

## Video 11.1 Vijay Kumar

## Smooth three dimensional trajectories



Applications

- Trajectory generation in robotics
- Planning trajectories for quad rotors


## Motion Planning of Quadrotors



## General Set up

$\square$ Start, goal positions (orientations)
$\square$ Waypoint positions (orientations)

- Smoothness criterion

Generally translates to minimizing rate of change of "input"
$\square$ Order of the system ( $n$ )
The input is algebraically related to the $n$th derivative of position (orientation)
Boundary conditions on $(n-1)^{\text {th }}$ order and lower derivatives

## Calculus of Variations

$$
x^{\star}(t)=\underset{\sim}{\arg \min _{x}} \int_{\text {cost functional }}^{T} \underbrace{\mathcal{L}(\dot{x}, x, t)} d t
$$

Examples

- Shortest distance path (geometry)

$$
x^{\star}(t)=\underset{x(t)}{\operatorname{argmin}} \int_{0}^{T} \dot{x} d t
$$

- Fermat's principle (optics)

$$
x^{\star}(t)=\underset{x(t)}{\operatorname{argmin}} \int_{0}^{T} 1 d t
$$

$\square$ Principle of least action (mechanics) $\quad x^{\star}(t)=\underset{x(t)}{\operatorname{argmin}} \int_{0}^{T} T(\dot{x}, x, t)-V(\dot{x}, x, t) d t$

## Calculus of Variations

$$
x^{\star}(t)=\underset{x(t)}{\operatorname{argmin}} \int_{0}^{T} \mathcal{L}(\dot{x}, x, t) d t
$$

Consider the set of all differentiable curves, $x(t)$, with a given $x(0)$ and $x(T)$.


## Calculus of Variations

$$
x^{\star}(t)=\underset{x(t)}{\operatorname{argmin}} \int_{0}^{T} \mathcal{L}(\dot{x}, x, t) d t
$$

## Euler Lagrange Equation

Necessary condition satisfied by the "optimal" function $x(t)$

$$
\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{x}}\right)-\frac{\partial \mathcal{L}}{\partial x}=0
$$

Courant, R and Hilbert, D. Methods of Mathematical Physics. Vol. I. Interscience Publishers, New York, 1953.

Cornelius Lanczos, The Variational Principles of Mechanics, Dover Publications, 1970

## Smooth trajectories ( $\mathrm{n}=1$ )



## Smooth trajectories ( $\mathrm{n}=1$ )

$$
x^{\star}(t)=\arg \min _{x(t)} \int_{0}^{T} \dot{x}^{2} d t
$$

Euler Lagrange Equation

$$
\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{x}}\right)-\frac{\partial \mathcal{L}}{\partial x}=0
$$

$$
\mathcal{L}(\dot{x}, x, t)=(\dot{x})^{2} \quad \Rightarrow \quad \ddot{x}=0
$$

$$
x=c_{1} t+c_{0}
$$

## Smooth trajectories ( $\mathrm{n}=1$ )

$$
x^{\star}(t)=\arg \min _{x(t)} \int_{0}^{T} \dot{x}^{2} d t
$$

$$
x(0)=x_{0}, x(T)=x_{T}
$$



## Smooth trajectories (general n)

$$
x^{\star}(t)=\underset{x(t)}{\operatorname{argmin}} \int_{0}^{T}\left(x^{(n)}\right)^{2} d t
$$

## Euler-Lagrange Equation

$$
x^{\star}(t)=\underset{x(t)}{\operatorname{argmin}} \int_{0}^{T} \mathcal{L}\left(x^{(n)}, x^{(n-1)}, \ldots, \dot{x}, x, t\right) d t
$$

## Euler Lagrange Equation

Necessary condition satisfied by the "optimal" function

$$
\frac{\partial \mathcal{L}}{\partial x}-\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{x}}\right)+\frac{d^{2}}{d t^{2}}\left(\frac{\partial \mathcal{L}}{\partial \ddot{x}}\right)+\ldots+(-1)^{n} \frac{d^{n}}{d t^{n}}\left(\frac{\partial \mathcal{L}}{\partial x^{(n)}}\right)=0
$$

