
S. Haridi, KTHx ID2203.1x

 
Failure Detectors

Seif Haridi
haridi@kth.se

1

S. Haridi, KTHx ID2203.1x

Modeling Timing Assumptions
● Tedious to model eventual synchrony (partial synchrony)
● Timing assumptions mostly needed to detect failures

● Heartbeats, timeouts, etc…

● Use failure detectors to encapsulate timing assumptions
● Black box giving suspicions regarding process failures
● Accuracy of suspicions depends on model strength

2

S. Haridi, KTHx ID2203.1x

Implementation of Failure Detectors
Typical Implementation

● Periodically exchange heartbeat messages

● Timeout based on worst case message round trip

● If timeout, then suspect process

● If received message from suspected node, revise
suspicion and increase time-out

3

S. Haridi, KTHx ID2203.1x

Completeness and Accuracy
● Two important types of requirements

● 1. Completeness requirements
● Requirements regarding actually crashed nodes

▪ When do they have to be detected?
● 2. Accuracy requirements

● Requirements regarding actually alive nodes
▪ When are they allowed to be suspected?

4

S. Haridi, KTHx ID2203.1x

Completeness and Accuracy
● In asynchronous system

● Is it possible to achieve completeness?
● Yes, suspect all processes

● Is it possible to achieve accuracy?
● Yes, refrain from suspecting any process!

● Is it possible to achieve both?
● NO!

● Failure detectors are feasible only in synchronous and partially
synchronous systems

5

S. Haridi, KTHx ID2203.1x

Requirements: Completeness
● Strong Completeness

● Every crashed process is eventually detected by all correct
processes

● There exists a time after which all crashed processes
are detected by all correct processes
● We only study failure detectors with this property

● Is it realistic? [d]
6

S. Haridi, KTHx ID2203.1x

Requirements: Completeness
● Weak Completeness
● Every crashed process is eventually detected by

some correct process

● There exists a time after which all crashed
nodes are detected by some correct nodes

● Possibly detected by different correct nodes

7

S. Haridi, KTHx ID2203.1x

Requirements: Accuracy
● Strong Accuracy

● No correct process is ever suspected
● For all process p and q,

● p does not suspect q, unless q has crashed
● Is it realistic? [d]

● Strong assumption, requires synchrony
● I.e. no premature timeouts

8

S. Haridi, KTHx ID2203.1x

Requirements: Accuracy
● Weak Accuracy

● There exists a correct process which
is never suspected by any process

● There exists a correct node P
● All nodes will never suspect P

● Still strong assumption
● One node is always “well-

connected”
9

S. Haridi, KTHx ID2203.1x

Requirements: Accuracy
● Eventual Strong Accuracy

● After some finite time the FD provides strong accuracy
● Eventual Weak Accuracy

● After some finite time the detector provides weak accuracy
● After some time, the requirements are fulfilled

● Prior to that, any behavior is possible!

● Quite weak assumptions [d]
● When can eventual weak accuracy be achieved?

10

 
Failure Detectors Classes

S. Haridi, KTHx ID2203.1x

Four Main Established Detectors
● Four detectors with strong completeness

● Perfect Detector (P)
● Strong Accuracy

● Strong Detector (S)
● Weak Accuracy

● Eventually Perfect Detector (◊P)
● Eventual Strong Accuracy

● Eventually Strong Detector (◊S)
● Eventual Weak Accuracy

Synchronous Systems

Partially Synchronous
Systems

12

Four Less Interesting Detectors
● Four detectors with weak completeness

● Detector Q
● Strong Accuracy

● Weak Detector (W)
● Weak Accuracy

● Eventually Detector Q (◊Q)
● Eventual Strong Accuracy

● Eventually Weak Detector (◊W)
● Eventual Weak Accuracy

Synchronous Systems

Partially Synchronous
Systems

13S. Haridi, KTHx ID2203.1x

S. Haridi, KTHx ID2203.1x

Prefect Failure
Detector P

14

S. Haridi, KTHx ID2203.1x

Interface of Perfect Failure Detector

● Module:
● Name: PerfectFailureDetector, instance P

● Events:
● Indication (out): 〈P, Crash | pi〉

● Notifies that process pi has crashed
● Properties:

● PFD1 (strong completeness)
● PFD2 (strong accuracy)

15

P

Crash pi

S. Haridi, KTHx ID2203.1x

Properties of P
● Properties:

● PFD1 (strong completeness)
● Eventually every process that crashes is permanently

detected by every correct process

● PFD2 (strong accuracy)
● If a node p is detected by any node, then p has crashed

● Safety or Liveness?

