
How to Win Coding Competitions: Secrets of Champions

Week 3: Sorting and Search Algorithms
Lecture 8: Integer sorting

Maxim Buzdalov
Saint Petersburg 2016



Sorting integers

How can we speed up sorting, if we know that we are sorting integers?

I Integers are typically bounded by 2W for some word size W

I We can use integers as indices for arrays

I We can perform mathematical operations with integers

I . . . because we can perform operations which reveal more information

I Counting sort

I Bucket sort

I Radix sort

2 / 5



Sorting integers

How can we speed up sorting, if we know that we are sorting integers?

I Integers are typically bounded by 2W for some word size W

I We can use integers as indices for arrays

I We can perform mathematical operations with integers

I . . . because we can perform operations which reveal more information

I Counting sort

I Bucket sort

I Radix sort

2 / 5



Sorting integers

How can we speed up sorting, if we know that we are sorting integers?

I Integers are typically bounded by 2W for some word size W

I We can use integers as indices for arrays

I We can perform mathematical operations with integers

I . . . because we can perform operations which reveal more information

I Counting sort

I Bucket sort

I Radix sort

2 / 5



Sorting integers

How can we speed up sorting, if we know that we are sorting integers?

I Integers are typically bounded by 2W for some word size W

I We can use integers as indices for arrays

I We can perform mathematical operations with integers

I . . . because we can perform operations which reveal more information

I Counting sort

I Bucket sort

I Radix sort

2 / 5



Sorting integers

How can we speed up sorting, if we know that we are sorting integers?

I Integers are typically bounded by 2W for some word size W

I We can use integers as indices for arrays

I We can perform mathematical operations with integers

We are no longer limited by the Ω(N logN) lower bound. . .

I . . . because we can perform operations which reveal more information

I Counting sort

I Bucket sort

I Radix sort

2 / 5



Sorting integers

How can we speed up sorting, if we know that we are sorting integers?

I Integers are typically bounded by 2W for some word size W

I We can use integers as indices for arrays

I We can perform mathematical operations with integers

We are no longer limited by the Ω(N logN) lower bound. . .

I . . . because we can perform operations which reveal more information

I Counting sort

I Bucket sort

I Radix sort

2 / 5



Sorting integers

How can we speed up sorting, if we know that we are sorting integers?

I Integers are typically bounded by 2W for some word size W

I We can use integers as indices for arrays

I We can perform mathematical operations with integers

We are no longer limited by the Ω(N logN) lower bound. . .

I . . . because we can perform operations which reveal more information

In this video:

I Counting sort

I Bucket sort

I Radix sort

2 / 5



Sorting integers

How can we speed up sorting, if we know that we are sorting integers?

I Integers are typically bounded by 2W for some word size W

I We can use integers as indices for arrays

I We can perform mathematical operations with integers

We are no longer limited by the Ω(N logN) lower bound. . .

I . . . because we can perform operations which reveal more information

In this video:

I Counting sort

I Bucket sort

I Radix sort

2 / 5



Sorting integers

How can we speed up sorting, if we know that we are sorting integers?

I Integers are typically bounded by 2W for some word size W

I We can use integers as indices for arrays

I We can perform mathematical operations with integers

We are no longer limited by the Ω(N logN) lower bound. . .

I . . . because we can perform operations which reveal more information

In this video:

I Counting sort

I Bucket sort

I Radix sort

2 / 5



Sorting integers

How can we speed up sorting, if we know that we are sorting integers?

I Integers are typically bounded by 2W for some word size W

I We can use integers as indices for arrays

I We can perform mathematical operations with integers

We are no longer limited by the Ω(N logN) lower bound. . .

I . . . because we can perform operations which reveal more information

In this video:

I Counting sort

I Bucket sort

I Radix sort

2 / 5



Counting sort

Given: N integers, each from [1;M], M is quite small. How to sort them efficiently?