## Smooth Trajectories

$$
x^{\star}(t)=\underset{x(t)}{\operatorname{argmin}} \int_{0}^{T}\left(x^{(n)}\right)^{2} d t
$$

$\square n=1$, shortest distance velocity
$\square n=2$, minimum acceleration
$\square n=3$, minimum jerk
$\square n=4$, minimum snap
$n$ - order of system
$n^{\text {th }}$ derivative is an algebraic function of input

## Smooth Trajectories

$$
x^{\star}(t)=\underset{x(t)}{\operatorname{argmin}} \int_{0}^{T}\left(x^{(n)}\right)^{2} d t
$$

$\square n=1$, shortest distance velocity
$\square n=2$, minimum acceleration
$\square n=3$, minimum jerk
$\square n=4$, minimum snap

Why is the minimum velocity curve also the shortest distance curve?


## Video 11.2 Vijay Kumar

## Smooth Trajectories

$$
x^{\star}(t)=\underset{x(t)}{\operatorname{argmin}} \int_{0}^{T}\left(x^{(n)}\right)^{2} d t
$$

$\square n=1$, shortest distance
$\square n=2$, minimum acceleration
$\square n=3$, minimum jerk
$\square n=4$, minimum snap

## Minimum Jerk Trajectory

Design a trajectory $x(t)$ such that $x(0)=a, x(T)=b$

$$
\begin{gathered}
x^{\star}(t)=\underset{x(t)}{\operatorname{argmin}} \int_{0}^{T} \mathcal{L}(\dddot{x}, \ddot{x}, \dot{x}, x, t) d t \\
\mathcal{L}=(\dddot{x})^{2}
\end{gathered}
$$

Euler-Lagrange:

$$
\begin{gathered}
\frac{\partial \mathcal{L}}{\partial x}-\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{x}}\right)+\frac{d^{2}}{d t^{2}}\left(\frac{\partial \mathcal{L}}{\partial \ddot{x}}\right)-\frac{d^{3}}{d t^{3}}\left(\frac{\partial \mathcal{L}}{\partial x^{(3)}}\right)=0 \\
x^{(6)}=0 \\
x=c_{5} t^{5}+c_{4} t^{4}+c_{3} t^{3}+c_{2} t^{2}+c_{1} t+c_{0}
\end{gathered}
$$

## Solving for Coefficients

$$
x=c_{5} t^{5}+c_{4} t^{4}+c_{3} t^{3}+c_{2} t^{2}+c_{1} t+c_{0}
$$

Boundary conditions:

|  | Position | Velocity | Acceleration |
| :--- | :---: | :---: | :---: |
| $t=0$ | $a$ | 0 | 0 |
| $t=T$ | $b$ | 0 | 0 |

Solve:
$\left[\begin{array}{l}a \\ b \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 1 \\ T^{5} & T^{4} & T^{3} & T^{2} & T & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 5 T^{4} & 4 T^{3} & 3 T^{2} & 2 T & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 20 T_{\text {Property of University of Pennsyvanai, Viay Kumar }} & 12 T^{2} & 0\end{array}\right]\left[\begin{array}{c}c_{5} \\ c_{4} \\ c_{3} \\ c_{2} \\ c_{1} \\ c_{0}\end{array}\right]$

## Minimum Jerk Trajectory





## Extensions to multiple dimensions (first order system, n=1)

$$
\left(x^{\star}(t), y^{\star}(t)\right)=\arg \min _{x(t), y(t)} \int_{0}^{T} \mathcal{L}(\dot{x}, \dot{y}, x, y, t) d t
$$

## Euler Lagrange Equation

Necessary condition satisfied by the "optimal" function

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{x}}\right)-\frac{\partial \mathcal{L}}{\partial x}=0 \\
& \frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{y}}\right)-\frac{\partial \mathcal{L}}{\partial y}=0
\end{aligned}
$$

