Paxos

Seif Haridi

Single Value Uniform Consensus

- Validity
- Only proposed values may be decided
- Uniform Agreement
- No two processes decide different values
- Integrity
- Each processes can decide a value at most once
- Termination
- Every process eventually decides a value

Single Value Uniform Consensus

- (Uniform) Consensus is not solvable in the Fail-Silent model (asynchronous system model)
- Given a fixed set of deterministic processes there is no algorithm that solves consensus in the asynchronous model if one process may crash and stop
- There are some infinite executions that where processes are not able to decide on a single value
- Fischer, Lynch and Patterson FLP result

Assumptions

- Partially synchronous system
- Fail-noisy model
- Message duplication, loss, re-ordering

Importance

- Paxos is arguably the most important algorithm in distributed computing
- This presentation follows the paper "Paxos Made Simple"
(Lamport, 2001)

High Level View of Paxos

- Elect a single proposer using Ω
- Proposer imposes its proposal to everyone
- Everyone decides
- Problem with Ω
- Several processes might initially be proposers (contention)

High Level View of Paxos
Elect a single proposer using Ω

- Proposer imposes its proposal to everyone
- Everyone decides
- Problem with Ω
- Several processes might initially be proposers (contention)
- Solution is Abortable Consensus
- Processes attempt to impose their proposals
- Might abort if there is contention (safety) (multiple proposers)
- Ω ensures eventually 1 proposer succeeds (liveness)

PAXOS ALGORITHM

Terminology

- Proposers
- Will attempt imposing their proposal to set of acceptors
- Acceptors
- May accept values issued by proposers
- Learners
- Will decide depending on acceptors acceptances
- Each process plays all 3 roles in classic setting

Naïve Approach

- Centralized solution
- Proposer sends value to a central acceptor
- Acceptor decides first value it gets
- Problem
- Acceptor is a single-point of failure

Abortable Consensus

- Decentralizes, i.e. proposers talks to set of acceptors
- Tolerate failures, i.e. acceptors might fail (needs only a majority of acceptors surviving)
- Proposers might fail to impose its proposal (aborts)

Decentralization \& Fault-tolerance

- Quorum approach
- Each proposer tries to impose its value v on the set of acceptors
- If majority of acceptors accept v , then v is chosen
- Learners try to decide the chosen value

Ballot (round) Array (table)

- Describes the state of the acceptors at various rounds

Each raw describes one round
Each acceptor's state of a_{i} initially \perp

Round	a_{1}	a_{2}	a_{3}
$n=5$			
\ldots			
$n=2$			
$n=1$		\perp	\perp
$n=0$	\perp		

When to accept

- Ideally, there will be a single proposer
- Should at least provide obstruction-free progress
- Obstruction-free = if a single proposer executes without interference (contention) it makes progress
- Suggested invariant
- P1. An acceptor accepts first proposal it receives

Attempt

- P1. An acceptor accepts first proposal it receives
- Problem
- Impossible to later tell what was chosen
- Forced to allow restarting! Let acceptors change their minds!

Ballot (round) Array (table)

- Two proposers p1 and p2 that propose red and blue - But a_{3} crashes

Round	a_{1}	a_{2}	a_{3}	a_{4}	a_{4}
$n=5$					
\ldots					
$n=2$					
$n=1$	red	red	red	blue	blue
$n=0$	\perp			\perp	\perp

Ballot (round) Array (table)

- Two proposers p1 and p2 that propose red and blue - But a_{3} crashes

Round	a_{1}	a_{2}	a_{3}	a_{4}	a_{4}
$\mathrm{n}=5$					
\ldots					
$\mathrm{n}=2$					
$\mathrm{n}=1$	red	red		blue	blue
$\mathrm{n}=0$	\perp	\perp	\perp	\perp	\perp