(liveness)

(safety)

15

S. Haridi, KTHx ID2203.1x

Implementing P in Synchrony
● Assume synchronous system

● Max transmission delay between 0 and δ time units

● Each process every γ time units
● Send <heartbeat> to all processes

● Each process waits γ+δ time units
● If did not get <heartbeat> from pi

● Detect <crash | pi>
17

pi

γ γ

δγ
pj

max delay

S. Haridi, KTHx ID2203.1x

Correctness of P
● PFD1 (strong completeness)

● A crashed process doesn’t
send <heartbeat>

● Eventually every process will
notice the absence of
<heartbeat>

pi

γ γ

δγ
pj

max delay

18

S. Haridi, KTHx ID2203.1x

Correctness of P
● PFD2 (strong accuracy)
● Assuming local computation is negligible
● Maximum time between 2 heartbeats

● γ+δ time units
● If alive, all process will receive hb in

time
● No inaccuracy

pi

γ γ

δγ
pj

max delay

19

S. Haridi, KTHx ID2203.1x

 
Eventually Prefect Failure

Detector ♢P

20

S. Haridi, KTHx ID2203.1x

Interface of ♢P
● Module:

● Name: EventuallyPerfectFailureDetector, instance ◊P

● Events:
● Indication: 〈◊P, suspect | pi〉

● Notifies that process pi is suspected to have crashed
● Indication: 〈◊P, restore | pi〉

● Notifies that process pi is not suspected anymore

● Properties:
● PFD1 (strong completeness)
● PFD2 (eventual strong accuracy). Eventually, no correct process is suspected

by any correct process

21

♢P

restore pisuspect pi

S. Haridi, KTHx ID2203.1x

Implementing ♢P
● Assume partially synchronous system

● Eventually some bounds exists

● Each process every γ time units
● Send <heartbeat> to all processes

● Each process waits T time units
● If did not get <heartbeat> from pi

● Indicate <suspect | pi> if pi is not in suspected set
● Put pi in suspected set

● If get HB from pi, and pi is in suspected
● Indicate <restore | pi> and remove pi from suspected
● Increase timeout T

22

S. Haridi, KTHx ID2203.1x

Correctness of ♢P
● EPFD1 (strong completeness)

● Same as before

● EPFD2 (eventual strong accuracy)
● Each time p is inaccurately suspected by a correct q

▪ Timeout T is increased at q
▪ Eventually system becomes synchronous, and T becomes

larger than the unknown bound δ (T>γ+δ)
▪ q will receive HB on time, and never suspect p again

23

S. Haridi, KTHx ID2203.1x

 
Leader Election

24

S. Haridi, KTHx ID2203.1x

Leader Election versus Failure Detection
● Failure detection captures failure behavior

● Detect failed processes

● Leader election (LE) also captures failure behavior
● Detect correct processes (a single and same for all)

● Formally, leader election is a FD
● Always suspects all processes except one (leader)
● Ensures some properties regarding that process

25

S. Haridi, KTHx ID2203.1x

Leader Election vs. Failure Detection

We will define two leader election abstraction and
algorithms

● Leader election (LE) which “matches” P

● Eventual leader election (Ω) which “matches” ♢P

24

S. Haridi, KTHx ID2203.1x

Matching LE and P
● P’s properties

● P always eventually detects failures (strong completeness)
● P never suspects correct nodes (strong accuracy)

● Completeness of LE
● Informally: eventually ditch failed leaders
● Formally: eventually every correct process trusts some correct node

● Accuracy of LE
● Informally: never ditch a correct leader
● Formally: No two correct processes trust different correct nodes