## Minimum Jerk for Planar Motions

Minimum-jerk trajectory in $(x, y, \theta)$

$$
\min _{x(t), y(t), \theta(t)} \int_{0}^{1}\left(\dddot{x}^{2}+\dddot{y}^{2}+\dddot{\theta}^{2}\right) d t
$$

## Human manipulation tasks

- Rate of change of muscle fiber lengths is critical in relaxed, voluntary motions
T. Flash and N. Hogan, The coordination of arm movements: an experimentally confirmed mathematical model, Journal of neuroscience, 1985
G.J. Garvin, M. Žefran, E.A. Henis, V. Kumar, Two-arm trajectory planning in a manipulation task, Biological Cybernetics, January 1997,

$$
\mathbf{x}^{\star}(t):[0,1] \rightarrow S E(2)
$$



## Optimal Trajectories with Constraints

Design a trajectory $x(t)$ such that $x(0)=a, x(T)=b$

$$
\begin{aligned}
x^{\star}(t) & =\underset{x(t)}{\operatorname{argmin}} \int_{0}^{T} \mathcal{L}(\dddot{x}, \ddot{x}, \dot{x}, x, t) d t \\
|\dot{x}| & \leq \dot{x}_{\max } \\
|\ddot{x}| & \leq \ddot{x}_{\max } \\
|\dddot{x}| & \leq \dddot{x}_{\max }
\end{aligned}
$$

## Minimum Time Trajectories

$$
\begin{aligned}
& x^{\star}(t)=\underset{x(t)}{\operatorname{argmin}} \int_{0}^{T} 1 d t \\
& x(0)=x_{0}, \dot{x}(0)=0, x(T)=x_{T}, \dot{x}(T)=0 \\
& |\dot{x}| \leq \dot{x}_{\text {max }} \\
& |\ddot{x}| \leq \ddot{x}_{\text {max }}
\end{aligned}
$$



## Video 11.3 Vijay Kumar

## Smooth 1D Trajectories

Design a trajectory $x(t)$ such that $x(0)=a, x(T)=b$


## Multi-Segment 1D Trajectories

Design a trajectory $x(t)$ such that:

$$
\begin{aligned}
t & =\left[\begin{array}{lllll}
t_{0} & t_{1} & t_{2} & \ldots & t_{m}
\end{array}\right]^{T} \\
x & =\left[\begin{array}{lllll}
x_{0} & x_{1} & x_{2} & \ldots & x_{m}
\end{array}\right]^{T}
\end{aligned}
$$

## Multi-Segment 1D Trajectories

Design a trajectory $x(t)$ such that:

$$
\begin{aligned}
t & =\left[\begin{array}{lllll}
t_{0} & t_{1} & t_{2} & \ldots & t_{m}
\end{array}\right]^{T} \\
x & =\left[\begin{array}{lllll}
x_{0} & x_{1} & x_{2} & \ldots & x_{m}
\end{array}\right]^{T}
\end{aligned}
$$

Define piecewise continuous trajectory:

$$
x(t)= \begin{cases}x_{1}(t), & t_{0} \leq t<t_{1} \\ x_{2}(t), & t_{1} \leq t<t_{2} \\ \ldots & \\ x_{m}(t), & t_{m-1} \leq t<t_{m}\end{cases}
$$

## Continuous but not Differentiable

Design a trajectory $x(t)$ such that:


## Minimum Acceleration Curve for $\mathbf{2}^{\text {nd }}$ Order Systems

Design a trajectory $x(t)$ such that:


## Minimum Acceleration Curve for $2^{\text {nd }}$ Order Systems

Design a trajectory $\mathrm{x}(\mathrm{t})$ such that:

$$
\left.\left.\begin{array}{c}
t=\left[\begin{array}{llll}
t_{0} & t_{1} & t_{2} & \ldots
\end{array} t_{m}\right.
\end{array}\right]^{T}, \begin{array}{lll}
x=\left[\begin{array}{llll}
x_{0} & x_{1} & x_{2} & \ldots
\end{array}\right. & x_{m}
\end{array}\right]^{T} .
$$