Enabling Restarting

- Proposer can try to propose again
- Distinguish proposals with unique sequence number
- Often called ballot number
- Monotonically increasing
- Implementation with n nodes
- process 1 uses seq: $1, n+1,2 n+1,3 n+1, \ldots$
- process 2 uses seq: $2, n+2,2 n+2,3 n+2, \ldots$
- process 3 uses seq: $3, n+3,2 n+3,3 n+3, \ldots$
- or...
- Pair of values: (local clock or logical clock, local identifier)
- Lexicographic order: if clock collides, choose highest pid

Problem with restart

Ballot (round) Array (table)

- p1 proposes (1,red) and p2 proposes (3, blue)
- But a_{1} and a_{1} crashed

Round	a_{1}	a_{2}	a_{3}	a_{4}	a_{4}
$\mathrm{n}=5$					
$\mathrm{n}=4$					
$\mathrm{n}=3$			blue	blue	blue
$\mathrm{n}=2$	red	red	red	\perp	\perp
$\mathrm{n}=1$	red	red	red	\perp	\perp
$\mathrm{n}=0$	\perp			\perp	\perp

Ensuring Agreement

- Problem (previous slide):
- If restarting allowed,
- Majority may first accept red
- Majority may later accept blue
- Solve it by enforcing:
- P2. If proposal (n, v) is chosen, every higher numbered proposal chosen has value v

Birds-eye View

- Abortable Consensus in a nutshell
- P1. An acceptor accepts first proposal it receives
- P2. If v is chosen, every higher proposal chosen has value v
- Handwaving
- P1 ensures obstruction-free progress and validity
- P2 ensures agreement
- Integrity trivial to implement
- Remember if chosen before, at most choose once

Attempt

- P2. If v is chosen, every higher proposal chosen has value v
- How to implement it?
- P2a. If v is chosen, every higher proposal accepted has value v
- Lemma
- P2a => P2

Problem

- Recall
- P1. An acceptor accepts first proposal it receives
- P2a. If v is chosen, every higher proposal accepted has value v
- Problem: we cannot prevent an acceptor from accepting higher value proposal

Solution

- Strengthen P2a
- P2b. If v is chosen, every higher proposal issued has value v
- If obeyed, solves problem

Ballot (round) Array (table)

- p1 proposes (1,red) and p2 proposes (3, blue)
- But a_{2} and a_{3} crashed before p2 proposes (3, blue)

Round	a_{1}	a_{2}	a_{3}	a_{4}	a_{4}
$\mathrm{n}=5$					
$\mathrm{n}=4$					
$\mathrm{n}=3$			red	\perp	\perp
$\mathrm{n}=2$	red	red	red	\perp	\perp
$\mathrm{n}=1$	red	red	red	\perp	\perp
$\mathrm{n}=0$	\perp			\perp	\perp

Ballot (round) Array (table)

- p1 proposes (1,red) and p2 proposes (3, blue)
- At round 3 p 2 has to issue (1,red)

Round	a_{1}	a_{2}	a_{3}	a_{4}	a_{4}
$\mathrm{n}=5$					
$\mathrm{n}=4$					
$\mathrm{n}=3$			red	red	red
$\mathrm{n}=2$	red	red	red	\perp	\perp
$\mathrm{n}=1$	red	red	red	\perp	\perp
$\mathrm{n}=0$	\perp			\perp	\perp

P2 Preserved

- P2. If v is chosen, every higher proposal chosen has value v
- P2a. If v is chosen, every higher proposal accepted has value v
- P2b. If v is chosen, every higher proposal issued has value v
- Lemma
- P2b => P2a
- Recall P2a => P2.
- Thus P2b => P2

Main Lemma

- P2c. If any proposal (n, v) is issued, there is a majority set S of acceptors such that either
- (a) no one in S has accepted any proposal numbered less than n
- (b) v is the value of the highest proposal among all proposals less than n accepted by acceptors in S
- Lemma: P2c => P2b

Main lemma

(a) no one in S has accepted any proposal number > 3 p2 issues (3, blue) at round 3

