
● I.e. P can be solved given X 

● If P≼X then ◊P≺X 
● Because we know ◊P≺P and P≃X, i.e. ◊P≺P≃X 

● If we can solve X with ◊P, then 
● we can solve P with ◊P, which is a contradiction

46



S. Haridi, KTHx ID2203.1x

How are the detectors 
related
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Trivial Reductions
● Strongly complete 

● ◊P≼P 
● P is always strongly accurate, thus also 

eventually strongly accurate 
● ◊S≼S 

● S is always weakly accurate, thus also 
eventually weakly accurate  

● S≼P 
● P is always strongly accurate, thus also 

always weakly accurate 
● ◊S≼◊P 

● ◊P is always eventually strongly accurate, 
thus also always eventually weakly accurate

P

◊P S

◊S
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Trivial Reductions (2)
● Weakly complete 

● ◊Q≼Q 
● Q is always strongly accurate, thus also 

eventually strongly accurate 
● ◊W≼W 

● W is always weakly accurate, thus also 
eventually weakly accurate  

● W≼Q 
● Q is always strongly accurate, thus also 

always weakly accurate 
● ◊W≼◊Q 

● ◊Q is always eventually strongly 
accurate, thus also always eventually 
weakly accurate

Q

◊Q W

◊W
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Completeness “Irrelevant”

Completeness

Accuracy

Strong Weak Eventual 
Strong

Eventual 
Weak

Strong P S ◊P ◊S

Weak Q W ◊Q ◊W

Weak completeness trivially reducible to strong 

Strong completeness reducible to weak 
❑ i.e. can get strong completeness from weak 

P≼Q, S≼W, ◊P≼◊Q, ◊S≼◊W,  

❑ They’re equivalent! 
P≃Q, S≃W, ◊P≃◊Q, ◊S≃◊W
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Proving Irrelevance of Completeness

● Weak completeness ensures 
● every crash is eventually detected by some correct node 

● Simple idea 
● Every process q broadcast suspicions Susp periodically 
● upon event receive <S,q>  

● Susp := (Susp ∪ S) — {q} 

● Every crash is eventually detected by all correct p 
● Can this violate some accuracy properties?

also works like a 
heartbeat
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Maintaining Accuracy

● Strong and Weak Accuracy aren’t violated 
● Strong accuracy 
● No one is ever inaccurate 
● Our reduction never spreads inaccurate suspicions 

● Weak accuracy 
● Everyone is accurate about at least one process p 

● No one will spread inaccurate information about p 
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Maintaining Eventual Accuracy

● Eventual Strong and Eventual Weak Accuracy 
aren’t violated 

● Proof is almost same as previous page 
● Eventually all faulty processes crash 
● Inaccurate suspicions undone 

● Will get heartbeat from correct nodes and revise (–{q}) 
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Relation between FDs

Q

◊Q W

◊W

P

◊P S

◊S equivalent
reducible to
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Omega also a FD
● Can we implement ◊S with Ω? [d] 
● I.e. is it true that ◊S≼Ω 

● Suspect all nodes except the leader given by Ω 
● Eventual Completeness  

▪ All nodes are suspected except the leader (which is correct) 
● Eventual Weak Accuracy 

▪ Eventually, one correct node (leader) is not suspected by anyone 

● Thus, ◊S≼Ω
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Ω equivalent to ◊S (and ◊W)

● We showed ◊S≼Ω, it turns out we also have Ω≼◊S 
● I.e. Ω≃◊S 

● The famous CHT (Chandra, Hadzilocas, Toueg) result 
● If consensus implementable with detector D  

Then Omega can be implemented using D 

● I.e. if Consensus≼D, then Ω≼D 
● Since ◊S can be used to solve consensus, we have Ω≼D 

● Implies ◊W is weakest detector to solve consensus 
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Relation between FDs (2)
Q

◊Q W

◊W

P

◊P S

◊S
equivalent
reducible to

Ω
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Combining Abstractions
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Combining Abstractions
● Fail-stop 

● Crash-stop process model 
● Perfect links + Perfect failure detector (P) 

● Fail-silent 
● Crash-stop process model 
● Perfect links 

● Fail-noisy 
● Crash-stop process model 
● Perfect links + Eventually Perfect failure detector (◊P) 

● Fail-recovery 
● Crash-recovery process model 
● Stubborn links + …

(synchronous)

(asynchronous)

(partially synchronous)
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The rest of course

● Assume crash-stop system with a perfect 
failure detector (fail-stop) 
● Give algorithms  

● Try to make a weaker assumption 
●  Revisit the algorithms
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