Penn
Engineering

Online Learning

Video 4.1

Arvind Bhusnurmath

Some of the slides in this deck were reproduced with the permission of Dr. David Matuszek.

Penn
Engineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 |

Topics

* Overloading
* How to have multiple methods with the same
name

Penn
Engineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 2

Overloading

* One component of polymorphism

* Polymorphism — "the condition of existing in
several forms”

* In this case it is a method existing in several forms
in the same class.

Penn
Eneg]'neering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 3

Why is overloading needed?

Assume you are printing to the console.There are two ways of
designing the print method

* Method | — printint, printDouble, printString,

* Method 2 — just create one method called print. But Java
insists that you specify the datatype. So that will not work ®

* Method 3 — create a bunch of methods all of which are
called print. Use the argument datatype to distinguish
between them

Method 3 wins!
Overloading

Penn
Eneg]'neering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 4

Rules for overloading

* Signature of the method — the name of the method, the
datatypes of the arguments .

includes the number of arguments
includes the order in which they occur

public String subString(String sl, int a, int b){
}

* The signature is subString(String, int, int)

* In Java a method signature does not include the return
datatype

Penn
Eneg]'neering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 5

Overloading

class Test {
public static void main(String args[]) {
myPrint(5);
myPrint(5.0);

}

static void myPrint(int i) {
System.out.println("int i = " + 1i);

}

static void myPrint(double d) { // same
name, different parameters
System.out.println("double d = " +
d);

}

Penn.

Englneermg Property of Penn Engineering, Arvind Bhusnurmath

int i = 5; myPrint(i);
double d = 5.0; myPrint(d);

SDIx-4

6

Why overload a method?

* So you can use the same names for methods that do
essentially the same thing

* Example: printin(int), printin(double), printin(boolean),
printin(String), etc.

* So you can supply defaults for the parameters:
int increment(int amount) {
count = count + amount;
return count;

}

int increment() {
return increment(1l);
}

 Notice that one method can call another of the same name

Penn
Engineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 7

Why overload a method?

So you can supply additional information:

void printResults() {
System.out.println("total

" + average);

= " + total + ", average =

}
void printResult(String message) {
System.out.println(message + ": ");
printResults();
}
Penn . Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 8

Englneermg

DRY (Don’t Repeat Yourself)

When you overload a method with another, very similar
method, only one of them should do most of the work:

void debug() {
System.out.println("first = " + first);
for (int i = first; i <= last; i++) {
System.out.print(dictionary[i] + " ");
}

System.out.println();
t

void debug(String s) {

System.out.println("At checkpoint " + s + ":");
debug();

Penn
Enegineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 9

Legal assighments

* Widening is legal (going to more general data type)

* Narrowing is illegal (unless you cast)

* All ints are doubles but all doubles are not ints, so Java gives
you an error unless

class Test {

public static void main(String args[]) {

Penn.
Engineering

double d;
int 1i;
d = 5; // legal
i = 3.5; // illegal
i = (int) 3.5; // legal
Property of Penn Engineering, Arvind Bhusnurmath SDIx-4

10

Legal method calls

* Legal because parameter transmission is equivalent to

assignment
* myPrint(5) is like saying
double d = 5;

System.out.printin(d);

class Test {
public static void main(String args[]) {
myPrint(5);
}

static void myPrint(double d) {

System.out.println(d);
}

Penn
Enegineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 11

lllegal method calls

* lllegal because parameter transmission is equivalent to
assignment
. myPrlnt(S 0) is like
inti = 5.0;
System.out.printin(i);

class Test {
public static void main(String args[]) {
myPrint(5.0);
}
static void myPrint(int i) {

System.out.println(i);

}
}

myPrint(int) in Test cannot be applied to (double)

Penn
Enegineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 12

Java uses the most specific method

class Test {
public static void main(String args[]) {
myPrint(5);
myPrint(5.0);
}
static void myPrint(double d) {
System.out.println("double: " + d);

}
static void myPrint(int i) {
System.out.println("int: " + 1i);

}

}

int:5

double: 5.0

Penn

Englneermg Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 13

Multiple constructors |

You can “overload” constructors as well as methods:

Counter() {
count = 0;

}

Counter (int start) {
count = start;

}

Penn
Enegineering Property of Penn Engineering, Arvind Bhusnurmath

SDIx-4

14

Multiple constructors 2

* One constructor can “call” another constructor in the same
class, but there are special rules

* You call the other constructor with the keyword this

* The call must be the very first thing the constructor does

Point(int x, int y) {
this.x = x;
this.y = y;
sum = X + y;

}
Point() {
this (0, 0);
}
Penn

Eng]neermg Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 15

Penn
Engineering

Online Learning

Video 4.2

Arvind Bhusnurmath

Some of the slides in this deck were reproduced with the permission of Dr. David Matuszek.