Round	a_{1}	a_{2}	a_{3}	a_{4}	a_{4}
$\mathrm{n}=5$					
$\mathrm{n}=4$					
$\mathrm{n}=3$	red	red	blue	blue	blue
$\mathrm{n}=2$	red	red	\perp	\perp	\perp
$\mathrm{n}=1$	red	red	\perp	\perp	\perp
$\mathrm{n}=0$	\perp	\perp	\perp	\perp	\perp

Main lemma

(b) v is the value of the highest proposal among all proposals less than n accepted by acceptors in S
red is chosen at round 3 , no proposer at round 4

- Proposer at round 5 will always get red querying any majority

Round	a_{1}	a_{2}	a_{3}	a_{4}	a_{4}
$\mathrm{n}=5$					
$\mathrm{n}=4$					
$\mathrm{n}=3$	red	red	red	$?$	$?$
$\mathrm{n}=2$	red	red	$?$	$?$	$?$
$\mathrm{n}=1$	red	red	\perp	\perp	\perp
$\mathrm{n}=0$	\perp	\perp	\perp	\perp	\perp

Main lemma

(b) v is the value of the highest proposal among all proposals less than n accepted by acceptors in S
red is chosen at round 3 , no proposer at round 4

- Proposer at round 5 will always get red querying any majority

Round	a_{1}	a_{2}	a_{3}	a_{4}	a_{4}
$\mathrm{n}=5$		red	red	red	
$\mathrm{n}=4$					
$\mathrm{n}=3$	red	red	red	$?$	$?$
$\mathrm{n}=2$	red	red	$?$	$?$	$?$
$\mathrm{n}=1$	red	red	\perp	\perp	\perp
$\mathrm{n}=0$	\perp	\perp	\perp	\perp	\perp

How to implement P2c

- A proposer at round n needs a query phase to get the value of highest round number + a promise that the state of S does not change until round n

Round	a_{1}	a_{2}	a_{3}	a_{4}	a_{4}
$\mathrm{n}=5$					
$\mathrm{n}=4$					
$\mathrm{n}=3$	red	red			
$\mathrm{n}=2$	red	red	$?$	$?$	$?$
$\mathrm{n}=1$	red	red	\perp	\perp	\perp
$\mathrm{n}=0$	\perp	\perp	\perp	\perp	\perp

How to implement P2c

- A proposer issues prop(n, v)
- Guarantee?
- v is the value of the highest proposal among all proposals less than n accepted by acceptors in S
- Need a prepare(n) phase Before issuing prop(n, v)
- Extract a promise from a majority of acceptors not to accept a proposal less than n
- Acceptor sends back its highest numbered accepted value

Abortable Consensus

Proposer

- Pick unique sequence n, send prepare(n) to all acceptors

3) Proposer upon majority S of promises:

- Pick value v of highest proposal number in S, or if none available pick v freely
- Issue accept(n, v) to all acceptors

5) Proposer upon majority S of responses:

- If got majority of acks decide(v) and broadcast decide(v);
- Otherwise abort

Acceptors

2) Upon prepare(n):

- Promise not accepting proposals numbered less than n
- Send highest numbered proposal accepted with number less than n (promise)

5) Upon accept(n, v):

- If not responded to prepare $m>n$, accept proposal (ack); otherwise reject (nack)

abortable consensus satisfies:

P2c. If (n, v) is issued, there is a majority of acceptors S such that:
a) no one in S has accepted any proposal numbered " " n, OR
b) v is value of highest proposal among all proposals "<" n accepted by acceptors in S

Paxos Correctness

- P2b. If v is chosen, every higher proposal issued has value v
- P2c. If any prop (n, v) is issued, there is a set S of a majority of acceptors s.t. either
- (a) no one in S has accepted any proposal numbered less than n
- (b) v is the value of the highest proposal among all proposals less than n accepted by acceptors in S
- Lemma: P2c => P2b
- Proof map:
- Prove lemma by assuming P2c, prove P2b follows
- Prove P2b follows by assuming v is chosen, prove every higher proposal issued has value v
- Thus: if P2c is true, and prop (n, v) chosen
- Show by induction every higher proposal issued has value v
- P2b. If v is chosen, every higher proposal issued has value v
- P2c. If any prop (n, v) is issued, there is a set S of a majority of acceptors s.t. either
- (a) no one in S has accepted any proposal numbered less than n
- (b) v is the value of the highest proposal among all proposals less than n accepted by acceptors in S
- Thus: P2c is true, and prop (n,v) chosen
- Show by induction on (on prop number) every higher proposal issued has value v

