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Topics

* Overloading
* How to have multiple methods with the same
name
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Overloading

* One component of polymorphism

* Polymorphism — "the condition of existing in
several forms”

* In this case it is a method existing in several forms
in the same class.

Penn
Eneg]'neering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 3



Why is overloading needed?

Assume you are printing to the console.There are two ways of
designing the print method

* Method | — printint, printDouble, printString, ....

* Method 2 — just create one method called print. But Java
insists that you specify the datatype. So that will not work ®

* Method 3 — create a bunch of methods all of which are
called print. Use the argument datatype to distinguish
between them

Method 3 wins!
Overloading
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Rules for overloading

* Signature of the method — the name of the method, the
datatypes of the arguments .

includes the number of arguments
includes the order in which they occur

public String subString(String sl, int a, int b){
}

* The signature is subString(String, int, int)

* In Java a method signature does not include the return
datatype
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Overloading

class Test {
public static void main(String args[]) {
myPrint(5);
myPrint(5.0);

}

static void myPrint(int i) {
System.out.println("int i = " + 1i);

}

static void myPrint(double d) { // same
name, different parameters
System.out.println("double d = " +
d);

}
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Why overload a method?

* So you can use the same names for methods that do
essentially the same thing

* Example: printin(int), printin(double), printin(boolean),
printin(String), etc.

* So you can supply defaults for the parameters:
int increment(int amount) {
count = count + amount;
return count;

}

int increment() {
return increment(1l);
}

 Notice that one method can call another of the same name
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Why overload a method?

So you can supply additional information:

void printResults() {
System.out.println("total

" + average);

= " + total + ", average =

}
void printResult(String message) {
System.out.println(message + ": ");
printResults();
}
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DRY (Don’t Repeat Yourself)

When you overload a method with another, very similar
method, only one of them should do most of the work:

void debug() {
System.out.println("first = " + first );
for (int i = first; i <= last; i++) {
System.out.print(dictionary[i] + " ");
}

System.out.println();
t

void debug(String s) {

System.out.println("At checkpoint " + s + ":");
debug();
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Legal assighments

* Widening is legal (going to more general data type)

* Narrowing is illegal (unless you cast)

* All ints are doubles but all doubles are not ints, so Java gives
you an error unless

class Test {

public static void main(String args[]) {

Penn.
Engineering

double d;
int 1i;
d = 5; // legal
i = 3.5; // illegal
i = (int) 3.5; // legal
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Legal method calls

* Legal because parameter transmission is equivalent to

assignment
* myPrint(5) is like saying
double d = 5;

System.out.printin(d);

class Test {
public static void main(String args[]) {
myPrint(5);
}

static void myPrint(double d) {

System.out.println(d);
}
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lllegal method calls

* lllegal because parameter transmission is equivalent to
assignment
. myPrlnt(S 0) is like
inti = 5.0;
System.out.printin(i);

class Test {
public static void main(String args[]) {
myPrint(5.0);
}
static void myPrint(int i) {

System.out.println(i);

}
}

myPrint(int) in Test cannot be applied to (double)

Penn
Enegineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 12



Java uses the most specific method

class Test {
public static void main(String args[]) {
myPrint(5);
myPrint(5.0);
}
static void myPrint(double d) {
System.out.println("double: " + d);

}
static void myPrint(int i) {
System.out.println("int: " + 1i);

}

}

int:5

double: 5.0
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Multiple constructors |

You can “overload” constructors as well as methods:

Counter() {
count = 0;

}

Counter (int start) {
count = start;

}
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Multiple constructors 2

* One constructor can “call” another constructor in the same
class, but there are special rules

* You call the other constructor with the keyword this

* The call must be the very first thing the constructor does

Point(int x, int y) {
this.x = x;
this.y = y;
sum = X + y;

}
Point() {
this (0, 0);
}
Penn
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Topics

* Method Overriding
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Extending a class (the “is a”
relationship)

Use the actual word ‘extends’
class Square extends Rectangle
class Goalkeeper extends Player
You can only extend one class
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Superclass Construction |

* The very first thing any constructor does, automatically, is call the default

constructor for its superclass
class Foo extends Bar {
Foo() { // constructor
super(); // invisible call to superclass
constructor

* You can replace this with a call to a specific superclass constructor

* Use the keyword super

* This must be the very first thing the constructor does
class Foo extends Bar {
Foo(String name) { // constructor
super (name, 5); // explicit call to superclass
constructor
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Superclass Construction 2

* Unless you specify otherwise, every constructor calls the

default constructor for its superclass

class Foo extends Bar {
Foo() { // constructor
super(); // invisible call to superclass
constructor

* You can use this(...) to call another constructor in the same

class:

class Foo extends Bar {
Foo(String message) { // constructor
this(message, 0, 0); // your explicit call to
another constructor
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Superclass Construction 3

* You can use super(...) to call a specific superclass

constructor

class Foo extends Bar {
Foo(String name) { // constructor
super (name, 5); // your explicit call to some
superclass constructor

