
How to Win Coding Competitions: Secrets of Champions

Week 3: Sorting and Search Algorithms
Lecture 9: Sorting: Guidelines for standard libraries

Maxim Buzdalov
Saint Petersburg 2016



General words

This video is dedicated to standard libraries of various languages.

The Most Important Primary Advice:

NEVER, EVER WRITE YOUR OWN SORTING CODE
if a standard one will do

I Your code has more bugs than the standard library’s

I Your code is less tuned → performs worse
I You may write your own sorting if:

I it is fast because it is problem-specific (e.g. radix sort)
I the standard one eats too much memory (Java and objects)

I If you write quicksort, write it randomized

2 / 4



General words

This video is dedicated to standard libraries of various languages.
The Most Important Primary Advice:

NEVER, EVER WRITE YOUR OWN SORTING CODE
if a standard one will do

I Your code has more bugs than the standard library’s

I Your code is less tuned → performs worse
I You may write your own sorting if:

I it is fast because it is problem-specific (e.g. radix sort)
I the standard one eats too much memory (Java and objects)

I If you write quicksort, write it randomized

2 / 4



General words

This video is dedicated to standard libraries of various languages.
The Most Important Primary Advice:

NEVER, EVER WRITE YOUR OWN SORTING CODE
if a standard one will do

I Your code has more bugs than the standard library’s

I Your code is less tuned → performs worse
I You may write your own sorting if:

I it is fast because it is problem-specific (e.g. radix sort)
I the standard one eats too much memory (Java and objects)

I If you write quicksort, write it randomized

2 / 4



General words

This video is dedicated to standard libraries of various languages.
The Most Important Primary Advice:

NEVER, EVER WRITE YOUR OWN SORTING CODE
if a standard one will do

I Your code has more bugs than the standard library’s

I Your code is less tuned → performs worse
I You may write your own sorting if:

I it is fast because it is problem-specific (e.g. radix sort)
I the standard one eats too much memory (Java and objects)

I If you write quicksort, write it randomized

2 / 4



General words

This video is dedicated to standard libraries of various languages.
The Most Important Primary Advice:

NEVER, EVER WRITE YOUR OWN SORTING CODE
if a standard one will do

I Your code has more bugs than the standard library’s

I Your code is less tuned → performs worse

I You may write your own sorting if:

I it is fast because it is problem-specific (e.g. radix sort)
I the standard one eats too much memory (Java and objects)

I If you write quicksort, write it randomized

2 / 4



General words

This video is dedicated to standard libraries of various languages.
The Most Important Primary Advice:

NEVER, EVER WRITE YOUR OWN SORTING CODE
if a standard one will do

I Your code has more bugs than the standard library’s

I Your code is less tuned → performs worse
I You may write your own sorting if:

I it is fast because it is problem-specific (e.g. radix sort)

I the standard one eats too much memory (Java and objects)

I If you write quicksort, write it randomized

2 / 4



General words

This video is dedicated to standard libraries of various languages.
The Most Important Primary Advice:

NEVER, EVER WRITE YOUR OWN SORTING CODE
if a standard one will do

I Your code has more bugs than the standard library’s

I Your code is less tuned → performs worse
I You may write your own sorting if:

I it is fast because it is problem-specific (e.g. radix sort)
I the standard one eats too much memory (Java and objects)

I If you write quicksort, write it randomized

2 / 4



General words

This video is dedicated to standard libraries of various languages.
The Most Important Primary Advice:

NEVER, EVER WRITE YOUR OWN SORTING CODE
if a standard one will do

I Your code has more bugs than the standard library’s

I Your code is less tuned → performs worse
I You may write your own sorting if:

I it is fast because it is problem-specific (e.g. radix sort)
I the standard one eats too much memory (Java and objects)

I If you write quicksort, write it randomized

2 / 4



C/C++

I Avoid using qsort from the C library:
I Too simple to be killed by special tests
I Comparator is never inlined → slower than C++ sorts

I std::sort: a quicksort with hacks
I If spent too much time, switches to a heapsort (slow, in-place, Θ(N logN))
I Guaranteed O(N logN) on any input data, not a stable sorting

I std::stable sort: a mergesort with tuning
I Generally slower than std::sort, but nevertheless O(N logN)
I Stable, as follows from the name

I Comparator for std::sort and std::stable sort:
I An optional argument x which can be called as x(a, b) and returns whether a < b

I Pointer to function (old style, not inlinable, so not recommended)
I A class with bool operator ()(T const &, T const &) const

3 / 4



C/C++

I Avoid using qsort from the C library:
I Too simple to be killed by special tests
I Comparator is never inlined → slower than C++ sorts

I std::sort: a quicksort with hacks
I If spent too much time, switches to a heapsort (slow, in-place, Θ(N logN))
I Guaranteed O(N logN) on any input data, not a stable sorting

I std::stable sort: a mergesort with tuning
I Generally slower than std::sort, but nevertheless O(N logN)
I Stable, as follows from the name

I Comparator for std::sort and std::stable sort:
I An optional argument x which can be called as x(a, b) and returns whether a < b

I Pointer to function (old style, not inlinable, so not recommended)
I A class with bool operator ()(T const &, T const &) const

3 / 4



C/C++

I Avoid using qsort from the C library:
I Too simple to be killed by special tests
I Comparator is never inlined → slower than C++ sorts

I std::sort: a quicksort with hacks
I If spent too much time, switches to a heapsort (slow, in-place, Θ(N logN))
I Guaranteed O(N logN) on any input data, not a stable sorting