● Is this really accuracy? [d]
● Yes! Assume two processes trust different correct processes

▪ One of them must eventually switch, i.e. leaving a correct node
27

S. Haridi, KTHx ID2203.1x
6/17/16

28

LE desirable properties
● LE always eventually detects failures

● Eventually every correct process trusts some correct node
● LE is always accurate

● No two correct processes trust different correct processes
● But the above two permit the following

● But P1 is “inaccurately” leaving a correct leader

p1

p2

p3

elect p3

elect p3

elect p3

elect p1

elect p1 elect p2 elect p1

S. Haridi, KTHx ID2203.1x 29

LE desirable properties
● To avoid “inaccuracy” we add

● Local Accuracy:
● If a process is elected leader by pi, all previously

elected leaders by pi have crashed

p1

p2

p3

elect p3

elect p3

elect p3

elect p1

elect p1 elect p2 elect p1

Not allowed, as p1
is correct

S. Haridi, KTHx ID2203.1x

Interface of Leader Election
● Module:

● Name: LeaderElection (le)
● Events:

● Indication: 〈leLeader | pi〉
● Indicate that leader is node pi

● Properties:
● LE1 (eventual completeness). Eventually every correct process

trusts some correct process

● LE2 (agreement). No two correct processes trust different
correct processes

● LE3 (local accuracy). If a process is elected leader by pi, all
previously elected leaders by pi have crashed

30

S. Haridi, KTHx ID2203.1x

Implementing LE

● Globally rank all processes
● E.g. rank ordering rank(p1)>rank(p2)>rank(p3)> …

● maxrank(S)
● The process p ∊ S, with the largest rank

31

S. Haridi, KTHx ID2203.1x

Implementing LE
● LeaderElection, instance le
● Uses:

● PerfectFailureDetector, instance P
● upon event 〈le, Init〉 do

● suspected := ∅
● leader := ⊥

● upon event 〈P, Crash |p〉 do
● suspected := suspected ∪ {p}

● upon leader ≠ maxrank(Π \ suspected) do
● leader := maxrank(Π \ suspected)
● trigger 〈le, Leader | leader〉

32

S. Haridi, KTHx ID2203.1x

 
Eventual Leader Election Ω

33

S. Haridi, KTHx ID2203.1x

Matching Ω and ◊P
● ◊P weakens P by only providing eventual accuracy

● Weaken LE to Ω by only guaranteeing eventual agreement

LE Properties:
❑ LE1 (eventual completeness). Eventually

every correct node trusts some correct
node

❑ LE2 (agreement). No two correct nodes
trust different correct nodes

❑ LE3 (local accuracy). If a node is elected
leader by pi, all previously elected leaders
by pi have crashed

eventual

34

S. Haridi, KTHx ID2203.1x

Interface of Eventual Leader Election
● Module:

● Name: EventualLeaderElection (Ω)
● Events:

● Indication (out): 〈Ω, Trust | pi〉
● Notify that pi is trusted to be leader

● Properties:
● ELD1 (eventual completeness). Eventually every correct node

trusts some correct node

● ELD2 (eventual agreement). Eventually no two correct nodes
trust different correct node

35

S. Haridi, KTHx ID2203.1x

Eventual Leader Detection Ω
● In crash-stop process abstraction

● Ω is obtained directly from ◊P

● Each process trusts the process with highest rank
among all processes not suspected by ◊P

● Eventually, exactly one correct process will be
trusted by all correct processes

36

S. Haridi, KTHx ID2203.1x

Implementing Ω

● EventualLeaderElection, instance Ω
● Uses: EventuallyPerfectFailureDetector, instance ◊P
● upon event 〈 Ω, Init〉 do

● suspected := ∅; leader := ⊥
● upon event 〈◊P, Suspect |p〉 do

● suspected := suspected ∪ {p}
● upon event 〈◊P, Restore | p〉 do

● suspected := suspected \ {p}
● upon leader ≠ maxrank(Π \ suspected) do

● leader := maxrank(Π \ suspected)
● trigger 〈 Ω, Trust | leader〉

37

S. Haridi, KTHx ID2203.1x

Ω for Crash Recovery
● Can we elect a recovered process? [d]