Penn
Engineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 16

Topics

* Method Overriding

Penn
Engineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 17

Extending a class (the “is a”
relationship)

Use the actual word ‘extends’
class Square extends Rectangle
class Goalkeeper extends Player
You can only extend one class

Penn
Enegineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 18

Superclass Construction |

* The very first thing any constructor does, automatically, is call the default

constructor for its superclass
class Foo extends Bar {
Foo() { // constructor
super(); // invisible call to superclass
constructor

* You can replace this with a call to a specific superclass constructor

* Use the keyword super

* This must be the very first thing the constructor does
class Foo extends Bar {
Foo(String name) { // constructor
super (name, 5); // explicit call to superclass
constructor

Penn
Enegineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 19

Superclass Construction 2

* Unless you specify otherwise, every constructor calls the

default constructor for its superclass

class Foo extends Bar {
Foo() { // constructor
super(); // invisible call to superclass
constructor

* You can use this(...) to call another constructor in the same

class:

class Foo extends Bar {
Foo(String message) { // constructor
this(message, 0, 0); // your explicit call to
another constructor

Penn
Enegineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4

Superclass Construction 3

* You can use super(...) to call a specific superclass

constructor

class Foo extends Bar {
Foo(String name) { // constructor
super (name, 5); // your explicit call to some
superclass constructor

* Since the call to another constructor must be the very first
thing you do in the constructor, you can only do one of the
above

Penn
Enegineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 21

Overriding

class Animal {
public static void main(String args[])

{
Animal animal = new Animal(); This is called overriding a
Dog dog = new Dog();
animal.print(); method
dog.print(); * Method print in Dog overrides
} .. .
void print() { method print in Animal

System.out.println("Superclass
Animal");

}
}

public class Dog extends Animal {
void print() {

System.out.println("Subclass Dog");
}

Penn
Engineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 22

How to override a method

* Create a method in a subclass having the same signature as a
method in a superclass

* That is, create a method in a subclass having the same name
and the same number and types of parameters

* Parameter names don’t matter, just their types

* Restrictions:
* The return type must be the same
* The overriding method cannot be more private than the
method it overrides (ignore this bullet point for now)

Penn
Eneginee > Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 23
I'lIlg

Why override a method?

Dog dog = new Dog();
System.out.println(dogqg);

* Prints something like Dog@feda4c00

* The println method calls the toString method, which is defined in Java’s
top-level Object class

* Hence, every object can be printed (though it might not look pretty)

* Java’s method public String toString() can be overridden

If you add to class Dog the following:
public String toString() {
return name;

}
Then System.out.println(dog); will print the dog’s name, which may be

something like: Fido

Penn
Enegineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 24

Engineering

Penn
Engineering

Online Learning

Video 4.3

Arvind Bhusnurmath

Topics

* Common examples of overriding
* toString method
* equals method

Penn
Enegineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 26

The Object class

* In Java, every class inherits from the Object class
* Think of the Object class as the most general class

* Every class that we define is lower in the hierarchy
and becomes more and more specific

https://docs.oracle.com/javase///docs/api/java/lang/Object.html?
is-external=true

Penn
Engineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 27

toString()

* Itis almost always a good idea to override
public String toString()

to return something “meaningful” about the object

* When debugging, it helps to be able to print objects

* When you print objects with system.out.print or
System.out.println, they automatically call the objects
toString()method

* When you concatenate an object with a string, the object’s
toString()method is automatically called 2

Penn
Enegineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 28

Calling toString() explicitly

* You can call tostring() explicitly just like you would any other
method

* Used in cases when you have to pass a string form of an object to
another method.

* Can be used in unit testing to check if two objects are the same.

* For example you have 2 Person objects.You could decide to use
assertEquals(personl.toString(), person2.toString())

* There are better ways to do this though.

Penn
Enegineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 29

Equality

* Consider these two assignments:
Thing thingl = new Thing();
Thing thing2 = new Thing();

Are these two “Things” equal?
That’s up to the programmer!

* But consider:
Thing thing3 = new Thing();
Thing thing4 = thing3;

Are these two “Things” equal?
Yes, because they are the same Thing!

