
SD1x-4 1Property of Penn Engineering, Arvind Bhusnurmath

Video 4.1

Arvind Bhusnurmath
Some of the slides in this deck were reproduced with the permission of Dr. David Matuszek.

SD1x-4 2Property of Penn Engineering, Arvind Bhusnurmath

• Overloading
• How to have multiple methods with the same

name

Topics

SD1x-4 3Property of Penn Engineering, Arvind Bhusnurmath

• One component of polymorphism
• Polymorphism – ”the condition of existing in

several forms”
• In this case it is a method existing in several forms

in the same class.

Overloading

SD1x-4 4Property of Penn Engineering, Arvind Bhusnurmath

Assume you are printing to the console. There are two ways of
designing the print method

• Method 1 – printInt, printDouble, printString, ….
• Method 2 – just create one method called print. But Java

insists that you specify the datatype. So that will not work L
• Method 3 – create a bunch of methods all of which are

called print. Use the argument datatype to distinguish
between them

Method 3 wins!
Overloading

Why is overloading needed?

SD1x-4 5Property of Penn Engineering, Arvind Bhusnurmath

• Signature of the method – the name of the method, the
datatypes of the arguments .

includes the number of arguments
includes the order in which they occur

public String subString(String s1, int a, int b){
}

• The signature is subString(String, int, int)

• In Java a method signature does not include the return
datatype

Rules for overloading

SD1x-4 6Property of Penn Engineering, Arvind Bhusnurmath

class Test {
public static void main(String args[]) {

myPrint(5);
myPrint(5.0);

}

static void myPrint(int i) {
System.out.println("int i = " + i);

}

static void myPrint(double d) { // same
name, different parameters

System.out.println("double d = " +
d);

}
}

int i = 5; myPrint(i);
double d = 5.0; myPrint(d);

Overloading

SD1x-4 7Property of Penn Engineering, Arvind Bhusnurmath

• So you can use the same names for methods that do
essentially the same thing

• Example: println(int), println(double), println(boolean),
println(String), etc.

• So you can supply defaults for the parameters:
int increment(int amount) {

count = count + amount;
return count;

}
int increment() {

return increment(1);
}

• Notice	 that	 one	 method	 can	 call	 another	 of	 the	 same	 name

Why overload a method?

SD1x-4 8Property of Penn Engineering, Arvind Bhusnurmath

So you can supply additional information:

void printResults() {
System.out.println("total = " + total + ", average =

" + average);
}
void printResult(String message) {

System.out.println(message + ": ");
printResults();

}

Why overload a method?

SD1x-4 9Property of Penn Engineering, Arvind Bhusnurmath

When you overload a method with another, very similar
method, only one of them should do most of the work:

void debug() {
System.out.println("first = " + first);
for (int i = first; i <= last; i++) {

System.out.print(dictionary[i] + " ");
}
System.out.println();

}

void debug(String s) {
System.out.println("At checkpoint " + s + ":");
debug();

}

DRY (Don’t Repeat Yourself)

SD1x-4 10Property of Penn Engineering, Arvind Bhusnurmath

• Widening is legal (going to more general data type)
• Narrowing is illegal (unless you cast)
• All ints are doubles but all doubles are not ints, so Java gives

you an error unless

class Test {
public static void main(String args[]) {

double d;
int i;
d = 5; // legal
i = 3.5; // illegal
i = (int) 3.5; // legal

}
}

Legal assignments

SD1x-4 11Property of Penn Engineering, Arvind Bhusnurmath

• Legal because parameter transmission is equivalent to
assignment

• myPrint(5) is like saying
double d = 5;
System.out.println(d);

class Test {
public static void main(String args[]) {

myPrint(5);
}

static void myPrint(double d) {
System.out.println(d);

}
}

Legal method calls

SD1x-4 12Property of Penn Engineering, Arvind Bhusnurmath

• Illegal because parameter transmission is equivalent to
assignment

• myPrint(5.0) is like
int i = 5.0;
System.out.println(i);

class Test {
public static void main(String args[]) {

myPrint(5.0);
}

static void myPrint(int i) {
System.out.println(i);