- P2b. If v is chosen, every higher proposal issued has value v
- P2c. If any prop (n, v) is issued, there is a set S of a majority of acceptors s.t. either
- (a) no one in S has accepted any proposal numbered less than n
- (b) v is the value of the highest proposal among all proposals less than n accepted by acceptors in S
- Thus: P2c is true, and prop (n, v) chosen
- Show by induction that all proposals (m, u), where $m \geq n$, have value $u=v$
- Induction base
- Inspect proposal (n,u).
- Since (n, v) chosen \& proposals are unique, $u=v$

Round	a_{1}	a_{2}	a_{3}
5			
4			
3			
2	v	V	
1	w	\perp	\perp
0	\perp	\perp	\perp

- Induction step
- Assume proposals $n, n+1, n+2, \ldots, m$ have value v (ind.hypothesis)
- Show proposal $(m+1, u)$ has $u=v$
- P2c implies proposal $(m+1, u)$ has a majority S that either
- a) no one in S has accepted any proposal numbered less than m+1
- b) u is the value of the highest proposal among all proposals less than $m+1$ accepted by acceptors in S
a a) cannot be, as (n, v) accepted by a majority overlapping with S
- b) must be true
- Hence, u is the value of the highest proposal among all proposals less than $\mathrm{m}+1$ accepted by acceptors in S
- By the induction hypothesis, all proposals n, \ldots, m have value v. Majority of prop $m+1$ intersects with majority of prop n, thus $u=v$
- Induction step
- Assume proposals $n, n+1, n+2, \ldots, m$ have value v (ind.hypothesis)
- Show proposal $(m+1, u)$ has $u=v$
- u is the value of the highest proposal among all proposals less than $\mathrm{m}+1$ accepted by acceptors in S
- By the induction hypothesis, all proposals n, \ldots, m have value v. Majority of prop $m+1$ intersects with majority of prop n , thus $\mathrm{u}=\mathrm{v}$

Round	a_{1}	a_{2}	a_{3}
5			
4			v
3		v	
2	v	v	
1	w	\perp	\perp
0	\perp	\perp	\perp

Agreement Satisfied

- This algorithm satisfies P2c
- accept(n,v) only issued if a majority S responded to prepare(n), s.t. for each p_{i} in S :
a) either: p_{i} hadn't accepted any prop less than n, or
b) v is value of highest proposal less than n accepted by p_{i}
- By their promise, a) and b) will not change
- prepare(n) often called read(n)
- accept(n,v) often called write(n,v)

Agreement

- P2c. If (n, v) is issued, there is a majority of acceptors S s.t.
- a) no one in S has accepted any proposal numbered less than n, or
- b) v is the value of the highest proposal among all proposals less than n accepted by acceptors in S
- P2. If (n, v) is chosen, every higher proposal chosen has value v
- We proved that if P2c is satisfied, then P2 is satisfied
- P2c => P2
- Thus the algorithm satisfies agreement (safety)

Obstruction Freedom and Validity

- P1. An acceptor accepts first "proposal" it receives
- P1 is satisfied because we accept
- if prepare(n) \& accept(n,v) received first
- Thus the algorithm satisfies obstruction-free progress (liveness)

Getting Familiar with Paxos

Abortable Consensus

Proposer

1) Pick unique sequence n, send prepare(n) to all acceptors
2) Proposer upon majority S of promises:

- Pick value v of highest proposal number in S, or if none available pick v freely
- Issue accept(n, v) to all acceptors

5) Proposer upon majority S of responses:

