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Nomenclature

Constants and functions

f̂ averaged signal f over switching frequency

Parameters

f , ω line frequency and angular frequency

vj phase j ∈ {a, b, c} to neutral voltage

ij phase current j ∈ {a, b, c}

vdc DC voltage

idc DC current, assumed as constant and equal idc = Idc
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1 Power Electronic Converters

Integration of Renewable Energy Sources (RES) into electrical power system requires extensive application of
power electronic converters. Commonly used power electronic converters are Line Commutated Converters
(LCCs) and Voltage Source Converters (VSCs).

1.1 Line-Commutated Converter

Line-commutated converters (LCCs) are state-of-the-art since seventies. In Fig. 1 is depicted 12-pulse LCC for
Pole 2 of the HVDC Inter-Island between the North and South Islands of New Zealand.

Figure 1: Thyristor valve, picture taken from wikipedia.

Line-Commutated Converter is designed using thyristors as switches, as depicted in Fig. 2 [1]. In Fig. 2 is
depicted 6-pulse Graetz bridge [2, 3]. Thyristors are turned on α radians after the corresponding line-to-neutral
voltage becomes maximal/minimal. Angle α is also called a firing angle.

vA

vB

+

−

Q1

Q2

Q3

Q4

Q5

Q6

ia ib ic

va vb vc

L L L

vdc

idc

Figure 2: Line-commutated converter.

Let us first conduct the analysis considering that the inductors have infinite values, L → ∞. When we
consider L→∞, then the inductor represents the short connection. This case presents ideal commutation [4].
During whole analysis, we will consider thyristors as ideal switches, i.e. short connection while conducting and
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open connection when they do not conduct. In that case, the expected waveforms are given in Fig. 3, where:

vA(ωt) = vj(ωt) for j = arg max(v1(ωt− α), v2(ωt− α), v3(ωt− α)), (1a)

vB(ωt) = vj(ωt) for j = arg min(v1(ωt− α), v2(ωt− α), v3(ωt− α)), (1b)

vd(ωt) = vA(ωt)− vB(ωt), (1c)

ij(ωt) =





Idc when Q2j−1 is turned on,
−Idc when Q2j is turned on,
0 otherwise,

(1d)

idc(ωt) = Idc. (1e)

In the simulated case (Fig. 3) is taken that α = π
6 . Similarly can be obtained diagrams for different values for

α.
For this case, the DC voltage can be calculated as

Vd =
6

ωT

α+π
3∫

α

vac(ωt)d(ωt),

and the expression is

Vd =
3
√

3Vm
π

cosα. (2)

The estimated output power is

P =
3
√

3IdcVm
π

cosα. (3)

In this case power factor is

PF =
3

π
cosα. (4)

When L has some finite value, then we have commutation between thyristors. That means that when one
thyristor turns on, the one that was already turned cannot right away turn off.

Let us observe commutation between thyristors Q1 and Q3 when ωt = π
2 . Both thyristors are turned on

until current of Q3 reaches value of the DC current Idc. This moment can be estimated from the following
equations:

ia + ib = Idc, (5a)

va − L
dia
dt

= vb − L
dib
dt
, (5b)

which knowing that dia
dt = −dibdt , forms differential equation

dib
dt

=
vb − va

2L
=
Vm
√

3

2L
sin
(
ωt− π

3

)
. (6)

By integrating it in the limits π
3 + α and π

3 + α+ µ, we get an expression for current ib:

ib(ωt) =
Vm
√

3

2ωL
(cos(α)− cos(α+ µ)). (7)

Finally, the moment when all current is translated into thyristor Q3 is given with:

µ = arccos

(
cos(α)− 2ωLIdc

Vm
√

3

)
− α. (8)

During mentioned commutation, voltage at the point A is vA = v1+v2

2 .
Waveforms now become as depicted in Fig. 4. Values used for the simulation are given in table 1. Using

the previous calculation, we can estimate DC voltage and power factor as [3]:

Vd =
3
√

3Vm
π

cosα− 3ωLIdc
π

, (9a)

PF =
2VdIdc
VmIm

, (9b)

where Im = 2
√

3Idc
π

sin(µ/2)
µ/2 represents the first harmonic of the AC current.

It should be noted that if the firing angle α is greater than π
2 , the output DC voltage is negative.
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Figure 3: Waveforms of the LCC with assumtion of L→∞ for (a) voltages, and (b) currents.
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Figure 4: Waveforms of the LCC with assumption of finite value for L for (a) voltages, and (b) currents.
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Table 1: Parameters of the 6-pulse LCC
f 50 Hz Vdc 500 kV
Idc 2 kA Vm 345 kV
L 68.2 mH α π

6

1.1.1 Control Design

For the LCC the control is designed using control layers [4]. It consists of voltage dependent current order limit
(VDCOL), a current controller (CC), an extinction angle controller (γ controller), phase locked loop (PLL),
and firing pulse generator.