}
}

myPrint(int) in Test cannot be applied to (double)

Illegal method calls

SD1x-4 13Property of Penn Engineering, Arvind Bhusnurmath

class Test {
public static void main(String args[]) {

myPrint(5);
myPrint(5.0);

}
static void myPrint(double d) {

System.out.println("double: " + d);
}
static void myPrint(int i) {

System.out.println("int: " + i);
}

}

int:5
double: 5.0

Java uses the most specific method

SD1x-4 14Property of Penn Engineering, Arvind Bhusnurmath

You can “overload” constructors as well as methods:

Counter() {
count = 0;

}

Counter(int start) {
count = start;

}

Multiple constructors 1

SD1x-4 15Property of Penn Engineering, Arvind Bhusnurmath

• One constructor can “call” another constructor in the same
class, but there are special rules

• You call the other constructor with the keyword this
• The call must be the very first thing the constructor does

Point(int x, int y) {
this.x = x;
this.y = y;
sum = x + y;

}
Point() {

this(0, 0);
}

Multiple constructors 2

SD1x-4 16Property of Penn Engineering, Arvind Bhusnurmath

Video 4.2

Arvind Bhusnurmath
Some of the slides in this deck were reproduced with the permission of Dr. David Matuszek.

SD1x-4 17Property of Penn Engineering, Arvind Bhusnurmath

• Method Overriding

Topics

SD1x-4 18Property of Penn Engineering, Arvind Bhusnurmath

• Use the actual word ‘extends’
• class Square extends Rectangle
• class Goalkeeper extends Player
• You can only extend one class

Extending a class (the “is a”
relationship)

SD1x-4 19Property of Penn Engineering, Arvind Bhusnurmath

• The very first thing any constructor does, automatically, is call the default
constructor for its superclass
class Foo extends Bar {

Foo() { // constructor
super(); // invisible call to superclass

constructor
...

• You can replace this with a call to a specific superclass constructor

• Use the keyword super

• This must be the very first thing the constructor does
class Foo extends Bar {

Foo(String name) { // constructor
super(name, 5); // explicit call to superclass

constructor
...

Superclass Construction 1

SD1x-4 20Property of Penn Engineering, Arvind Bhusnurmath

• Unless you specify otherwise, every constructor calls the
default constructor for its superclass
class Foo extends Bar {

Foo() { // constructor
super(); // invisible call to superclass

constructor
...

• You can use this(...) to call another constructor in the same
class:
class Foo extends Bar {

Foo(String message) { // constructor
this(message, 0, 0); // your explicit call to

another constructor
...

Superclass Construction 2

SD1x-4 21Property of Penn Engineering, Arvind Bhusnurmath

• You can use super(...) to call a specific superclass
constructor
class Foo extends Bar {

Foo(String name) { // constructor
super(name, 5); // your explicit call to some

superclass constructor
...

• Since the call to another constructor must be the very first
thing you do in the constructor, you can only do one of the
above

Superclass Construction 3

SD1x-4 22Property of Penn Engineering, Arvind Bhusnurmath

class Animal {
public static void main(String args[])

{
Animal animal = new Animal();
Dog dog = new Dog();
animal.print();
dog.print();

}
void print() {

System.out.println("Superclass
Animal");

}
}

public class Dog extends Animal {
void print() {

System.out.println("Subclass Dog");
}

}

• This is called overriding a
method

• Method print in Dog overrides
method print in Animal

Overriding

SD1x-4 23Property of Penn Engineering, Arvind Bhusnurmath

• Create a method in a subclass having the same signature as a
method in a superclass

• That is, create a method in a subclass having the same name
and the same number and types of parameters

• Parameter names don’t matter, just their types

• Restrictions:
• The return type must be the same
• The overriding method cannot be more private than the

method it overrides (ignore this bullet point for now)

How to override a method

SD1x-4 24Property of Penn Engineering, Arvind Bhusnurmath

Dog dog = new Dog();
System.out.println(dog);

• Prints something like Dog@feda4c00
• The println method calls the toString method, which is defined in Java’s

top-level Object class
• Hence, every object can be printed (though it might not look pretty)
• Java’s method public String toString() can be overridden

If you add to class Dog the following:
public String toString() {

return name;
}
Then System.out.println(dog); will print the dog’s name, which may be
something like: Fido

Why override a method?

