$$
\mathrm{E}+\mathrm{S} \underset{\mathrm{k}_{-1}}{\stackrel{\mathrm{k}_{1}}{\rightleftarrows}} \mathrm{ES} \xrightarrow[+]{\mathrm{k}_{2}} \mathrm{P}+\mathrm{E}
$$

Uncompetitive Inhibitor

ESI

Competitive Inhibitor

Uncompetitive
Inhibitor $\mathrm{E}+\mathrm{S} \rightleftarrows \mathrm{ES} \longrightarrow \mathrm{P}+\mathrm{E}$ ${ }_{i}^{+} \quad V_{\text {max }}$ decreased

Uncompetitive Inhibitor $\mathrm{E}+\mathrm{S} \underset{\mathrm{k}_{-1}}{\stackrel{\mathrm{k}_{1}}{\rightleftarrows}} \stackrel{\mathrm{ES}}{\stackrel{\mathrm{k}_{2}}{\longrightarrow}} \mathrm{P}+\mathrm{E}$ $\downarrow \left\lvert\, \begin{gathered}\text { Equilibrium } \\ \text { shifts right }\end{gathered}\right.$ ESI

Uncompetitive Inhibition

$$
\frac{1}{\mathrm{~V}_{\mathrm{o}}}=\frac{\mathrm{K}_{\mathrm{m}}}{\mathrm{~V}_{\max }} \frac{1}{[\mathrm{~S}]}+\frac{\alpha^{\prime}}{\mathrm{V}_{\max }}
$$

$$
\alpha=1+\frac{11}{k_{i}}
$$

Decreased K_{m}
Decreased $V_{\text {max }}$

Mixed inhibitor

Mixed inhibitor
$\mathrm{E}+\mathrm{S} \rightleftarrows \mathrm{ES} \longrightarrow \mathrm{P}+\mathrm{E}$
$\begin{array}{llll}+ & + & \\ l & \text { I } & V_{\text {max }}\end{array}$
$\downarrow \uparrow \quad \downarrow \uparrow$ decreased
$\mathrm{El}+\mathrm{S} \rightleftarrows \mathrm{ESI}$

Mixed inhibitor

K_{m} can increase, decrease or stay the same

Mixed Inhibitor

$$
\frac{1}{V_{o}}=\frac{\alpha K_{m}}{V_{\max }} \frac{1}{[S]}+\frac{\alpha^{\prime}}{V_{\max }}
$$

$\mathrm{a}=1+\frac{[1]}{\mathrm{K}_{\mathrm{l}}} \quad$ Effect of El formation
$a^{\prime}=1+\frac{[I]}{K_{1}^{\prime}} \quad$ Effect of ESI formation

Mixed Inhibitor

Noncompetitive Inhibitor

Conclusion: Effect of reversible inhibitors on $\mathrm{V}_{\text {max,app }}$ and $\mathrm{K}_{\mathrm{m} \text {, app }}$

Inhibitor	$\mathrm{V}_{\max , \text { app }}$	$\mathrm{K}_{\mathrm{m}, \text { app }}$
Absent	$\mathrm{V}_{\max }$	K_{m}
Competitive	$\mathrm{V}_{\max }$	$\alpha \mathrm{K}_{\mathrm{m}}$
Uncompetitive	$\mathrm{V}_{\max } / \alpha^{\prime}$	$\mathrm{K}_{\mathrm{m}} / \alpha^{\prime}$
Mixed	$\mathrm{V}_{\max } / \alpha^{\prime}$	$\alpha \mathrm{K}_{\mathrm{m}} / \alpha^{\prime}$