● Not if it keeps crash-recovering infinitely often!
● Basic idea

● Count number of times you’ve crashed (epoch)
● Distribute your epoch periodically to all nodes
● Elect leader with lowest (epoch, rank(node))

● Implementation
● Similar to ◊P and Ω for crash-stop
● Piggyback epoch with heartbeats
● Store epoch, upon recovery load epoch and increment

38

S. Haridi, KTHx ID2203.1x

Reductions

39

S. Haridi, KTHx ID2203.1x

Reductions

● We say X≼Y if

● X can be solved given a solution of Y

● Read X is reducible to Y

● Informally, problem X is easier or as hard as Y

40

S. Haridi, KTHx ID2203.1x 41

Preorders, partial orders…
● A relation ≼ is a preorder on a set A if for any x,y,z in A

● x ≼ x (reflexivity)
● x ≼ y and y ≼ z implies x ≼ z (transitivity)

● Difference between preorder and partial order
● Partial order is a preorder with anti-symmetry

● x ≤ y and y ≤ x implies x = y
● For preorder two different objects x and y can be symmetric

● It is possible that x ≼ y and y ≼ x for two different x and y, (x ≠ y)

S. Haridi, KTHx ID2203.1x 42

Reducibility ≼ is a preorder
● ≼ is a preorder

● Reflexivity. X≼X
● X can be solved given a solution to X

● Transitivity. X≼Y and Y≼Z implies X≼Z
● Since Y≼Z, use implementation of Z to implement Y.
 use that implementation of Y to implement X.
Hence we implemented X from Z’s implementation

● ≼ is not anti-symmetric, thus not a partial order
● Two different X and Y can be equivalent

● Distinct problems X and Y can be solved from the other’s solution

S. Haridi, KTHx ID2203.1x

Shortcut definitions
● We write X≃Y if

● X≼Y and Y≼X
● Problem X is equivalent to Y

● We write X≺Y if
● X≼Y and not X≃Y
● or equivalently, X≼Y and not Y≼X

● Problem X is strictly weaker than Y, or
● Problem Y is strictly stronger than X

43

S. Haridi, KTHx ID2203.1x

Example
● It is true that ◊P≼P

● Given P, we can implement ◊P
● We just return P’s suspicions.
● P always satisfies ◊P’s properties

● In fact, ◊P≺P in the asynchronous model
● Because not P≼◊P is true

● Reductions common in computability theory
● If X≼Y, and if we know X is impossible to solve

● Then Y is impossible to solve too

● If ◊P≼P, and some problem Z can be solved with ◊P
● Then Z can also be solved with P

44

S. Haridi, KTHx ID2203.1x

Weakest FD for a problem?

● Often P is used to solve problem X
● But P is not very practical (needs synchrony)
● Is X a “practically” solvable problem?

● Can we implement X with ◊P?
● Sometimes a weaker FD than P will not solve X

▪ Proven using reductions

45

S. Haridi, KTHx ID2203.1x

Weakest FD for a problem
● Common proof to show P is weakest FD for X

● Prove that P≼X
● I.e. P can be solved given X

● If P≼X then ◊P≺X
● Because we know ◊P≺P and P≃X, i.e. ◊P≺P≃X

● If we can solve X with ◊P, then
● we can solve P with ◊P, which is a contradiction

46

S. Haridi, KTHx ID2203.1x

How are the detectors
related

47

S. Haridi, KTHx ID2203.1x

Trivial Reductions
● Strongly complete

● ◊P≼P
● P is always strongly accurate, thus also

eventually strongly accurate
● ◊S≼S

● S is always weakly accurate, thus also
eventually weakly accurate

● S≼P
● P is always strongly accurate, thus also

always weakly accurate
● ◊S≼◊P

● ◊P is always eventually strongly accurate,
thus also always eventually weakly accurate