SD1x-4 25Property of Penn Engineering, Arvind Bhusnurmath

Video 4.3

Arvind Bhusnurmath

SD1x-4 26Property of Penn Engineering, Arvind Bhusnurmath

• Common examples of overriding
• toString method
• equals method

Topics

SD1x-4 27Property of Penn Engineering, Arvind Bhusnurmath

• In Java, every class inherits from the Object class

• Think of the Object class as the most general class

• Every class that we define is lower in the hierarchy
and becomes more and more specific

https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html?
is-external=true

The Object class

SD1x-4 28Property of Penn Engineering, Arvind Bhusnurmath

• It is almost always a good idea to override
public String toString()
to return something “meaningful” about the object

• When debugging, it helps to be able to print objects

• When you print objects with System.out.print or
System.out.println, they automatically call the objects
toString()method

• When you concatenate an object with a string, the object’s
toString()method is automatically called 28

toString()

SD1x-4 29Property of Penn Engineering, Arvind Bhusnurmath

• You can call toString() explicitly just like you would any other
method

• Used in cases when you have to pass a string form of an object to
another method.

• Can be used in unit testing to check if two objects are the same.

• For example you have 2 Person objects. You could decide to use
assertEquals(person1.toString(), person2.toString())

• There are better ways to do this though.

Calling toString() explicitly

SD1x-4 30Property of Penn Engineering, Arvind Bhusnurmath

• Consider these two assignments:
Thing thing1 = new Thing();
Thing thing2 = new Thing();

Are these two “Things” equal?
That’s up to the programmer!

• But consider:
Thing thing3 = new Thing();
Thing thing4 = thing3;

Are these two “Things” equal?
Yes, because they are the same Thing! 30

Equality

SD1x-4 31Property of Penn Engineering, Arvind Bhusnurmath

• Primitives can always be tested for equality with ==
• For objects, == tests whether the two are the same object
• Two strings "abc" and "abc" may or may not be == !
• Objects can be tested with the method

public boolean equals(Object o)
• Unless overridden, this method just uses ==
• It is overridden in the class String
• It is not overridden for arrays; == tests if its operands are the same array

Morals:
• Never use == to test equality of Strings or arrays or other objects
• Use equals for Strings, java.util.Arrays.equals(a1, a2) for

arrays
• If you test your own objects for equality, override equals

31

The equals method

SD1x-4 32Property of Penn Engineering, Arvind Bhusnurmath

• assertEquals in a Junit test uses the overriden(hopefully)
method of the objects being compared.

• assertArrayEquals – when used on a array of objects the
equals method is used for every index

• Consider array1 and array2 as arrays of Object
array1[i].equals(array2[i])
needs to be true for every index i

The equals method in unit testing

SD1x-4 33Property of Penn Engineering, Arvind Bhusnurmath

Video 4.4

Arvind Bhusnurmath
Some of the slides in this deck were reproduced with the permission of Dr. David Matuszek.

SD1x-4 34Property of Penn Engineering, Arvind Bhusnurmath

•Abstract classes

Topics

SD1x-4 35Property of Penn Engineering, Arvind Bhusnurmath

• An abstract method is a method without any
implementation

public abstract void draw(int size);

•Notice that the body of the method is completely missing. It
is just the first line and then is terminated with a ;

Abstract methods

SD1x-4 36Property of Penn Engineering, Arvind Bhusnurmath

• Any class containing an abstract method is an abstract class

• You must declare the class with the keyword abstract
abstract class MyClass {...}

• An abstract class is incomplete

• It has “missing” method bodies

• You cannot instantiate (create a new instance of) an abstract class

Abstract class

SD1x-4 37Property of Penn Engineering, Arvind Bhusnurmath

• Extend an abstract class before you can use it

• If the subclass defines all the inherited abstract methods, it is
“complete” and can be instantiated.