Voltage Dependent Current Order Limit (VDCOL): It is considered undesirable to have rated DC
current flowing in the system whilst in an under-voltage situation. Hence, the DC voltage is taped by the
VDCOL control circuit as shown in Fig. 5, where it is filtered by a first-order delay block. Using this filtered
voltage in a look-up table, the lowest permissible voltage limit and the corresponding maximum permissible
current Iref is extracted [3]. This Iref is used as a reference for the current controller.

Figure 5: Classical implementation of LCC controls, picture taken from [3].

Current Controller is the real-time dc current is passed through a first-order delay block for filtering and
then summed with some supplementary or reference signals obtained from the VDCOL layer [5]. The resultant
signal is then passed to a PI controller so as to obtain the firing angle order. The obtained firing angle order is
then limited by a limit block with predefined fixed limits obtained from other layers.

Gamma Controller: For an LCC inverter operating in an HVDC system, it must be ensured that the
commutation process from one set of valves to the other must take place before the voltage of the extinguishing
valve is positive again. This is ensured through a gamma controller as shown in Fig. 5. The commutation
margin γ or “the time delay between the extinction of the valve and the valve voltage becoming positive again”
is added to a negative fixed set-point (minimum commutation margin). The resultant difference is filtered
through a limit block and then passed to a PI controller. The PI controller is designed in such a way that it
saturates at the maximum firing angle order limit if the gamma value is higher than required. If not, the γ
value is corrected to the minimal set-point. This, together with the current controller, helps in setting the firing
angle order for an LCC inverter.

Phase Locked Loop (PLL): Any firing pulse generator requires a reference signal which is in synchronous
with the system voltage. To obtain such a reference signal, especially in weak AC systems, a PLL (usually based
on the space-vector concept) is required. As shown in Fig. 5, the PLL takes the system voltages as input in the
abc domain and converts it into the space vector domain. This is done to simplify the mathematical integration
of the power system and the control system by keeping the analytical equations independent of time. This
can be achieved by performing Clark transformation on the abc domain parameters so as to obtain a complex
rotating phasor. Subsequently, this rotating phasor can be made non-rotating by applying a bidimensional
rotation transformation, which further simplifies the parameters mathematically.
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1.2 Voltage Source Converter

Voltage source converter (VSC) is another class of HVDC-based power electronic converters, which are designed
using IGBTs as switches. There are few classes of widely used VSCs: two-level, three-level converters, and
modular multilevel converters.

In the following text two-level converter and MMC will be analyzed in detail.

1.2.1 Two-level Converter

In Fig. 6 is depicted two-level converter. Switches in the same arm are operated complementary, e.g. Q3 = Q1.
In Fig. 7 is depicted one arm operation, where is visible that when Q1 is conducting vc,a = vdc

2 , and when Q3
conducts vc,a = −vdc2 . VSC can have square-mode operation, where each switch (IGBT) conducts for a half

vA = vdc
2

vB = −

vdc
2

+

−

Q1

Q2

Q3

Q4

Q5

Q6

ia ib ic

va vb vc

L L L

vdc

idc

Cdc

icap

vc,a vc,b vc,c

Figure 6: Two-level VSC.

vdc

2

vc,a

ωt

−

vdc

2

Figure 7: One arm operation of the VSC.

period, with the phase shift of 2π
3 for each phase [5]. This modulation is no longer used because it cannot vary
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magnitude.
Therefore, VSCs are usually controlled using Pulse Width Modulation (PWM). PWM can be design on

various ways, but the goal for it is to ensure that the averaged (over converter’s switching frequency) currents
and voltages have the desired waveforms (usually sine waveforms).

1.2.1.1 Averaged model

PWM modulated two-level VSC should have desired voltage/current waveforms. Therefore, for the further anal-
ysis is introduced dimensionless parameter denoted as modulation index and represented as mj for j ∈ {a, b, c}
being the phase. For the each switching interval mj(t) ∈ [0, 1].

The converter operates in such manner that in the steady-state is vA = vdc
2 and vB = −vdc2 . The following

equations can be written

v̂C,j = m̂j
vdc
2
, (10a)

L
dîj
dt

= vj − v̂C,j , (10b)

Cdc
dv̂dc
dt

= îcap. (10c)

In addition we can write energy-balance equation as:

v̂dc

(
îdc − îcap

)
=

∑

j∈{a,b,c}

v̂C,j îj ,

which gives connection

îcap = îdc −
1

2

∑

j∈{a,b,c}

m̂j îj .