Penn
Enegineering Property of Penn Engineering, Arvind Bhusnurmath

30

SDIx-4

30

The equals method

* Primitives can always be tested for equality with ==
* For objects, == tests whether the two are the same object
* Two strings "abc" and "abc" may or may not be ==!
* Obijects can be tested with the method
public boolean equals(Object 0)
* Unless overridden, this method just uses ==
* lItis overridden in the class String
* Itis not overridden for arrays; == tests if its operands are the same array

Morals:

* Never use == to test equality of Strings or arrays or other objects

* Use equals for Strings, java.util.Arrays.equals(al, a2) for
arrays

* If you test your own objects for equality, override equals

31

Penn
Eneg]'neering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4

31

The equals method in unit testing

» assertEquals in a Junit test uses the overriden(hopefully)
method of the objects being compared.

* assertArrayEquals — when used on a array of objects the
equals method is used for every index

* Consider arrayl and array?2 as arrays of Object
arrayl[i].equals(array2[i])
needs to be true for every index i

Penn
Engineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 32

Penn
Engineering

Online Learning

Video 4.4

Arvind Bhusnurmath

Some of the slides in this deck were reproduced with the permission of Dr. David Matuszek.

Penn
Engineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 33

Topics

* Abstract classes

Penn
Enegineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 34

Abstract methods

* An abstract method is a method without any
implementation

public abstract void draw(int size);

* Notice that the body of the method is completely missing. It
is just the first line and then is terminated with a ;

Penn
Enegineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 35

Abstract class

* Any class containing an abstract method is an abstract class

* You must declare the class with the keyword abstract
abstract class MyClass {...}

* An abstract class is incomplete
* It has “missing” method bodies

* You cannot instantiate (create a new instance of) an abstract class

Penn
Enegineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 36

Using an Abstract class

* Extend an abstract class before you can use it

* |f the subclass defines all the inherited abstract methods, it is
“complete” and can be instantiated.

* |f the subclass does not define all the abstract methods then it too
must be abstract.

* You can declare a class to be abstract even if it does not have any
abstract methods.
* This prevents the class from being instantiated.

Penn
Eneginee > Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 37
rlng

Why have an abstract class

* Suppose you wanted to create a class Shape, with subclasses Oval,
Rectangle, Triangle, Hexagon, etc.

* You don’t want to allow creation of a “Shape”
* Only particular shapes make sense, not generic ones
* If Shape is abstract, you can’t create a new Shape
* You can create a new Oval, a new Rectangle, etc.

* Abstract classes are good for defining a general category containing
specific, “concrete” classes

Penn
Enegineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4

38

Example abstract class

public abstract class Animal {
abstract int eat();
abstract void breathe();

* This class cannot be instantiated

* Any non-abstract subclass of Animal must provide the eat() and
breathe() methods

Penn
Enegineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 39

Potential Problem

class Shape { ... }

class Star extends Shape {
void draw() { ... }

}

class Crescent extends Shape {
void draw() { ... }

}

* Shape someShape = new Star();
* This is legal, because a Star is a Shape
e someShape.draw();

* This is a syntax error, because some Shape might not have a draw()
method

* Remember:A class knows its superclass, but not its subclasses

Penn
Enegineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 40

Usage of Abstract methods

* Suppose you are making a GUI, and you want to draw a number of different
“shapes” (marbles, pegs, frogs, stars, etc.)
* Each class (Marble, Peg, etc.) has a draw method

* You make these subclasses of a class Shape, so that you can create an
ArrayList<Shape> shapes to hold the various things to be drawn

* You would like to do
for (Shape s : shapes) s.draw();

* This isn’t legal!

* Every class “knows” its superclass, but a class doesn’t “know” its subclasses
* You may know that every subclass of Shape has a draw method, but Java doesn’t

* Solution |: Put a draw method in the Shape class
* This method will be inherited by all subclasses, and will make Java happy

e But what will it draw?

* Solution 2: Put an abstract draw method in the Shape class
 This will also be inherited (and make Java happy), but you don’t have to define it
* You do, however, have to make the Shape class abstract
* This way, Java knows that only “concrete” objects have a draw method

Penn
Enegineering Property of Penn Engineering, Arvind Bhusnurmath

SDIx-4

41

Solving the problem using abstract
method

abstract class Shape {
abstract void draw();

}

class Star extends Shape {
void draw() { ... }

}

class Crescent extends Shape {
void draw() { ... }

}

* Shape someShape = new Star();
* This is legal, because a Star is a Shape
* However, Shape someShape = new Shape(); is no longer legal

* someShape.draw();
 This is legal, because every actual instance must have a draw() method

Penn
C Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 42

Engineering

Penn
Engineering

Online Learning

Video 4.5

Arvind Bhusnurmath

Some of the slides in this deck were reproduced with the permission of Dr. David Matuszek.