• If the subclass does not define all the abstract methods then it too
must be abstract.

• You can declare a class to be abstract even if it does not have any
abstract methods.
• This prevents the class from being instantiated.

Using an Abstract class

SD1x-4 38Property of Penn Engineering, Arvind Bhusnurmath

• Suppose you wanted to create a class Shape, with subclasses Oval,
Rectangle, Triangle, Hexagon, etc.

• You don’t want to allow creation of a “Shape”
• Only particular shapes make sense, not generic ones
• If Shape is abstract, you can’t create a new Shape
• You can create a new Oval, a new Rectangle, etc.

• Abstract classes are good for defining a general category containing
specific, “concrete” classes

Why have an abstract class

SD1x-4 39Property of Penn Engineering, Arvind Bhusnurmath

public abstract class Animal {
abstract int eat();
abstract void breathe();

}
• This class cannot be instantiated

• Any non-abstract subclass of Animal must provide the eat() and
breathe() methods

Example abstract class

SD1x-4 40Property of Penn Engineering, Arvind Bhusnurmath

class Shape { ... }
class Star extends Shape {

void draw() { ... }
...

}
class Crescent extends Shape {

void draw() { ... }
...

}

• Shape someShape = new Star();

• This is legal, because a Star is a Shape
• someShape.draw();

• This is a syntax error, because some Shape might not have a draw()
method
• Remember: A class knows its superclass, but not its subclasses

Potential Problem

SD1x-4 41Property of Penn Engineering, Arvind Bhusnurmath

• Suppose you are making a GUI, and you want to draw a number of different
“shapes” (marbles, pegs, frogs, stars, etc.)
• Each class (Marble, Peg, etc.) has a draw method
• You make these subclasses of a class Shape, so that you can create an

ArrayList<Shape> shapes to hold the various things to be drawn
• You would like to do

for (Shape s : shapes) s.draw();
• This isn’t legal!

• Every class “knows” its superclass, but a class doesn’t “know” its subclasses
• You may know that every subclass of Shape has a draw method, but Java doesn’t

• Solution 1: Put a draw method in the Shape class
• This method will be inherited by all subclasses, and will make Java happy
• But what will it draw?

• Solution 2: Put an abstract draw method in the Shape class
• This will also be inherited (and make Java happy), but you don’t have to define it
• You do, however, have to make the Shape class abstract
• This way, Java knows that only “concrete” objects have a draw method

Usage of Abstract methods

SD1x-4 42Property of Penn Engineering, Arvind Bhusnurmath

abstract class Shape {
abstract void draw();

}
class Star extends Shape {

void draw() { ... }
...

}
class Crescent extends Shape {

void draw() { ... }
...

}

• Shape someShape = new Star();
• This is legal, because a Star is a Shape
• However, Shape someShape = new Shape(); is no longer legal

• someShape.draw();
• This is legal, because every actual instance must have a draw() method

Solving the problem using abstract
method

SD1x-4 43Property of Penn Engineering, Arvind Bhusnurmath

Video 4.5

Arvind Bhusnurmath
Some of the slides in this deck were reproduced with the permission of Dr. David Matuszek.

SD1x-4 44Property of Penn Engineering, Arvind Bhusnurmath

• Interfaces

Topics

SD1x-4 45Property of Penn Engineering, Arvind Bhusnurmath

• “An interface is a group of related methods with empty
bodies” – from the official Java documentation

• Most common way of specifying that a class follows a
certain design.

What is an Interface?

SD1x-4 46Property of Penn Engineering, Arvind Bhusnurmath

• Like signing a contract
• Agreeing to write certain methods.