Finally, the complete set of differential equations with neglected variations on DC voltage is

vC,j = mj
vdc
2
, (11a)

L
dij
dt

= vj − vC,j . (11b)

Averaged notation is not used in the previous equations (11) due to simplicity of description.

1.2.2 Modular Multilevel Converter

MMC physical appearance is presented in Fig. 8. In Fig. 9 is depicted one arm of an MMC. With SMs are
denoted submodules which can be: half-bridge (HB), full-bridge (FB), flying-capacitor, cascaded half-bridge,
and double clamp [6]. However, HB and FB are usually used.

HB submodule is depicted in Fig. 10, where is visible that it has two operation modes. Switches have
complementary operation, and SM can be conducting (when upper switch S1 conducts) or blocking (when S1
conducts). The averaged output voltage is ṽH = S1vC .

FB submodule is depicted in Fig. 11. It has three operation modes: when S1 and S2 conduct – voltage
vH = vC , S1 and S2 (or S1 and S2) conduct – vH = 0, and when S1 and S2 conduct – vH = −vc. The averaged
voltage at the output is then ṽH = (S1S2 − S1S2)vC .

1.2.2.1 Averaged model

The converter topology is depicted in Fig. 9, for a single phase of a three-phase MMC. Variables from the Fig. 9
are defined for all three phases, j ∈ {a, b, c}. Submodules are considered with their averaged equivalents, and
thus, the following equations for voltage and current can be written for the upper and lower arms:

vU,LMj = mU,L
j vU,LCj , iU,LMj = mU,L

j iU,Lj , (12)

where mU,L
j are the corresponding upper and lower arm insertion indices, and vU,LCj is upper and lower are

submodules’ capacitor voltage.
The converter model is developed by following the Σ−∆ nomenclature, the variables in the upper and lower

converter arms can be represented as:

i∆j = iUj − iLj , iΣj =
iUj +iLj

2 ,

v∆
Cj =

vUCj−v
L
Cj

2 , vΣ
Cj =

vUCj+v
L
Cj

2 ,
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Figure 8: MMC picture.
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Figure 9: MMC model.

m∆
j = mU

j −mL
j , mΣ

j = mU
j +mL

j ,

v∆
Mj =

−vUMj+v
L
Mj

2 = −m
∆
j v

Σ
Cj+m

Σ
j v

∆
Cj

2 ,

vΣ
Mj =

vUMj+v
L
Mj

2 =
mΣ
j v

Σ
Cj+m

∆
j v

∆
Cj

2 .

With the new variables that have Σ and ∆ superscripts, the equations of the state variables can be derived.
In order to obtain the equations in multiple dqz frames, Park’s transformation given in (21) is used with different
frequencies.

The parameters are Laceq = Lr + Larm
2 , Raceq = Rr + Rarm

2 , and C represents the submodule capacitor value

and N the number of submodules in one converter arm. An equivalent DC-side capacitance Cdc = 6CN is used
to model the DC voltage as a state variable. Taking into account previous writing convention, the following
equations can be derived:

v∆
Mj = −

m∆
j v

Σ
Cj +mΣ

j v
∆
Cj

2
, (13a)

vΣ
Mj =

mΣ
j v

Σ
Cj +m∆

j v
∆
Cj

2
, (13b)

and differential equations:

Laceq
di∆j
dt

= v∆
Mj − vGj −Raceq i∆j , (14a)

Larm
diΣj
dt

=
vdc
2
− vΣ

Mj −Rarm iΣj , (14b)

2Carm
v∆
Cj

dt
= mΣ

j

i∆j
2

+m∆
j i

Σ
j , (14c)

2Carm
dvΣ
Cj

dt
= m∆

j

i∆j
2

+mΣ
j i

Σ
j . (14d)

In Fig. 12 are given diagrams of the all state variables given by differential equations from (14). MMC
parameters are chosen as in table x. From diagrams in Fig. 12 can be seen that the first harmonic (angular
frequency ω) is dominant in ∆ variables, while in Σ variables dominates second harmonic (angular frequency 2ω).
In the diagrams per unit values are calculated with the respect to base values: Sbase = 1 GVA, Vbase = Vm√

3
kV
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Figure 10: HB submodule: left – design; and right – principle of operation.
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Figure 11: FB submodule: left – design; and right – principle of operation.

and Ibase = Sbase
Vbase

√
3
. Capacitor voltages are represented per unit using DC voltage as base. Modulation indices

are set to be mΣ
abc = [1 1 1]T , and m∆

a = −0.8 cos(ωt), while b and c components are phase shifted by 2π
3 and

4π
3 , respectively.

