ntroduction to Aerospace Structures and Materials

Dr. ir. R.C. (René) Alderliesten

Introduction to Aerospace Structures and Materials

Introduction to Aerospace Structures and Materials

R.C. Alderliesten

Delft University of Technology Delft, The Netherlands

Introduction to Aerospace Structures and Materials by R.C. Alderliesten, Delft University of Technology is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, except where otherwise noted.

Cover image CC-BY TU Delft is a derivation of two images by: Christopher Boffoli, Big Appetites Studio, Seattle, Washington, USA, (http://bigappetites.net), who graciously agreed for us to use his Public Domain photograph of the Boeing 787 fuselage in high resolution, and by Gillian Saunders-Smits, Delft University of Technology with her photograph of a Fokker F100 Cockpit Structure (CC-BY-SA 4.0). The final cover design was made by Marco Neeleman, Delft University of Technology Library.

Every attempt has been made to ensure the correct source of images and other potentially copyrighted material was ascertained, and that all materials included in this book has been attributed and used according to its license. If you believe that a portion of the material infringes someone else's copyright, please the author directly on: R.C.Alderliesten@tudelft.nl

Partly funded by the TU Delft Extension School (online-learning.tudelft.nl) as part of the development of a Massive Open Online Course in Introduction to Aerospace Structures and Materials.

Contents

	Introduction R.C. Alderliesten	1
1.	Material physics & properties	3
	1.1 Introduction	3
	1.2 Stress-strain	4
	1.3 Loading modes	7
	1.4 Engineering terminology	8
	1.5 Normal stress	10
	1.6 Shear stress	12
	1.7 Bi-axial loading	13
	1.8 Stiffness and apparent stiffness	15
	1.9 Isotropic and anisotropic sheet deformation	17
	1.10 Toughness	24
2.	Environment & durability	27
	2.1 Introduction	27
	2.2 The effect of ambient temperature	28
	2.3 The effect of humidity	34
	2.4 Environmental aspects	36

3.	Material types	45
	3.1 Introduction	45
	3.2 Metal alloys	49
	3.3 Polymers	52
	3.4 Ceramic materials	57
	3.5 Composite materials	59
	3.6 Rule of mixtures	63
	3.7 Requirements for structural materials	66

4.	Manufacturing	69
	4.1 Introduction	69
	4.2 Metals	70
	4.3 Composites	77
	4.4 Thermoset versus thermoplastic	84

5.	Aircraft & spacecraft structures	87
	5.1 Introduction	87
	5.2 Airframe	87
	5.3 Structural concepts	90
	5.4 Fuselage structures	104
	5.5 Wing structures	105
	5.6 Torsion box	114
	5.7 Structural details	118
	5.8 Typical spacecraft structures	123
	5.9 Typical launch vehicle structures	127

6.	Aircraft & spacecraft loads	133
	6.1 Introduction	133
	6.2 Externally loaded airframe	134
	6.3 Load path	136
	6.4 Loads and load paths in an airframe	142
	6.5 Complex load cases	149
	6.6 Load and load cases for spacecraft structures	151

7. Translating loads to stresses1557.1 Introduction1557.2 Pressurization of a fuselage structure1557.3 Torsional loading of a fuselage structure1637.4 Bending of a wing structure1677.5 Case study: bending of wing spar171

8.	Considering strength & stiffness	179
	8.1 Introduction	179
	8.2 Structural performance	179
	8.3 Selecting the appropriate criterion	182
	8.4 Geometrical aspects	190
	8.5 Structural aspects	193
	8.6 Typical mission requirements for space structures	198
	8.7 Material selection criteria	199
	8.8 Structural sizing for natural frequency	200
	8.9 Structural sizing for quasi-static loads	202

9.	Design & certification	207
	9.1 Introduction	207
	9.2 Safety, regulations and specifications	207
	9.3 Requirements for aeronautical structures	211
	9.4 Structural design philosophies	212
	9.5 Design approach	219

10	Fatigue & durability	223
	10.1 Introduction	223
	10.2 Stress and strain concentrations	224
	10.3 Reinforcement or weakening?	234
	10.4 Fatigue	238
	10.5 Damage tolerance	246

11.	Structural joints	251
	11.1 Introduction	251
	11.2 Mechanically fastened joints	252
	11.3 Mechanically fastening in composites	265
	11.4 Mechanically fastening in sandwich composites	267
	11.5 Welded joints	268
	11.6 Adhesive bonding	271

References	275
Definitions	289

Introduction

R.C. Alderliesten

Introductions into aerospace comprise the introduction into many aerospace related disciplines, and their interrelations. The major message generally is that an optimum in aerospace constitutes compromises the related disciplines. Similarly, aerospace materials and structures represent a field in which structural engineering, material science and manufacturing contribute equally, making trade-offs and compromises necessary.

This textbook is written to fill the gap between these general introductions into aviation and textbooks covering either material science, mechanics of materials or structural analyses. Where the first are deemed insufficient to cover the basic aspects of these disciplines, the latter miss the relevant interrelations between the disciplines.

Students are warned prior to reading this book; the field of aerospace structures and materials is not solely exact science or engineering. Chapters are presented that are indeed rather scientific or engineering of nature (solid material physics, and structural analysis) allowing for theories or solutions based on formulas and equations, but other chapters are more qualitative and philosophical (safety, manufacturability, availability and costing). Students should be aware that in the long end, decisions made within the field of aerospace structures and materials are often dictated by these soft considerations rather than hard core engineering. The main objective of this textbook therefore, is to create awareness and a critical mind-set to aid the student when pursuing a study in aerospace engineering.

This book forms an update of a course reader that I wrote many years ago. Publishing this book has been made possible with the help of many. In particular I would like to thank my colleague Gillian Saunders-Smits for coordinating and contributing to the process and suggestions for additions, Hilde Broekhuis for converting the reader text to the book format, editing and updating the illustrations, Calvin Rans, Urban Avsec and Katharina Ertman for assisting in finding and creating illustrations, Renee van der

2 R.C. Alderliesten

Watering and Cora Bijsterveld for the help with copyright, and the staff of the TU Delft Library under the coordination of Michiel de Jong, who contributed to development of the book and assist us with the many challenges of developing an Open Text Book. The quality of this textbook is to great extent a result from their effort and criticism, which I greatly appreciate.

René Alderliesten,

Delft, August 2018.