## Cubic Spline

## Design a trajectory $\mathrm{x}(\mathrm{t})$ such that:

$$
\begin{aligned}
t & =\left[\begin{array}{lllll}
t_{0} & t_{1} & t_{2} & \ldots & t_{m}
\end{array}\right]^{T} \\
x & =\left[\begin{array}{lllll}
x_{0} & x_{1} & x_{2} & \ldots & x_{m}
\end{array}\right]^{T}
\end{aligned}
$$



## Cubic Spline

## Design a trajectory $\mathrm{x}(\mathrm{t})$ such that:



## Cubic Spline

Design a trajectory $\mathrm{x}(\mathrm{t})$ such that:

$$
\begin{aligned}
t & =\left[\begin{array}{lllll}
t_{0} & t_{1} & t_{2} & \ldots & t_{m}
\end{array}\right]^{T} \\
x & =\left[\begin{array}{lllll}
x_{0} & x_{1} & x_{2} & \ldots & x_{m}
\end{array}\right]^{T}
\end{aligned}
$$



## Cubic Spline

Design a trajectory $\mathrm{x}(\mathrm{t})$ such that:

$$
\begin{aligned}
t & =\left[\begin{array}{lllll}
t_{0} & t_{1} & t_{2} & \ldots & t_{m}
\end{array}\right]^{T} \\
x & =\left[\begin{array}{lllll}
x_{0} & x_{1} & x_{2} & \ldots & x_{m}
\end{array}\right]^{T}
\end{aligned}
$$



$$
2 m+2(m-1)+2=4 m \text { constraints }
$$

## Spline for nth order system

Design a trajectory $\mathrm{x}(\mathrm{t})$ such that:

$$
\begin{aligned}
t & =\left[\begin{array}{lllll}
t_{0} & t_{1} & t_{2} & \ldots & t_{m}
\end{array}\right]^{T} \\
x & =\left[\begin{array}{lllll}
x_{0} & x_{1} & x_{2} & \ldots & x_{m}
\end{array}\right]^{T}
\end{aligned}
$$



## Spline for nth order system

Design a trajectory $\mathrm{x}(\mathrm{t})$ such that:


## Summary

$\square$ Polynomial interpolants
$\square$ Boundary conditions at intermediate points
$\square$ Splines
$\square$ Smooth polynomial functions defined piecewise (degree $n$ )

- Smooth connections at in between "knots" (match values of functions and $n-1$ derivatives)



## Video 11.4 Vijay Kumar

## Minimum Snap Trajectory

When working with quadrotors, we want to find a trajectory that minimizes the cost function:

$$
x^{\star}(t)=\underset{x(t)}{\operatorname{argmin}} \int_{0}^{T}\left\|x^{(4)}\right\|^{2} d t
$$

From the Euler-Lagrange equations, a necessary condition for the optimal trajectory is:

$$
x^{(8)}=0
$$

The minimum-snap trajectory is a $7^{\text {th }}$ order polynomial.

## Trajectory with 3 waypoints

Design a trajectory $\mathrm{x}(\mathrm{t})$ such that:

$$
\begin{aligned}
t & =\left[\begin{array}{lll}
t_{0} & t_{1} & t_{2}
\end{array}\right]^{T} \\
x & =\left[\begin{array}{lll}
x_{0} & x_{1} & x_{2}
\end{array}\right]^{T}
\end{aligned}
$$

The trajectory will be a $7^{\text {th }}$-order piecewise polynomial with 2 segments:

$$
x(t)= \begin{cases}c_{1,7} t^{7}+c_{1,6} t^{6}+c_{1,5} t^{5}+c_{1,4} t^{4}+c_{1,3} t^{3}+c_{1,2} t^{2}+c_{1,1} t+c_{1,0}, & t_{0} \leq t<t_{1} \\ c_{2,7} t^{7}+c_{2,6} t^{6}+c_{2,5} t^{5}+c_{2,4} t^{4}+c_{2,3} t^{3}+c_{2,2} t^{2}+c_{2,1} t+c_{2,0}, & t_{1} \leq t<t_{2}\end{cases}
$$

This trajectory has 16 unknowns.