Table 2: MMC parameters
N 400 Carm 32.55µF Rarm 1.024 Ω Larm 48 mH
Rf 0.521 Ω Lf 58.7 mH Vm 320 kV VDC 640 kV

1.2.3 VSC Control Design

The MMC is controlled using high and low level controls. Control hierarchy is depicted in Fig. 13. Low level
controls or inner controlling loops are usually manufactured with the converter itself. They have smaller time
constants, usually around 10 ms. High level controls or outer controlling loops can be user configured. Outer
controlling loops are used for controlling frequency, energy, power, and DC voltage. They have longer time
constants, around 100 ms.
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Figure 12: Diagrams of the open-loop MMC.

The most common controls in dqz-frame for an MMC are depicted in Fig. 14. There are presented voltage
balancing control for SMs’ capacitor voltages, output current control and circulating current control. The SMs’
control includes leg voltage control and capacitor voltage balancing control [6]. Since we are considering the
MMC with its averaged model, in this course will be not given detailed descriptions about SM control, but they
can be found in [6].

1.2.3.1 Inner controlling loops design

Inner controlling loops are capacitor voltage balancing, output current control, circulating current control, and
zero current control. In this paragraph we are giving an example how to design output current control and
circulating current control.

Output current control can be constructed in abc, αβ and dq-frames. In this course we will design control
using dq-frame formulation. Therefore, we will reformulate equations in abc-frame (14) using Park’s transfor-
mation on the following matter:

Tabc→dq × Laceq
d

dt
(Tdq→abc × i∆dq)︸ ︷︷ ︸

i∆abc

= Laceq(Tabc→dqṪdq→abc︸ ︷︷ ︸
J

i∆dq + Tabc→dqTdq→abc︸ ︷︷ ︸
I

i̇
∆

dq),

where can be calculated that Jω =

[
0 −ω
ω 0

]
and I is an identity matrix. Therefore, in dq-frame the output

current is given as:

i̇
∆

dq = v∆
Mdq − vGdq − (RaceqI + LaceqJω) i∆dq. (15)

Similarly, equation for the common circulating current is developed as:

i̇
Σ

dq =
vdc
2

[
1
1

]
− vΣ

Mdq − (RarmI + LarmJ−2ω) iΣdq. (16)

If the controller is defined only using bandwidth ωn and ζ (instead of Kp and Ki), the proportional and
integral gains are tuned using pole-placement method as:

Ki,occ = Laceq ω
2
n,

Kp,occ = 2ζωnL
ac
eq −Raceq .

Similarly, the proportional and integral gains of circulating current controller are tuned as:

Ki = Larm ω2
n,

Kp = 2ζωnLarm −Rarm.
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Figure 13: MMC control hierarchy, picture taken from [7].

Before we apply these controllers, we have to first transform relevant currents from abc to dq frame. Also,
after getting expected voltage references, we have to apply dq to abc transformation on these variables.

1.2.3.2 Outer controlling loops design

Outer controlling loops are power controllers, energy controllers, DC voltage controllers, and frequency con-
trollers.

For HVDC link, power controllers are used on offshore converter side to ensure satisfactory active power
transfer. On offshore side is usually used active power controller together with AC voltage controller and PLL
(phase locked loop) controller. DC voltage control in PI or droop form is used on onshore side to maintain DC
voltage level of the HVDC transmission line. In addition to DC voltage controller, energy controller ensures
faster DC voltage and DC current convergence.

Active and reactive power controller design is depicted in Fig. 14, as well as DC voltage PI controller. In
addition to DC voltage PI control, DC droop voltage controller is often used. Droop controller is depicted in
Fig. 15, which is used to provide active power reference to the converter.
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Figure 14: Inner and outer controls of the MMC.

Figure 15: MMC DC droop controller, picture taken from [7].
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2 MTDC

Multi terminal DC system consists of HVDC transmission system which is through multiple power converters
connected to the AC grids. AC grids can be mutually decoupled. As mentioned earlier, in MTDC system power
converters are controlled in master-slave manner.

Offshore converters should ensure stable AC voltage of the wind farm, together with stable frequency. For
that matter offshore converters have AC voltage controllers, frequency controllers, and PLLs (see Fig. 16) [8].
Offshore converters are denoted to work in islanded mode.

Figure 16: MTDC controls, picture taken from [8].