I std::stable sort: a mergesort with tuning
I Generally slower than std::sort, but nevertheless O(N logN)
I Stable, as follows from the name

I Comparator for std::sort and std::stable sort:
I An optional argument x which can be called as x(a, b) and returns whether a < b

I Pointer to function (old style, not inlinable, so not recommended)
I A class with bool operator ()(T const &, T const &) const

3 / 4



C/C++

I Avoid using qsort from the C library:
I Too simple to be killed by special tests
I Comparator is never inlined → slower than C++ sorts

I std::sort: a quicksort with hacks
I If spent too much time, switches to a heapsort (slow, in-place, Θ(N logN))
I Guaranteed O(N logN) on any input data, not a stable sorting

I std::stable sort: a mergesort with tuning
I Generally slower than std::sort, but nevertheless O(N logN)
I Stable, as follows from the name

I Comparator for std::sort and std::stable sort:
I An optional argument x which can be called as x(a, b) and returns whether a < b

I Pointer to function (old style, not inlinable, so not recommended)
I A class with bool operator ()(T const &, T const &) const

3 / 4



Java

I Java has three families of sorting algorithms:

I java.util.Arrays.sort(primitive[]): a dual-pivot quicksort
I Not stable, but nobody misses it, because it. . .
I Does not support comparators: only natural ordering
I As majority of quicksorts, can be degraded to Θ(N2). Use with care.

I java.util.Arrays.sort(Object[]): used to be a tuned mergesort, now TimSort
I Stable and fool-proof, supports comparators
I TimSort: mergesort with various “best-case” improvements, originally from Python

I java.util.Collections.<T>sort(Collection<T>)
I Same algorithm as the previous one, maybe differently tuned
I Often reduces to copying data to an array and calling Arrays.sort
I . . . so even more extra memory needed!

I Comparator: an implementation of java.util.Comparator<T> interface
I Implement public int compare(T, T) with result types “<”, “=”, “>”
I In Java 8, can be done by a lambda

4 / 4



Java

I Java has three families of sorting algorithms:
I java.util.Arrays.sort(primitive[]): a dual-pivot quicksort

I Not stable, but nobody misses it, because it. . .
I Does not support comparators: only natural ordering
I As majority of quicksorts, can be degraded to Θ(N2). Use with care.

I java.util.Arrays.sort(Object[]): used to be a tuned mergesort, now TimSort
I Stable and fool-proof, supports comparators
I TimSort: mergesort with various “best-case” improvements, originally from Python

I java.util.Collections.<T>sort(Collection<T>)
I Same algorithm as the previous one, maybe differently tuned
I Often reduces to copying data to an array and calling Arrays.sort
I . . . so even more extra memory needed!

I Comparator: an implementation of java.util.Comparator<T> interface
I Implement public int compare(T, T) with result types “<”, “=”, “>”
I In Java 8, can be done by a lambda

4 / 4



Java

I Java has three families of sorting algorithms:
I java.util.Arrays.sort(primitive[]): a dual-pivot quicksort

I Not stable, but nobody misses it, because it. . .
I Does not support comparators: only natural ordering
I As majority of quicksorts, can be degraded to Θ(N2). Use with care.

I java.util.Arrays.sort(Object[]): used to be a tuned mergesort, now TimSort
I Stable and fool-proof, supports comparators
I TimSort: mergesort with various “best-case” improvements, originally from Python

I java.util.Collections.<T>sort(Collection<T>)
I Same algorithm as the previous one, maybe differently tuned
I Often reduces to copying data to an array and calling Arrays.sort
I . . . so even more extra memory needed!

I Comparator: an implementation of java.util.Comparator<T> interface
I Implement public int compare(T, T) with result types “<”, “=”, “>”
I In Java 8, can be done by a lambda

4 / 4



Java

I Java has three families of sorting algorithms:
I java.util.Arrays.sort(primitive[]): a dual-pivot quicksort

I Not stable, but nobody misses it, because it. . .
I Does not support comparators: only natural ordering
I As majority of quicksorts, can be degraded to Θ(N2). Use with care.

I java.util.Arrays.sort(Object[]): used to be a tuned mergesort, now TimSort
I Stable and fool-proof, supports comparators
I TimSort: mergesort with various “best-case” improvements, originally from Python

I java.util.Collections.<T>sort(Collection<T>)
I Same algorithm as the previous one, maybe differently tuned
I Often reduces to copying data to an array and calling Arrays.sort
I . . . so even more extra memory needed!

I Comparator: an implementation of java.util.Comparator<T> interface
I Implement public int compare(T, T) with result types “<”, “=”, “>”
I In Java 8, can be done by a lambda

4 / 4



Java

I Java has three families of sorting algorithms:
I java.util.Arrays.sort(primitive[]): a dual-pivot quicksort

I Not stable, but nobody misses it, because it. . .
I Does not support comparators: only natural ordering
I As majority of quicksorts, can be degraded to Θ(N2). Use with care.

I java.util.Arrays.sort(Object[]): used to be a tuned mergesort, now TimSort
I Stable and fool-proof, supports comparators
I TimSort: mergesort with various “best-case” improvements, originally from Python

I java.util.Collections.<T>sort(Collection<T>)
I Same algorithm as the previous one, maybe differently tuned
I Often reduces to copying data to an array and calling Arrays.sort
I . . . so even more extra memory needed!

I Comparator: an implementation of java.util.Comparator<T> interface
I Implement public int compare(T, T) with result types “<”, “=”, “>”
I In Java 8, can be done by a lambda

4 / 4