I “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

5 1 2 5 4 3 2 1 4 3 1 5

1 2 3 4 5

0 0 0 0 0

Running time: Θ(N + M), additional space: Θ(M)

I Faster than comparison-based sorting algorithms when M is small

3 / 5



Counting sort

Given: N integers, each from [1;M], M is quite small. How to sort them efficiently?

I “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

5 1 2 5 4 3 2 1 4 3 1 5

1 2 3 4 5

0 0 0 0 0

Running time: Θ(N + M), additional space: Θ(M)

I Faster than comparison-based sorting algorithms when M is small

3 / 5



Counting sort

Given: N integers, each from [1;M], M is quite small. How to sort them efficiently?

I “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen

This is Counting sort!

5 1 2 5 4 3 2 1 4 3 1 5

1 2 3 4 5

0 0 0 0 0

Running time: Θ(N + M), additional space: Θ(M)

I Faster than comparison-based sorting algorithms when M is small

3 / 5



Counting sort

Given: N integers, each from [1;M], M is quite small. How to sort them efficiently?

I “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

5 1 2 5 4 3 2 1 4 3 1 5

1 2 3 4 5

0 0 0 0 0

Running time: Θ(N + M), additional space: Θ(M)

I Faster than comparison-based sorting algorithms when M is small

3 / 5



Counting sort

Given: N integers, each from [1;M], M is quite small. How to sort them efficiently?

I “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

5 1 2 5 4 3 2 1 4 3 1 5

1 2 3 4 5

0 0 0 0 0

Running time: Θ(N + M), additional space: Θ(M)

I Faster than comparison-based sorting algorithms when M is small

3 / 5



Counting sort

Given: N integers, each from [1;M], M is quite small. How to sort them efficiently?

I “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

1 2 5 4 3 2 1 4 3 1 5

1 2 3 4 5

0 0 0 0 1

Running time: Θ(N + M), additional space: Θ(M)

I Faster than comparison-based sorting algorithms when M is small

3 / 5



Counting sort

Given: N integers, each from [1;M], M is quite small. How to sort them efficiently?

I “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

2 5 4 3 2 1 4 3 1 5

1 2 3 4 5

1 0 0 0 1

Running time: Θ(N + M), additional space: Θ(M)

I Faster than comparison-based sorting algorithms when M is small

3 / 5



Counting sort

Given: N integers, each from [1;M], M is quite small. How to sort them efficiently?

I “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

5 4 3 2 1 4 3 1 5

1 2 3 4 5

1 1 0 0 1

Running time: Θ(N + M), additional space: Θ(M)

I Faster than comparison-based sorting algorithms when M is small

3 / 5



Counting sort

Given: N integers, each from [1;M], M is quite small. How to sort them efficiently?

I “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

4 3 2 1 4 3 1 5

1 2 3 4 5

1 1 0 0 2

Running time: Θ(N + M), additional space: Θ(M)

I Faster than comparison-based sorting algorithms when M is small

3 / 5



Counting sort

Given: N integers, each from [1;M], M is quite small. How to sort them efficiently?

I “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

3 2 1 4 3 1 5

1 2 3 4 5

1 1 0 1 2

Running time: Θ(N + M), additional space: Θ(M)

I Faster than comparison-based sorting algorithms when M is small

3 / 5



Counting sort

Given: N integers, each from [1;M], M is quite small. How to sort them efficiently?

I “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

2 1 4 3 1 5

1 2 3 4 5

1 1 1 1 2

Running time: Θ(N + M), additional space: Θ(M)

I Faster than comparison-based sorting algorithms when M is small

3 / 5



Counting sort

Given: N integers, each from [1;M], M is quite small. How to sort them efficiently?

I “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

1 4 3 1 5

1 2 3 4 5

1 2 1 1 2

Running time: Θ(N + M), additional space: Θ(M)

I Faster than comparison-based sorting algorithms when M is small

3 / 5



Counting sort

Given: N integers, each from [1;M], M is quite small. How to sort them efficiently?