- If got majority of acks decide(v) and broadcast decide(v);
- Otherwise abort

Acceptors

2) Upon prepare(n):

- Promise not accepting proposals numbered less than n
- Send highest numbered proposal accepted with number less than n (promise)

4) Upon accept(n,v):

- If not responded to prepare m>n, accept proposal (ack); otherwise reject (nack)

Message loss and failures

- Many sources of abort
- Contention (multiple proposals competing)
- Message loss (e.g. not getting an ack)
- Process failure (e.g. proposer dies)
- So Proposers try Abortable Consensus again...
- Prepare(5), Accept(5,v), prepare(15), ...
- Eventually the Paxos should terminate (FLP85?)

FLP ghost

	a.prep(1):ok	b.prep(3):ok	a.acpt(1,v):fail	a.prep(4):ok	b.acpt(3,v):fail
		a.prep(1):ok	b.prep(3):ok	a.acpt(1,v):fail	a.prep(4):ok
p_{2}	b.acpt(3,v):fail				
p_{3}	a.prep(1):ok	b.prep(3):ok	a.acpt(1,v):fail	a.prep(4):ok	b.acpt(3,v):fail

- proposers a and b forever racing...
- Eventual leader election (Ω) ensures liveness
- Eventually only one proposer => termination

Familiarizing with Paxos (1/4)

- Different processes accept different values, same process accepts different values
- Assume 4 proposers $\{a, b, c, d\}, 7$ acceptors $\left\{p_{1}, \ldots, p_{7}\right\}$

```
a.prep(1):ok a.acpt(1,red):ok
```

p_{1}
a.prep(1):ok
p_{2}
a.prep(1):ok
a.prep(1):ok
p_{4}
\qquad
S. Haridi, KTHx ID2203.1x

Familiarizing with Paxos (2/4)

- Different nodes accept different values, same node accepts different values
- Assume 4 proposers $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, 7$ acceptors $\left\{\mathrm{p}_{1}, \ldots, \mathrm{p}_{7}\right\}$
a.prep(1):ok a.acpt(1,red):ok
p_{1}
a.prep(1):ok b.prep(2):ok b.acpt(2,blue):ok
p_{2}
a.prep(1):ok b.prep(2):ok
a.prep(1):ok b.prep(2):ok
b.prep(2):ok
p_{6}
p_{7}

Familiarizing with Paxos (3/4)

- Different nodes accept different values, same node accepts different values
- Assume 4 proposers $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, 7$ acceptors $\left\{\mathrm{p}_{1}, \ldots, \mathrm{p}_{7}\right\}$
a.prep(1):ok a.acpt(1,red):ok
p_{1}
a.prep(1):ok b.prep(2):ok b.acpt(2,blue):ok
p_{2}
a.prep(1):ok b.prep(2):ok c.prep(3):ok
c.acpt(3,green):ok
\qquad
a.prep(1):ok b.prep(2):ok c.prep(3):ok
b.prep(2):ok c.prep(3):ok
c.prep(3):ok
p_{7}

Familiarizing with Paxos (4/4)

- Different nodes accept different values, same node accepts different values
- Assume 4 proposers $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, 7$ acceptors $\left\{\mathrm{p}_{1}, \ldots, \mathrm{p}_{7}\right\}$

a.prep(1):ok a.acpt(1,red):ok	d.acpt(4,yellow):ok
a.prep(1):ok b.prep(2):ok b.acpt(2,blue):ok	d.acpt(4,yellow):ok

a.prep(1):ok b.prep(2):ok c.prep(3):ok c.acpt(3,green):ok d.acpt(4,yellow):ok
a.prep(1):ok b.prep(2):ok c.prep(3):ok d.prep(4):ok d.acpt(4,yellow):ok
b.prep(2):ok c.prep(3):ok d.prep(4):ok
c.prep(3):ok d.prep(4):ok
p_{6}
p_{7}

Optimizations

Paxos (AC) in a nutshell

- Necessary
- Reject accept(n,v) if answered prepare(m) : m>n
- i.e. prepare extracts promise to reject lower accept