* Since the call to another constructor must be the very first
thing you do in the constructor, you can only do one of the
above
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Overriding

class Animal {
public static void main(String args[])

{
Animal animal = new Animal();  This is called overriding a
Dog dog = new Dog();
animal.print(); method
dog.print(); * Method print in Dog overrides
} .. .
void print() { method print in Animal

System.out.println("Superclass
Animal");

}
}

public class Dog extends Animal {
void print() {

System.out.println("Subclass Dog");
}

Penn
Engineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 22



How to override a method

* Create a method in a subclass having the same signature as a
method in a superclass

* That is, create a method in a subclass having the same name
and the same number and types of parameters

* Parameter names don’t matter, just their types

* Restrictions:
* The return type must be the same
* The overriding method cannot be more private than the
method it overrides (ignore this bullet point for now)
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Why override a method?

Dog dog = new Dog();
System.out.println(dogqg);

* Prints something like Dog@feda4c00

* The println method calls the toString method, which is defined in Java’s
top-level Object class

* Hence, every object can be printed (though it might not look pretty)

* Java’s method public String toString() can be overridden

If you add to class Dog the following:
public String toString() {
return name;

}
Then System.out.println(dog); will print the dog’s name, which may be

something like: Fido
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Topics

* Common examples of overriding
* toString method
* equals method
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The Object class

* In Java, every class inherits from the Object class
* Think of the Object class as the most general class

* Every class that we define is lower in the hierarchy
and becomes more and more specific

https://docs.oracle.com/javase///docs/api/java/lang/Object.html?
is-external=true
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toString()

* Itis almost always a good idea to override
public String toString()

to return something “meaningful” about the object

* When debugging, it helps to be able to print objects

* When you print objects with system.out.print or
System.out.println, they automatically call the objects
toString()method

* When you concatenate an object with a string, the object’s
toString()method is automatically called 2
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Calling toString() explicitly

* You can call tostring() explicitly just like you would any other
method

* Used in cases when you have to pass a string form of an object to
another method.

* Can be used in unit testing to check if two objects are the same.

* For example you have 2 Person objects.You could decide to use
assertEquals(personl.toString(), person2.toString())

* There are better ways to do this though.
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Equality

* Consider these two assignments:
Thing thingl = new Thing();
Thing thing2 = new Thing();

Are these two “Things” equal?
That’s up to the programmer!

* But consider:
Thing thing3 = new Thing();
Thing thing4 = thing3;

Are these two “Things” equal?
Yes, because they are the same Thing!
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The equals method

* Primitives can always be tested for equality with ==
* For objects, == tests whether the two are the same object
* Two strings "abc" and "abc" may or may not be ==!
* Obijects can be tested with the method
public boolean equals(Object 0)
* Unless overridden, this method just uses ==
* lItis overridden in the class String
* Itis not overridden for arrays; == tests if its operands are the same array

Morals:

* Never use == to test equality of Strings or arrays or other objects

* Use equals for Strings, java.util.Arrays.equals(al, a2) for
arrays

* If you test your own objects for equality, override equals

31
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The equals method in unit testing

» assertEquals in a Junit test uses the overriden(hopefully)
method of the objects being compared.

* assertArrayEquals — when used on a array of objects the
equals method is used for every index

* Consider arrayl and array?2 as arrays of Object
arrayl[i].equals(array2[i])
needs to be true for every index i
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Topics

* Abstract classes
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Abstract methods

* An abstract method is a method without any
implementation

public abstract void draw(int size);

* Notice that the body of the method is completely missing. It
is just the first line and then is terminated with a ;
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Abstract class

* Any class containing an abstract method is an abstract class

* You must declare the class with the keyword abstract
abstract class MyClass {...}

* An abstract class is incomplete
* It has “missing” method bodies

* You cannot instantiate (create a new instance of) an abstract class
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Using an Abstract class

* Extend an abstract class before you can use it

* |f the subclass defines all the inherited abstract methods, it is
“complete” and can be instantiated.

* |f the subclass does not define all the abstract methods then it too
must be abstract.

* You can declare a class to be abstract even if it does not have any
abstract methods.
* This prevents the class from being instantiated.
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Why have an abstract class

* Suppose you wanted to create a class Shape, with subclasses Oval,
Rectangle, Triangle, Hexagon, etc.

* You don’t want to allow creation of a “Shape”
* Only particular shapes make sense, not generic ones
* If Shape is abstract, you can’t create a new Shape
* You can create a new Oval, a new Rectangle, etc.