I “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

4 3 1 5

1 2 3 4 5

2 2 1 1 2

Running time: Θ(N + M), additional space: Θ(M)

I Faster than comparison-based sorting algorithms when M is small

3 / 5



Counting sort

Given: N integers, each from [1;M], M is quite small. How to sort them efficiently?

I “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

3 1 5

1 2 3 4 5

2 2 1 2 2

Running time: Θ(N + M), additional space: Θ(M)

I Faster than comparison-based sorting algorithms when M is small

3 / 5



Counting sort

Given: N integers, each from [1;M], M is quite small. How to sort them efficiently?

I “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

1 5

1 2 3 4 5

2 2 2 2 2

Running time: Θ(N + M), additional space: Θ(M)

I Faster than comparison-based sorting algorithms when M is small

3 / 5



Counting sort

Given: N integers, each from [1;M], M is quite small. How to sort them efficiently?

I “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

5

1 2 3 4 5

3 2 2 2 2

Running time: Θ(N + M), additional space: Θ(M)

I Faster than comparison-based sorting algorithms when M is small

3 / 5



Counting sort

Given: N integers, each from [1;M], M is quite small. How to sort them efficiently?

I “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

1 2 3 4 5

3 2 2 2 3

Running time: Θ(N + M), additional space: Θ(M)

I Faster than comparison-based sorting algorithms when M is small

3 / 5



Counting sort

Given: N integers, each from [1;M], M is quite small. How to sort them efficiently?

I “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

1

1 2 3 4 5

2 2 2 2 3

Running time: Θ(N + M), additional space: Θ(M)

I Faster than comparison-based sorting algorithms when M is small

3 / 5



Counting sort

Given: N integers, each from [1;M], M is quite small. How to sort them efficiently?

I “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

1 1

1 2 3 4 5

1 2 2 2 3

Running time: Θ(N + M), additional space: Θ(M)

I Faster than comparison-based sorting algorithms when M is small

3 / 5



Counting sort

Given: N integers, each from [1;M], M is quite small. How to sort them efficiently?

I “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

1 1 1

1 2 3 4 5

0 2 2 2 3

Running time: Θ(N + M), additional space: Θ(M)

I Faster than comparison-based sorting algorithms when M is small

3 / 5



Counting sort

Given: N integers, each from [1;M], M is quite small. How to sort them efficiently?

I “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

1 1 1 2

1 2 3 4 5

0 1 2 2 3

Running time: Θ(N + M), additional space: Θ(M)

I Faster than comparison-based sorting algorithms when M is small

3 / 5



Counting sort

Given: N integers, each from [1;M], M is quite small. How to sort them efficiently?

I “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

1 1 1 2 2

1 2 3 4 5

0 0 2 2 3

Running time: Θ(N + M), additional space: Θ(M)

I Faster than comparison-based sorting algorithms when M is small

3 / 5



Counting sort

Given: N integers, each from [1;M], M is quite small. How to sort them efficiently?

I “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

1 1 1 2 2 3

1 2 3 4 5

0 0 1 2 3

Running time: Θ(N + M), additional space: Θ(M)

I Faster than comparison-based sorting algorithms when M is small

3 / 5



Counting sort

Given: N integers, each from [1;M], M is quite small. How to sort them efficiently?

I “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

1 1 1 2 2 3 3

1 2 3 4 5

0 0 0 2 3

Running time: Θ(N + M), additional space: Θ(M)

I Faster than comparison-based sorting algorithms when M is small

3 / 5



Counting sort

Given: N integers, each from [1;M], M is quite small. How to sort them efficiently?

I “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

1 1 1 2 2 3 3 4

1 2 3 4 5

0 0 0 1 3

Running time: Θ(N + M), additional space: Θ(M)

I Faster than comparison-based sorting algorithms when M is small

3 / 5



Counting sort

Given: N integers, each from [1;M], M is quite small. How to sort them efficiently?

