. ° .
e.c.0%0
~.o:o:ofo’
. [] []

L] (]

ITMO UNIVERSITY

How to Win Coding Competitions: Secrets of Champions

Week 3: Sorting and Search Algorithms
Lecture 9: Sorting: Guidelines for standard libraries

Maxim Buzdalov
Saint Petersburg 2016

* ITMO UNIVERSITY General words

This video is dedicated to standard libraries of various languages.

2/4

ITMO UNIVERSITY General words

This video is dedicated to standard libraries of various languages.
The Most Important Primary Advice:

2/4

i |TMO UNIVERSITY General words

This video is dedicated to standard libraries of various languages.
The Most Important Primary Advice:

NEVER, EVER WRITE YOUR OWN SORTING CODE
if a standard one will do

2/4

TMO UNIVERSITY General words

This video is dedicated to standard libraries of various languages.
The Most Important Primary Advice:

NEVER, EVER WRITE YOUR OWN SORTING CODE
if a standard one will do

» Your code has more bugs than the standard library’s

2/4

TMO UNIVERSITY General words

This video is dedicated to standard libraries of various languages.
The Most Important Primary Advice:

NEVER, EVER WRITE YOUR OWN SORTING CODE
if a standard one will do

» Your code has more bugs than the standard library’s

» Your code is less tuned — performs worse

2/4

¥ ITMO UNIVERSITY General words

This video is dedicated to standard libraries of various languages.
The Most Important Primary Advice:

NEVER, EVER WRITE YOUR OWN SORTING CODE
if a standard one will do

» Your code has more bugs than the standard library’s

» Your code is less tuned — performs worse
» You may write your own sorting if:
> it is fast because it is problem-specific (e.g. radix sort)

2/4

ITMO UNIVERSITY General words

This video is dedicated to standard libraries of various languages.
The Most Important Primary Advice:

NEVER, EVER WRITE YOUR OWN SORTING CODE
if a standard one will do

» Your code has more bugs than the standard library’s

» Your code is less tuned — performs worse
» You may write your own sorting if:

> it is fast because it is problem-specific (e.g. radix sort)
» the standard one eats too much memory (Java and objects)

2/4

ITMO UNIVERSITY General words

This video is dedicated to standard libraries of various languages.
The Most Important Primary Advice:

NEVER, EVER WRITE YOUR OWN SORTING CODE
if a standard one will do

v

Your code has more bugs than the standard library’s

v

Your code is less tuned — performs worse

v

You may write your own sorting if:

> it is fast because it is problem-specific (e.g. radix sort)
» the standard one eats too much memory (Java and objects)

v

If you write quicksort, write it randomized

2/4

* ITMO UNIVERSITY

» Avoid using gsort from the C library:

» Too simple to be killed by special tests
» Comparator is never inlined — slower than C++ sorts

3/4

 ITMO UNIVERSITY

» Avoid using gsort from the C library:

» Too simple to be killed by special tests
» Comparator is never inlined — slower than C++ sorts

» std::sort: a quicksort with hacks

» If spent too much time, switches to a heapsort (slow, in-place, ©(N log N))
» Guaranteed O(Nlog N) on any input data, not a stable sorting

3/4

 ITMO UNIVERSITY

» Avoid using gsort from the C library:

» Too simple to be killed by special tests
» Comparator is never inlined — slower than C++ sorts

» std::sort: a quicksort with hacks

» If spent too much time, switches to a heapsort (slow, in-place, ©(N log N))
» Guaranteed O(Nlog N) on any input data, not a stable sorting

» std::stable_sort: a mergesort with tuning

» Generally slower than std: :sort, but nevertheless O(N log N)
» Stable, as follows from the name

3/4

ITMO UNIVERSITY

v

Avoid using gsort from the C library:
» Too simple to be killed by special tests
» Comparator is never inlined — slower than C++ sorts
» std::sort: a quicksort with hacks
» If spent too much time, switches to a heapsort (slow, in-place, ©(N log N))
» Guaranteed O(Nlog N) on any input data, not a stable sorting
» std::stable_sort: a mergesort with tuning
» Generally slower than std: :sort, but nevertheless O(N log N)
» Stable, as follows from the name
Comparator for std: :sort and std: :stable_sort:
» An optional argument x which can be called as x(a, b) and returns whether a < b

> Pointer to function (old style, not inlinable, so not recommended)
> A class with bool operator () (T const &, T const &) const

v

3/4

 ITMO UNIVERSITY

» Java has three families of sorting algorithms:

4/4

ITMO UNIVERSITY

» Java has three families of sorting algorithms:
» java.util.Arrays.sort(primitivel[]): a dual-pivot quicksort

> Not stable, but nobody misses it, because it. ..
» Does not support comparators: only natural ordering
» As majority of quicksorts, can be degraded to ©(N?). Use with care.

4/4

ITMO UNIVERSITY

» Java has three families of sorting algorithms:
» java.util.Arrays.sort(primitivel[]): a dual-pivot quicksort

> Not stable, but nobody misses it, because it. ..
» Does not support comparators: only natural ordering
» As majority of quicksorts, can be degraded to ©(N?). Use with care.

» java.util.Arrays.sort(Object[]): used to be a tuned mergesort, now TimSort

» Stable and fool-proof, supports comparators
» TimSort: mergesort with various "best-case” improvements, originally from Python

4/4

ITMO UNIVERSITY

» Java has three families of sorting algorithms:
» java.util.Arrays.sort(primitivel[]): a dual-pivot quicksort
> Not stable, but nobody misses it, because it. ..
» Does not support comparators: only natural ordering
» As majority of quicksorts, can be degraded to ©(N?). Use with care.
» java.util.Arrays.sort(Object[]): used to be a tuned mergesort, now TimSort
» Stable and fool-proof, supports comparators
» TimSort: mergesort with various "best-case” improvements, originally from Python
» java.util.Collections.<T>sort(Collection<T>)
» Same algorithm as the previous one, maybe differently tuned
» Often reduces to copying data to an array and calling Arrays.sort
> ...s0 even more extra memory needed!

4/4

ITMO UNIVERSITY

» Java has three families of sorting algorithms:
» java.util.Arrays.sort(primitivel[]): a dual-pivot quicksort
> Not stable, but nobody misses it, because it. ..
» Does not support comparators: only natural ordering
» As majority of quicksorts, can be degraded to ©(N?). Use with care.
» java.util.Arrays.sort(Object[]): used to be a tuned mergesort, now TimSort
» Stable and fool-proof, supports comparators
» TimSort: mergesort with various "best-case” improvements, originally from Python
» java.util.Collections.<T>sort(Collection<T>)
» Same algorithm as the previous one, maybe differently tuned
» Often reduces to copying data to an array and calling Arrays.sort

> ...s0 even more extra memory needed!
» Comparator: an implementation of java.util.Comparator<T> interface
» Implement public int compare(T, T) with result types “<", “=", “>"

» In Java 8, can be done by a lambda

4/4