* Abstract classes are good for defining a general category containing
specific, “concrete” classes
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Example abstract class

public abstract class Animal {
abstract int eat();
abstract void breathe();

* This class cannot be instantiated

* Any non-abstract subclass of Animal must provide the eat() and
breathe() methods
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Potential Problem

class Shape { ... }

class Star extends Shape {
void draw() { ... }

}

class Crescent extends Shape {
void draw() { ... }

}

* Shape someShape = new Star();
* This is legal, because a Star is a Shape
e someShape.draw();

* This is a syntax error, because some Shape might not have a draw()
method

* Remember:A class knows its superclass, but not its subclasses
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Usage of Abstract methods

* Suppose you are making a GUI, and you want to draw a number of different
“shapes” (marbles, pegs, frogs, stars, etc.)
* Each class (Marble, Peg, etc.) has a draw method

* You make these subclasses of a class Shape, so that you can create an
ArrayList<Shape> shapes to hold the various things to be drawn

* You would like to do
for (Shape s : shapes) s.draw();

* This isn’t legal!

* Every class “knows” its superclass, but a class doesn’t “know” its subclasses
* You may know that every subclass of Shape has a draw method, but Java doesn’t

* Solution |: Put a draw method in the Shape class
* This method will be inherited by all subclasses, and will make Java happy

e But what will it draw?

* Solution 2: Put an abstract draw method in the Shape class
 This will also be inherited (and make Java happy), but you don’t have to define it
* You do, however, have to make the Shape class abstract
* This way, Java knows that only “concrete” objects have a draw method
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Solving the problem using abstract
method

abstract class Shape {
abstract void draw();

}

class Star extends Shape {
void draw() { ... }

}

class Crescent extends Shape {
void draw() { ... }

}

* Shape someShape = new Star();
* This is legal, because a Star is a Shape
* However, Shape someShape = new Shape(); is no longer legal

* someShape.draw();
 This is legal, because every actual instance must have a draw() method
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Topics

* |nterfaces
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What is an Interface?

* “An interface is a group of related methods with empty
bodies” — from the official Java documentation

* Most common way of specifying that a class follows a
certain design.
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The implements keyword

* Like signing a contract
* Agreeing to write certain methods.
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Interfaces

* An interface declares (describes) methods but does not supply
bodies for them

interface KeyListener {
public void keyPressed(KeyEvent e);
public void keyReleased(KeyEvent e);
public void keyTyped(KeyEvent e);

}

*  All the methods are implicitly public and abstract
*  You can add these qualifiers if you like, but why bother?

* You cannot instantiate an interface
* Aninterface is like a very abstract class—none of its methods
are defined

* Aninterface may also contain constants (final variables)
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When to write an interface

* You will frequently use the supplied Java interfaces
* Sometimes you will want to design your own

* You would write an interface if you want classes of various
types to all have a certain set of capabilities

* For example, if you want to be able to create grocery items,
you might define an interface as:

public interface Item{
salePrice();

}
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implements != extends

* You extend a class, but you implement an interface

* A class can only extend (subclass) one other class, but it can
implement as many interfaces as you like

Example:

class MyListener
implements KeyListener, ActionListener { .. }
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implements != sighing a binding contract

* When you say a class implements an interface, you are
promising to define all the methods that were declared in
the interface

Example:

class MyKeyListener implements KeyListener {
public void keyPressed(KeyEvent e) {...};
public void keyReleased(KeyEvent e) {...};
public void keyTyped(KeyEvent e) {...};

The “...” indicates actual code that you must supply

* Now you can create a new MyKeyListener
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Do we have to write all the methods?

It is possible for a class to define some but not all of the
methods defined in an interface:

abstract class MyKeyListener implements KeyListener {
public void keyTyped(KeyEvent e) {...};

}

Since this class does not supply all the methods it has
promised, it must be an abstract class

You must label it as such with the keyword abstract

* You can even extend an interface (to add methods):
interface FunkyKeyListener extends KeyListener {

}
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Why interfaces?

Reason |: A class can only extend one other class, but it can
implement multiple interfaces

* This lets the class fill multiple “roles”
* In writing user interfaces it is common to have a class be able to

handle different user interactions.
Example:
class MyApplet extends Applet
implements ActionListener, KeyListener {

Reason 2: You can write methods that work for more than
one kind of class
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Methods for more than one class

You can write methods that work with more than one class

interface RuleSet {
boolean isLegal (Move m, Board b);
void makeMove (Move m);
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Methods for more than one class

class CheckersRules implements RuleSet { // one implementation

public boolean isLegal(Move m, Board b) { ... }
public void makeMove(Move m) { ... }
}
class ChessRules implements RuleSet { ... } // another
implementation

RuleSet rulesOfThisGame = new ChessRules();

if (rulesOfThisGame.isLegal(m, b)) {
rulesOfThisGame .makeMove(m) ;

}

This statement is legal because, whatever kind of RuleSet
object rulesOfThisGame is, it must have isLegal and makeMove
methods
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instanceof

* instanceof is a keyword that tells you whether a variable
“is a” member of a class or interface

* For example, if
class Dog extends Animal implements Pet {...}
Animal fido = new Dog();

then the following are all true:
fido instanceof Dog
fido instanceof Animal
fido instanceof Pet

* instanceof is seldom used
* When you find yourself wanting to use instanceof, think
about whether the method you are writing should be

moved to the individual subclasses
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