P

◊P S

◊S

48

S. Haridi, KTHx ID2203.1x

Trivial Reductions (2)
● Weakly complete

● ◊Q≼Q
● Q is always strongly accurate, thus also

eventually strongly accurate
● ◊W≼W

● W is always weakly accurate, thus also
eventually weakly accurate

● W≼Q
● Q is always strongly accurate, thus also

always weakly accurate
● ◊W≼◊Q

● ◊Q is always eventually strongly
accurate, thus also always eventually
weakly accurate

Q

◊Q W

◊W

49

S. Haridi, KTHx ID2203.1x

Completeness “Irrelevant”

Completeness

Accuracy

Strong Weak Eventual
Strong

Eventual
Weak

Strong P S ◊P ◊S

Weak Q W ◊Q ◊W

Weak completeness trivially reducible to strong

Strong completeness reducible to weak
❑ i.e. can get strong completeness from weak

P≼Q, S≼W, ◊P≼◊Q, ◊S≼◊W,

❑ They’re equivalent!
P≃Q, S≃W, ◊P≃◊Q, ◊S≃◊W

50

S. Haridi, KTHx ID2203.1x

Proving Irrelevance of Completeness

● Weak completeness ensures
● every crash is eventually detected by some correct node

● Simple idea
● Every process q broadcast suspicions Susp periodically
● upon event receive <S,q>

● Susp := (Susp ∪ S) — {q}

● Every crash is eventually detected by all correct p
● Can this violate some accuracy properties?

also works like a
heartbeat

51

S. Haridi, KTHx ID2203.1x

Maintaining Accuracy

● Strong and Weak Accuracy aren’t violated
● Strong accuracy
● No one is ever inaccurate
● Our reduction never spreads inaccurate suspicions

● Weak accuracy
● Everyone is accurate about at least one process p

● No one will spread inaccurate information about p

52

S. Haridi, KTHx ID2203.1x

Maintaining Eventual Accuracy

● Eventual Strong and Eventual Weak Accuracy
aren’t violated

● Proof is almost same as previous page
● Eventually all faulty processes crash
● Inaccurate suspicions undone

● Will get heartbeat from correct nodes and revise (–{q})

53

S. Haridi, KTHx ID2203.1x

Relation between FDs

Q

◊Q W

◊W

P

◊P S

◊S equivalent
reducible to

54

S. Haridi, KTHx ID2203.1x

Omega also a FD
● Can we implement ◊S with Ω? [d]
● I.e. is it true that ◊S≼Ω

● Suspect all nodes except the leader given by Ω
● Eventual Completeness

▪ All nodes are suspected except the leader (which is correct)
● Eventual Weak Accuracy

▪ Eventually, one correct node (leader) is not suspected by anyone

● Thus, ◊S≼Ω

55

S. Haridi, KTHx ID2203.1x

Ω equivalent to ◊S (and ◊W)

● We showed ◊S≼Ω, it turns out we also have Ω≼◊S
● I.e. Ω≃◊S

● The famous CHT (Chandra, Hadzilocas, Toueg) result
● If consensus implementable with detector D

Then Omega can be implemented using D

● I.e. if Consensus≼D, then Ω≼D
● Since ◊S can be used to solve consensus, we have Ω≼D

● Implies ◊W is weakest detector to solve consensus
56

S. Haridi, KTHx ID2203.1x

Relation between FDs (2)
Q

◊Q W

◊W

P

◊P S

◊S
equivalent
reducible to

Ω

57

S. Haridi, KTHx ID2203.1x

 
Combining Abstractions

58

S. Haridi, KTHx ID2203.1x

Combining Abstractions
● Fail-stop

● Crash-stop process model
● Perfect links + Perfect failure detector (P)

● Fail-silent
● Crash-stop process model
● Perfect links

● Fail-noisy
● Crash-stop process model
● Perfect links + Eventually Perfect failure detector (◊P)

● Fail-recovery
● Crash-recovery process model
● Stubborn links + …

(synchronous)

(asynchronous)

(partially synchronous)

59

S. Haridi, KTHx ID2203.1x

The rest of course

● Assume crash-stop system with a perfect
failure detector (fail-stop)
● Give algorithms

● Try to make a weaker assumption
● Revisit the algorithms

60

