
Reconfigurable Replicated
State Machine

Seif Haridi
KTH

S. Haridi, KTHx ID2203.2x

Motivation
● A Replicated State Machine (RSM) is running on a set of

N processes (typically 3 or 5)
● Can tolerate up to ⎣N/2⎦ process failures

● One more and RSM unavailable
● Need a way to replace faulty processes

● Impossible to know if a process is faulty or slow in
asynchronous system
● Must be able to replace any process,
● This is called reconfiguration

2

S. Haridi, KTHx ID2203.2x

Policy (when) vs Mechanism (how)
● External agent decides when to reconfigure

● Autonomous management system
● Or human operator

● The agent chooses new configuration
● Example: Πold={p1,p2,p3} ⇒ Πnew={p1,p2,p4}

● Can, in general, be a completely new set of processes
▪ Πold ∩ Πnew = ∅

● Often a single suspected process is replaced
● Only concerned with mechanism

● Leave the policy as open and flexible as possible

3

S. Haridi, KTHx ID2203.2x

Configurations
■ Each configuration is conceptually an instance of

Sequence-Paxos

■ Replicas in configuration c0 = {r01,r02,r03}
■ A process p1 may act as multiple replicas

❑ In different configurations, for example {r01,r11,r21}

4

r01

r02 r03

r11

r12

r21

r22 r23

c0

r14

r13

c1 c2

S. Haridi, KTHx ID2203.2x

Configurations
■ Each configuration is conceptually an instance of

Sequence-Paxos

■ Replicas in configuration c1 = {r11,r12,r13,r14}
■ A process may act as multiple replicas In different

configurations,
❑ for example p1 is {r01,r11,r21}

5

r01

r02 r13

r11

r12

r21

r22 r23

c1

r14

r13

c2 c3

Process p1

S. Haridi, KTHx ID2203.2x

Configurations
● RSM executes in a configuration until a reconfiguration occurs, then

moves to new configuration
● Processes that move to the new configuration from the previous one

does that asynchronously
● Once a majority of processes have moved/entered the new configuration

is active
● The first configuration, c0, starts with the empty sequence accepted

in round 0
● It then runs normally

● If sequence v is issued in round n then v is an extension of all
sequences chosen in rounds ≤ n

S. Haridi, KTHx ID2203.2x

Ballot Array of c0

● Replicas r0,1, r0,2 and r0,3 in configuration c0

■ Empty sequence accepted in round 0
■ If sequence v is issued in round n then v is an extension of

all sequences chosen in rounds ≤ n

Round Accepted by r0,1 Accepted by r0,2 Accepted by r0,3

...

n=2 〈C2〉 〈C2〉

n=1 〈C1〉

n=0 〈〉 〈〉 〈〉

Ri,j replica j in config i

S. Haridi, KTHx ID2203.2x

Stop-sign in c0

● At some point, a special stop-sign command is proposed,
and a proposer extends the current sequence with this
command

● The sequence with the stop-sign as last command is the
final sequence in c0

● No sequence longer than the final sequence in c0 may be
issued by any proposer in c0

● Therefore, after the final sequence is chosen, no longer
sequence can be chosen in c0, and c0 is stopped

S. Haridi, KTHx ID2203.2x

Final Sequence in c0

● Replicas r0,1, r0,2 and r0,3 in configuration c0

● SS0 is the stop-sign command in c0

● The final sequence in c0 is σ0 = 〈C2, SS0〉

● Any Sequence in rounds n > 3 will be σ0

Round Accepted by r0,1 Accepted by r0,2 Accepted by r0,3

... 〈C2, SS0〉 〈C2, SS0〉 〈C2, SS0〉

n=3 〈C2, SS0〉 〈C2, SS0〉 〈C2, SS0〉

n=2 〈C2〉 〈C2〉

n=1 〈C1〉

n=0 〈〉 〈〉 〈〉

Final Sequence in c0

● Replica r0,1 and p1 crashed at round 3 after σ0 is chosen,
r0,2 or r0,3 proposes

● The final sequence in c0 is σ0 = 〈C2, SS0〉

● Eventually all correct replicas has decided on SS0

Round Accepted by r0,1  
at p1

Accepted by r0,2  
at p2

Accepted by r0,3  
at p3

... 〈C2, SS0〉 〈C2, SS0〉

n=3 〈C2, SS0〉 〈C2, SS0〉

n=2 〈C2〉 〈C2〉

n=1 〈C1〉

n=0 〈〉 〈〉 〈〉

Starting New
Configurations

S. Haridi, KTHx ID2203.2x

Starting a New Configuration
● Once the final sequence (va) is decided σi in ci and is in the persistent

store by one process p the new configuration ci+1 can start
● Ci is stopped

● SSi has complete information about the ci+1

● Πi+1 : the set of processes in ci+1
● cfg : new configuration number
● RID: for each process pj in Πi+1 its replica identifier ri+1,j

● Each correct pj that is in both in ci and ci+1 waits for its replica ri,j to decide
its final sequence σi before taking it over as its initial sequence

● Each correct pj not in ci copies its initial sequence σi from persistent store

S. Haridi, KTHx ID2203.2x

Starting a New Configuration
● Each process pj starts its new replica in ci+1
● For each replica, the final sequence in ci is automatically

accepted in round 0 of ci+1

● Round 0 in each configuration is special
● Other rounds work as normal

● In leader-based consensus each configuration has its own leader
election abstraction