Onshore power converters should be controlled with two controllers:

1. DC voltage or active power controller;

2. AC voltage or reactive power controller.

Mentioned two controllers produce reference for output current, and zero current.
One example of MTDC is provided in Fig. 17. It can be seen that wind farm connected converters operate

in so-called P mode (active power and AC voltage controlled), and that AC grid connected converters operate
in Vdc droop mode (control of DC voltage and reactive power/AC voltage).
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Figure 17: MTDC example, picture taken from [7].
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Appendices

A Transformations

The three-phase system’s variables can be represented in the stationary abc-frame, as depicted in Fig. 18. Each
vector fabc(t) is presented as sum of unit vector components fa, fb and fc. It should be noted that the angle of
the vector fabc is time dependent and is given by

θ(t) = θ0 +

t∫

0

τdτ.

The vector fabc is obtained by projection to a, b and c axis, as:

fabc(t) =
2

3

(
exp(j0)fa + exp

(
j

2π

3

)
fb + exp

(
j

4π

3

)
fc

)
. (17)

Figure 18: Static abc-frame, picture taken from [6].

Since the phasor in abc-frame is complex in nature and time-varying, the often used frame is αβ-frame
depicted in Fig. 19. Vector in this frame is represented by two components, α and β, obtained by projecting
vector on the two orthogonal axes. Vector’s value is then:

fαβ(t) = fα(t) + jfβ(t). (18)

The transformation from abc-frame to αβ-frame is obtained by applying Clarke’s transformation:

[
fα(t)
fβ(t)

]
=

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]

︸ ︷︷ ︸
Tabc→αβ

×



fa(t)
fb(t)
fc(t)


 , (19)
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while the inverse Clarke’s transformation is:



fa(t)
fb(t)
fc(t)


 =




1 0

− 1
2

√
3

2

− 1
2 −

√
3

2




︸ ︷︷ ︸
Tαβ→abc

×
[
fα(t)
fβ(t)

]
. (20)

Figure 19: Static αβ-frame, picture taken from [6].

Further more, the power system is often modeled in the rotating dq-frame. This frame is two axes frame
rotating with the synchronous frequency, depicted in Fig. 20. The space phasor is given by:

fdq(t) = fd(t) + jfq(t),

where the space phasor has the static position θ towards the axes.

Figure 20: Rotating dq-frame, picture taken from [6].

The complete AC power system is modeled in dqz-frame to fit the developed power converter model. For
that purpose, it was necessary to apply abc to dqz transformation.

In order to transform three-phase voltages and currents from the stationary abc-frame to the rotating dqz-
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frame, Park’s transformation defined as

[
fd(t)
fq(t)

]
=

2

3

[
cos(ω0t) cos

(
ω0t− 2π

3

)
cos
(
ω0t− 4π

3

)

− sin(ω0t) − sin
(
ω0t− 2π

3

)
− sin

(
ω0t− 4π

3

)
]

︸ ︷︷ ︸
Tabc→dq

×



fa(t)
fb(t)
fc(t)


 , (21)

is employed. The inverse Park’s transformation is given as



fa(t)
fb(t)
fc(t)


 =




cos(ωt) − sin(ωt)
cos
(
ω0t− 2π

3

)
− sin

(
ω0t− 2π

3

)

cos
(
ω0t− 4π

3

)
− sin

(
ω0t− 4π

3

)




︸ ︷︷ ︸
Tdq→abc

×
[
fd(t)
fq(t)

]
. (22)
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B Setting up Python

There are several ways for Python installation on Windows. Standard installation ensures running of the
Python code from the Windows console. Anaconda offers a nice GUI for Python named Spyder and en-
ables installation of the packages online. The newest individual edition of Anaconda can be found on link
https://www.anaconda.com/products/individual, and it contains Python version 3.8.5. New Python pack-
ages can be installed inside Anaconda Prompt in administrator mode by running command conda install

-c conda-forge pkg name if the package is available in Anaconda repositories. Otherwise, command python

-m pip install pkg name is used for known packages inside Python repositories or python -m pip install

git+git location for packages on Github.
Python can be started by opening Spyder. Spyder interface is shown in Fig. 21. It offers script view on the

left side and an interactive console on the right side.

Figure 21: Spyder interface.

For this course the following packages should be installed in Anaconda prompt running it as administrator:

• Matplotlib - command: conda install -c conda-forge matplotlib.

Since course codes have LATEXvisualisations, there should be LATEXcompiler installed on the computer. The
compiler we will be using is Miktex (https://miktex.org/download). While installing it, the option for
automatic package installation should be selected.
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