Possible scenario \#1

- Caveat
- Proposers $\{a, b, c\}$, acceptors $\left\{p_{1}, p_{2}, p_{3}\right\}$

	a.prep(80):ok	b.prep(10):ok	b.accept(10,red):fail
	a.prep(80):ok	b.prep(10):ok	b.accept(10,red):fail
	a.prep(80):ok	b.prep(10):ok	b.accept(10,red):fail

- accept(10) will be rejected, why answer prepare(10)?
- No point answering prepare(n) if accept(n,v) will be rejected

Summary of Optimizations

- Necessary
- Reject accept(n, v) if answered prepare(m) : m>n
- i.e. prepare extracts promise to reject lower accept
- Optimizations
- a) Reject prepare(n) if answered prepare(m) : m>n
- i.e. prepare extracts promise to reject lower prepare

Possible scenario \#2

- Caveat

accept(80,blue) can anyway not get majority, as P2b guarantees every higher proposal issued would have same value!
a.prep(80):ok b.prep(90):ok b.acpt(90,red:):ok a.acpt(80,blue):fail
p_{4}
b.acpt(90,red):ok a.acpt(80,blue):ok
p_{5}
p_{6}
b.acpt(90,red):ok a.acpt(80,blue):ok
b.acpt(90,red):ok a.acpt(80,blue):ok

Summary of Optimizations (2)

- Necessary
- Reject accept(n,v) if answered prepare(m) : m>n
- i.e. prepare extracts promise to reject lower accept
- Optimizations
a) Reject prepare(n) if answered prepare $(m): m>n$
- i.e. prepare extracts promise to reject lower prepare
- b) Reject accept(n,v) if answered accept(m, u) : m>n
- i.e. accept extracts promise to reject lower accept
- c) Reject prepare(n) if answered accept(m, u) : m>n
- i.e. accept extracts promise to reject lower prepare

Possible scenario \#3

- Caveat

Summary of Optimizations (3)

- Necessary
- Reject accept(n, v) if answered prepare(m) : m>n
- i.e. prepare extracts promise to reject lower accept
- Optimizations
- a) Reject prepare(n) if answered prepare(m) : m>n
- i.e. prepare extracts promise to reject lower prepare
- b) Reject accept(n,v) if answered accept(m,u) : m>n
- i.e. accept extracts promise to reject lower accept
- c) Reject prepare(n) if answered accept(m,u) : m>n
- i.e. accept extracts promise to reject lower prepare
- d) Ignore old messages to proposals that got majority

State to Remember

- Each acceptor remembers
- Highest proposal (n,v) accepted
- Needed when proposers ask prepare(m)
- Lower prepares anyway ignored (optimization a \& c)
- Highest prepare it has promised
- It has promised to ignore accept(m) with lower number
- Can be saved to stable storage (recovery)

One more optimizations -1

- Paxos requires 2 round-trips (with no contention)
- Prepare(n) : prepare phase (read phase)
- Accept(n, v): accept phase (write phase)
- P2. If v is chosen, every higher proposal chosen has value v
- Optimization 1
- Proposer skips the accept phase if a majority of acceptors return the same value v

Performance

- Paxos requires 4 messages delays (2 round-trips)
- Prepare(n) needs 2 delays (Broadcast \& Get Majority)
- Accept(n, v) needs 2 delays (Broadcast \& Get Majority)
- In many cases only accept phase is run
- Paxos only needs 2 delays to terminate
- (Believed to be) optimal

Two more optimizations - 2

- Paxos requires 2 round-trips (with no contention)
- Prepare(n) : prepare phase (read phase)
- Accept(n, v): accept phase (write phase)
- We often need to run many consensus instances
- Note that proposer needs not know value in prepare(n)
- Initialize acceptors as if they accepted a prepare(1) of an initial leader I_{1} among possible proposers
- Initially I_{1} runs only accept phase until suspected
- Subsequent leaders can run prepare for many instances in advance (with highe ballot number)

