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Applications

Trajectory generation in robotics

Planning trajectories for quad rotors

START

GOAL

INT. POSITION
INT. POSITION

Smooth three dimensional trajectories
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Motion Planning of Quadrotors
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Start, goal positions (orientations)

Waypoint positions (orientations)

Smoothness criterion
Generally translates to minimizing rate of change of “input”

Order of the system (n)
The input is algebraically related to the nth derivative of 

position (orientation)

Boundary conditions on (n-1)th order and lower derivatives

General Set up
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Examples

Shortest distance path (geometry)

Fermat’s principle (optics)

Principle of least action (mechanics)

cost functional

function

Calculus of Variations

running cost
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Consider the set of all differentiable curves, x(t), with a 

given x(0) and x(T).

Calculus of Variations
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Euler Lagrange Equation
Necessary condition satisfied by the “optimal” function x(t)

Calculus of Variations

Courant, R and Hilbert, D. Methods of Mathematical Physics. Vol. I. Interscience Publishers, 

New York, 1953. 

Cornelius Lanczos, The Variational Principles of Mechanics, Dover Publications, 1970



8Property of University of Pennsylvania, Vijay Kumar

input

0 T

Smooth trajectories (n=1)



9Property of University of Pennsylvania, Vijay Kumar

Euler Lagrange Equation

Smooth trajectories (n=1)
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Smooth trajectories (n=1)
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input 

Smooth trajectories (general n)
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Euler Lagrange Equation
Necessary condition satisfied by the “optimal” function

Euler-Lagrange Equation
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n=1, shortest distance

n=2, minimum acceleration

n=3, minimum jerk

n=4, minimum snap
n – order of system

nth derivative is an 

algebraic function of 

input

velocity

Smooth Trajectories
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n=1, shortest distance

n=2, minimum acceleration

n=3, minimum jerk

n=4, minimum snap
Why is the minimum 

velocity curve also the 

shortest distance 

curve?

velocity

Smooth Trajectories
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Video 11.2

Vijay Kumar
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n=1, shortest distance

n=2, minimum acceleration

n=3, minimum jerk

n=4, minimum snap

Smooth Trajectories



17Property of University of Pennsylvania, Vijay Kumar

Euler-Lagrange:

Design a trajectory x(t) such that x(0) = a, x(T) = b

0

Minimum Jerk Trajectory
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Boundary conditions:

Position Velocity Acceleration

t = 0 a 0 0

t = T b 0 0

Solve:

Solving for Coefficients
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a=0, b=1, T=50

Minimum Jerk Trajectory
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Euler Lagrange Equation
Necessary condition satisfied by the “optimal” function

Extensions to multiple dimensions (first 
order system, n=1)
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Minimum-jerk trajectory in (x, y, q)

start 

position, 

orientation

goal 

position, 

orientation

Minimum Jerk for Planar Motions

G.J. Garvin, M. Žefran, E.A. Henis, V. Kumar, Two-arm trajectory 

planning in a manipulation task, Biological Cybernetics, January 1997, 

Volume 76, Issue 1, pp 53-62

Human manipulation tasks

Rate of change of muscle fiber lengths 

is critical in relaxed, voluntary motions 

T. Flash and N. Hogan, The coordination of arm movements: an 

experimentally confirmed mathematical model,  Journal of neuroscience, 

1985
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Design a trajectory x(t) such that x(0) = a, x(T) = b

Optimal Trajectories with 
Constraints
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Trapezoidal Velocity Profile

Minimum Time Trajectories
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Design a trajectory x(t) such that x(0) = a, x(T) = b

t

x

Smooth 1D Trajectories
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Design a trajectory x(t) such that:

t

x

Multi-Segment 1D Trajectories
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Design a trajectory x(t) such that:

Define piecewise continuous trajectory:

Multi-Segment 1D Trajectories
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Design a trajectory x(t) such that:

t

x

What if the system is 

a 2nd order system?

Continuous but not Differentiable
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Design a trajectory x(t) such that:

t

x

Minimum Acceleration Curve for 
2nd Order Systems
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Design a trajectory x(t) such that:

4m degrees of freedom

Minimum Acceleration Curve for 
2nd Order Systems

Cubic spline
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Design a trajectory x(t) such that:

t

x

Cubic Spline
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Design a trajectory x(t) such that:

t

x

2m

Cubic Spline
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Design a trajectory x(t) such that:

x

2m+2(m-1)

Cubic Spline
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Design a trajectory x(t) such that:

t

x

2m+2(m-1)+2 = 4m constraints

Cubic Spline
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Design a trajectory x(t) such that:

t

x

Spline for nth order system
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Design a trajectory x(t) such that:

t

x

Spline for nth order system
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Polynomial interpolants

Boundary conditions at intermediate points

Splines
Smooth polynomial functions defined piecewise (degree n) 

Smooth connections at in between “knots” (match values of 

functions and n-1 derivatives)

Summary
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Video 11.4

Vijay Kumar
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When working with quadrotors, we want to find a 

trajectory that minimizes the cost function:

From the Euler-Lagrange equations, a necessary 

condition for the optimal trajectory is:

The minimum-snap trajectory is a 7th order polynomial.

Minimum Snap Trajectory 
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Design a trajectory x(t) such that:

The trajectory will be a 7th-order piecewise polynomial with 2 segments: 

This trajectory has 16 unknowns. 

Trajectory with 3 waypoints
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t

x

Design a trajectory x(t) such that:

Trajectory with 3 waypoints
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Position constraints in matrix form:

Trajectory with 3 waypoints
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Endpoint derivative constraints at t0 in matrix form:

Trajectory with 3 waypoints