Penn
Engineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 43

Topics

* |nterfaces

Penn
Engineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 44

What is an Interface?

* “An interface is a group of related methods with empty
bodies” — from the official Java documentation

* Most common way of specifying that a class follows a
certain design.

Penn o
Engineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 45

The implements keyword

* Like signing a contract
* Agreeing to write certain methods.

EPneg]—nee . Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 46
g

Interfaces

* An interface declares (describes) methods but does not supply
bodies for them

interface KeyListener {
public void keyPressed(KeyEvent e);
public void keyReleased(KeyEvent e);
public void keyTyped(KeyEvent e);

}

* All the methods are implicitly public and abstract
* You can add these qualifiers if you like, but why bother?

* You cannot instantiate an interface
* Aninterface is like a very abstract class—none of its methods
are defined

* Aninterface may also contain constants (final variables)

Penn
Enegineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 47

When to write an interface

* You will frequently use the supplied Java interfaces
* Sometimes you will want to design your own

* You would write an interface if you want classes of various
types to all have a certain set of capabilities

* For example, if you want to be able to create grocery items,
you might define an interface as:

public interface Item{
salePrice();

}

Penn
Eneginee > Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 48
rlng

implements != extends

* You extend a class, but you implement an interface

* A class can only extend (subclass) one other class, but it can
implement as many interfaces as you like

Example:

class MyListener
implements KeyListener, ActionListener { .. }

Penn
Enegineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 49

implements != sighing a binding contract

* When you say a class implements an interface, you are
promising to define all the methods that were declared in
the interface

Example:

class MyKeyListener implements KeyListener {
public void keyPressed(KeyEvent e) {...};
public void keyReleased(KeyEvent e) {...};
public void keyTyped(KeyEvent e) {...};

The “...” indicates actual code that you must supply

* Now you can create a new MyKeyListener

Penn
Enegineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 50

Do we have to write all the methods?

It is possible for a class to define some but not all of the
methods defined in an interface:

abstract class MyKeyListener implements KeyListener {
public void keyTyped(KeyEvent e) {...};

}

Since this class does not supply all the methods it has
promised, it must be an abstract class

You must label it as such with the keyword abstract

* You can even extend an interface (to add methods):
interface FunkyKeyListener extends KeyListener {

}

Penn
Enegineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 51

Why interfaces?

Reason |: A class can only extend one other class, but it can
implement multiple interfaces

* This lets the class fill multiple “roles”
* In writing user interfaces it is common to have a class be able to

handle different user interactions.
Example:
class MyApplet extends Applet
implements ActionListener, KeyListener {

Reason 2: You can write methods that work for more than
one kind of class

Penn o
Engineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4

Methods for more than one class

You can write methods that work with more than one class

interface RuleSet {
boolean isLegal (Move m, Board b);
void makeMove (Move m);

Penn
Enegineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 53

Methods for more than one class

class CheckersRules implements RuleSet { // one implementation

public boolean isLegal(Move m, Board b) { ... }
public void makeMove(Move m) { ... }
}
class ChessRules implements RuleSet { ... } // another
implementation

RuleSet rulesOfThisGame = new ChessRules();

if (rulesOfThisGame.isLegal(m, b)) {
rulesOfThisGame .makeMove(m) ;

}

This statement is legal because, whatever kind of RuleSet
object rulesOfThisGame is, it must have isLegal and makeMove
methods

Penn
Engineering Property of Penn Engineering, Arvind Bhusnurmath SDIx-4

instanceof

* instanceof is a keyword that tells you whether a variable
“is a” member of a class or interface

* For example, if
class Dog extends Animal implements Pet {...}
Animal fido = new Dog();

then the following are all true:
fido instanceof Dog
fido instanceof Animal
fido instanceof Pet

* instanceof is seldom used
* When you find yourself wanting to use instanceof, think
about whether the method you are writing should be

moved to the individual subclasses

Penn
Eneginee]'i]]g Property of Penn Engineering, Arvind Bhusnurmath SDIx-4 55