● the leader election abstraction starts when the new configuration
starts

S. Haridi, KTHx ID2203.2x

● Replicas r1,1, r1,2 and r1,4 in configuration c1

● The final sequence in c0 is chosen in round 0 in configuration c1

● P3 is removed

Round Accepted by r1,1  
at p1

Accepted by r1,2  
at p2

Accepted by r1,4  
at p4

...

n=3

n=2

n=1

n=0 〈C2, SS0〉 〈C2, SS0〉 〈C2, SS0〉

Initial Sequence in c1

S. Haridi, KTHx ID2203.2x

● Replicas r1,1, r1,2 and r1,4 in configuration c1

● The final sequence in c0 is chosen in round 0 in configuration
c1

Round Accepted by r1,1  
at p1

Accepted by r1,2  
at p2

Accepted by r1,4  
at p4

...

n=3 〈C2, SS0, C3, C5〉 〈C2, SS0, C3, C5〉

n=2 〈C2, SS0, C3, C4〉

n=1 〈C2, SS0, C3〉 〈C2, SS0, C3〉 〈C2, SS0, C3〉

n=0 〈C2, SS0〉 〈C2, SS0〉 〈C2, SS0〉

Execution in c1

S. Haridi, KTHx ID2203.2x

Overlapping configurations

16

Cold

time

Cnew
p1

p2

p3

p4

p5

S. Haridi, KTHx ID2203.2x

Extend Round Numbers

● Round numbers are extended to pairs (c, n)
● c is a configuration and n is local round number

within that configuration
● Since configurations are totally ordered,

rounds are totally ordered across
configurations

S. Haridi, KTHx ID2203.2x

Ordering Rounds Totally

Round Accepted by rc0,1 Accepted by rc0,2 Accepted by rc0,3

... 〈C2, SS0〉 〈C2, SS0〉 〈C2, SS0〉

n=(c0, 3) 〈C2, SS0〉 〈C2, SS0〉 〈C2, SS0〉

n=(c0, 2) 〈C2〉 〈C2〉

n=(c0, 1) 〈C1〉

n=(c0, 0) 〈〉 〈〉 〈〉

Round Accepted by rc1,1 Accepted by rc1,2 Accepted by rc1,4

...

n=(c1, 3) 〈C2, SS0, C3, C5〉 〈C2, SS0, C3, C5〉

n=(c1, 2) 〈C2, SS0, C3, C4〉

n=(c1, 1) 〈C2, SS0, C3〉 〈C2, SS0, C3〉 〈C2, SS0, C3〉

n=(c1, 0) 〈C2, SS0〉 〈C2, SS0〉 〈C2, SS0〉

S. Haridi, KTHx ID2203.2x

Starting/Stopping Configuration
● A process have replicas in multiple configurations

● But can only be running in one configuration at any
time

● Starting and stopping configuration ci is not coordinated
between processes
● process pi may have a stopped replica at ci-1 helping

other replicas to reach the final sequence in ci-1
● process pi may have a replica in ci+1 that did not start yet

S. Haridi, KTHx ID2203.2x

Configurations
■ Each configuration is conceptually an instance of

Sequence-Paxos

■ A process p may act as multiple replicas
❑ in different configurations, for example {r11,r21,r31}
❑ p is stopped in c1 , running in c2 , not-started in c3

20

r11

r12 r13

r21

r22

r31

r32 r33

c1

r24

r23

c2 c3

Hand-Over
● As soon as proposer p in ci learns that the final

sequence σi in ci is chosen, p should inform replicas
in ci+1 about σi

● So that replicas in ci+1 can start, to maintain availability

● Process that acts as replica in both ci and ci+1 will
learn σi through normal Decide msgs

● Other replicas in ci+1 must also learn σi
● Send additional Decide messages

Optimizations

S. Haridi, KTHx ID2203.2x

Hand-Over: Early Sequence Transfer
● As leader p receives proposal with stop-sign command

SS, one possibility is for p to not issue proposal with SS
immediately

● Instead, p starts to update replicas in ci+1 with longest
sequence decided so far

● Only sends accepts SS once replicas in ci+1 are
sufficiently up to date

● This way the interruption in service is minimized
● Trade-offs

23

Efficient Hand-Over
● If new replica process p is introduced in system then

entire sequence has to be transferred to p
● This may take some time

● Dividing the sequence into chunks, and letting other
processes in the same configuration send chunks in
parallel to p may increase efficiency
● Trade-off between on network capacity, processor

load, etc.

Snapshots
● Currently, the entire sequence of commands must be

transferred from a configuration to the next specially
when new processes are introduced

● It is possible to take a snapshot of the state of the state
machine after it has executed a certain number of
commands
● E.g. every 1000 commands or every 1h
● Can then garbage collect prefix of sequence

● Care must be taken to still prevent duplicate commands?

S. Haridi, KTHx ID2203.2x

Prepare Phase
● A leader p in ci sends Prepare messages to all replicas in ci

● For each process q , there are three cases:
1. q’s replica is running in ci: q behaves normally
2. q’s replica hasn’t started in ci yet: q obtains final sequence in ci-1

from p, starts its replica in ci, and sends Promise to p
3. q’s replica has stopped ci: q sends the final sequence in ci to p, after

which p will also stop and starts its replica in ci+1

● In case 1 and 2, p waits for Promise messages from a
majority

Summary
● Reconfiguring a replicated state machine is relatively

straight forward
● Round numbers are extended so that rounds in an earlier

configuration are ordered before rounds in a later
configuration

● At most one of the replicas that a process implements
may be running at any time

● The hand-over procedure is important in order to get
availability and efficiency