## Trajectory with 3 waypoints

Design a trajectory $\mathrm{x}(\mathrm{t})$ such that:

$$
\begin{aligned}
& t=\left[\begin{array}{lll}
t_{0} & t_{1} & t_{2}
\end{array}\right]^{T} \\
& x=\left[\begin{array}{lll}
x_{0} & x_{1} & x_{2}
\end{array}\right]^{T}
\end{aligned}
$$

$$
x_{2}\left(t_{2}\right)=x_{2}
$$

$$
\dot{x}_{2}\left(t_{2}\right)=0
$$

$$
\ddot{x}_{2}\left(t_{2}\right)=0
$$

$$
\dddot{x}_{2}\left(t_{2}\right)=0
$$

## Trajectory with 3 waypoints

$$
\begin{aligned}
& \mathbf{x}=\left[\begin{array}{llllllll}
c_{1,7} & c_{1,6} & c_{1,5} & c_{1,4} & c_{1,3} & c_{1,2} & c_{1,1} & c_{1,0} \\
c_{2,7} & c_{2,6} & c_{2,5} & c_{2,4} & c_{2,3} & c_{2,2} & c_{2,1} & c_{2,0}
\end{array}\right]^{T}
\end{aligned}
$$

Position constraints in matrix form:
$\left[\begin{array}{cccccccccccccccc}t_{0}^{7} & t_{0}^{6} & t_{0}^{5} & t_{0}^{4} & t_{0}^{3} & t_{0}^{2} & t_{0} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ t_{1}^{7} & t_{1}^{6} & t_{1}^{5} & t_{1}^{4} & t_{1}^{3} & t_{1}^{2} & t_{1} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & t_{1}^{7} & t_{1}^{6} & t_{1}^{5} & t_{1}^{4} & t_{1}^{3} & t_{1}^{2} & t_{1} & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & t_{2}^{7} & t_{2}^{6} & t_{2}^{5} & t_{2}^{4} & t_{2}^{3} & t_{2}^{2} & t_{2} & 1\end{array}\right] \mathbf{x}=\left[\begin{array}{l}x_{0} \\ x_{1} \\ x_{1} \\ x_{2}\end{array}\right]$

## Trajectory with 3 waypoints

$$
\begin{aligned}
& \mathbf{x}=\left[\begin{array}{llllllll}
c_{1,7} & c_{1,6} & c_{1,5} & c_{1,4} & c_{1,3} & c_{1,2} & c_{1,1} & c_{1,0} \\
c_{2,7} & c_{2,6} & c_{2,5} & c_{2,4} & c_{2,3} & c_{2,2} & c_{2,1} & c_{2,0}
\end{array}\right]^{T}
\end{aligned}
$$

Endpoint derivative constraints at $t_{0}$ in matrix form:
$\left[\begin{array}{cccccccccccccccc}7 t_{0}^{6} & 6 t_{0}^{5} & 5 t_{0}^{4} & 4 t_{0}^{3} & 3 t_{0}^{2} & 2 t_{0}^{1} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 42 t_{0}^{5} & 30 t_{0}^{4} & 20 t_{0}^{3} & 12 t_{0}^{2} & 6 t_{0}^{1} & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 210 t_{0}^{4} & 120 t_{0}^{3} & 60 t_{0}^{2} & 24 t_{0}^{1} & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right] \mathbf{x}=\left[\begin{array}{l}\dot{x}\left(t_{0}\right) \\ \ddot{x}\left(t_{0}\right) \\ \dddot{x}\left(t_{0}\right)\end{array}\right]$