The implements keyword

SD1x-4 47Property of Penn Engineering, Arvind Bhusnurmath

• An interface declares (describes) methods but does not supply
bodies for them

 interface KeyListener {
public void keyPressed(KeyEvent e);
public void keyReleased(KeyEvent e);
public void keyTyped(KeyEvent e);

}

• All the methods are implicitly public and abstract
• You can add these qualifiers if you like, but why bother?

• You cannot instantiate an interface
• An interface is like a very abstract class—none of its methods

are defined

• An interface may also contain constants (final variables)

Interfaces

SD1x-4 48Property of Penn Engineering, Arvind Bhusnurmath

• You will frequently use the supplied Java interfaces

• Sometimes you will want to design your own

• You would write an interface if you want classes of various
types to all have a certain set of capabilities

• For example, if you want to be able to create grocery items,
you might define an interface as:

public interface Item{
salePrice();

}

When to write an interface

SD1x-4 49Property of Penn Engineering, Arvind Bhusnurmath

• You extend a class, but you implement an interface

• A class can only extend (subclass) one other class, but it can
implement as many interfaces as you like

Example:

class MyListener
implements KeyListener, ActionListener { … }

implements != extends

SD1x-4 50Property of Penn Engineering, Arvind Bhusnurmath

• When you say a class implements an interface, you are
promising to define all the methods that were declared in
the interface

Example:
class MyKeyListener implements KeyListener {

public void keyPressed(KeyEvent e) {...};
public void keyReleased(KeyEvent e) {...};
public void keyTyped(KeyEvent e) {...};

}
The “...” indicates actual code that you must supply

• Now you can create a new MyKeyListener

implements != signing a binding contract

SD1x-4 51Property of Penn Engineering, Arvind Bhusnurmath

• It is possible for a class to define some but not all of the
methods defined in an interface:

abstract class MyKeyListener implements KeyListener {
public void keyTyped(KeyEvent e) {...};

}

• Since this class does not supply all the methods it has
promised, it must be an abstract class

• You must label it as such with the keyword abstract

• You can even extend an interface (to add methods):
interface FunkyKeyListener extends KeyListener { ...
}

Do we have to write all the methods?

SD1x-4 52Property of Penn Engineering, Arvind Bhusnurmath

Reason 1: A class can only extend one other class, but it can
implement multiple interfaces

• This lets the class fill multiple “roles”
• In writing user interfaces it is common to have a class be able to

handle different user interactions.
Example:
class MyApplet extends Applet

implements ActionListener, KeyListener {
...
}

Reason 2: You can write methods that work for more than
one kind of class

Why interfaces?

SD1x-4 53Property of Penn Engineering, Arvind Bhusnurmath

You can write methods that work with more than one class

interface RuleSet {
boolean isLegal(Move m, Board b);
void makeMove(Move m);

}

Methods for more than one class

SD1x-4 54Property of Penn Engineering, Arvind Bhusnurmath

class CheckersRules implements RuleSet { // one implementation
public boolean isLegal(Move m, Board b) { ... }
public void makeMove(Move m) { ... }

}

class ChessRules implements RuleSet { ... } // another
implementation
RuleSet rulesOfThisGame = new ChessRules();

if (rulesOfThisGame.isLegal(m, b)) {
rulesOfThisGame.makeMove(m);

}

This statement is legal because, whatever kind of RuleSet
object rulesOfThisGame is, it must have isLegal and makeMove
methods

Methods for more than one class

SD1x-4 55Property of Penn Engineering, Arvind Bhusnurmath

• instanceof is a keyword that tells you whether a variable
“is a” member of a class or interface

• For example, if
class Dog extends Animal implements Pet {...}
Animal fido = new Dog();

then the following are all true:
fido instanceof Dog
fido instanceof Animal
fido instanceof Pet

• instanceof is seldom used
• When you find yourself wanting to use instanceof, think

about whether the method you are writing should be
moved to the individual subclasses

instanceof