I “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

1 1 1 2 2 3 3 4 4

1 2 3 4 5

0 0 0 0 3

Running time: Θ(N + M), additional space: Θ(M)

I Faster than comparison-based sorting algorithms when M is small

3 / 5



Counting sort

Given: N integers, each from [1;M], M is quite small. How to sort them efficiently?

I “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

1 1 1 2 2 3 3 4 4 5

1 2 3 4 5

0 0 0 0 2

Running time: Θ(N + M), additional space: Θ(M)

I Faster than comparison-based sorting algorithms when M is small

3 / 5



Counting sort

Given: N integers, each from [1;M], M is quite small. How to sort them efficiently?

I “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

1 1 1 2 2 3 3 4 4 5 5

1 2 3 4 5

0 0 0 0 1

Running time: Θ(N + M), additional space: Θ(M)

I Faster than comparison-based sorting algorithms when M is small

3 / 5



Counting sort

Given: N integers, each from [1;M], M is quite small. How to sort them efficiently?

I “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

1 1 1 2 2 3 3 4 4 5 5 5

1 2 3 4 5

0 0 0 0 0

Running time: Θ(N + M), additional space: Θ(M)

I Faster than comparison-based sorting algorithms when M is small

3 / 5



Counting sort

Given: N integers, each from [1;M], M is quite small. How to sort them efficiently?

I “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

1 1 1 2 2 3 3 4 4 5 5 5

1 2 3 4 5

0 0 0 0 0

Running time: Θ(N + M), additional space: Θ(M)

I Faster than comparison-based sorting algorithms when M is small

3 / 5



Counting sort

Given: N integers, each from [1;M], M is quite small. How to sort them efficiently?

I “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

1 1 1 2 2 3 3 4 4 5 5 5

1 2 3 4 5

0 0 0 0 0

Running time: Θ(N + M), additional space: Θ(M)

I Faster than comparison-based sorting algorithms when M is small

3 / 5



Bucket sort

Given: N key-value pairs, keys are integers from [1;M], M is quite small.
How to sort them efficiently?

I We cannot “just count” integers anymore
I But we still can profit from using the keys as array indices
I Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

5/Z 1/K 2/E 5/W 4/J 3/U 2/K 1/Z 4/A 3/Q 1/X 5/E

1

2

3

4

5

4 / 5



Bucket sort

Given: N key-value pairs, keys are integers from [1;M], M is quite small.
How to sort them efficiently?

I We cannot “just count” integers anymore
I But we still can profit from using the keys as array indices

I Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

5/Z 1/K 2/E 5/W 4/J 3/U 2/K 1/Z 4/A 3/Q 1/X 5/E

1

2

3

4

5

4 / 5



Bucket sort

Given: N key-value pairs, keys are integers from [1;M], M is quite small.
How to sort them efficiently?

I We cannot “just count” integers anymore
I But we still can profit from using the keys as array indices
I Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

5/Z 1/K 2/E 5/W 4/J 3/U 2/K 1/Z 4/A 3/Q 1/X 5/E

1

2

3

4

5

4 / 5



Bucket sort

Given: N key-value pairs, keys are integers from [1;M], M is quite small.
How to sort them efficiently?

I We cannot “just count” integers anymore
I But we still can profit from using the keys as array indices
I Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

5/Z 1/K 2/E 5/W 4/J 3/U 2/K 1/Z 4/A 3/Q 1/X 5/E

1

2

3

4

5

4 / 5



Bucket sort

Given: N key-value pairs, keys are integers from [1;M], M is quite small.
How to sort them efficiently?

I We cannot “just count” integers anymore
I But we still can profit from using the keys as array indices
I Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

5/Z 1/K 2/E 5/W 4/J 3/U 2/K 1/Z 4/A 3/Q 1/X 5/E

1

2

3

4

5

4 / 5



Bucket sort

Given: N key-value pairs, keys are integers from [1;M], M is quite small.
How to sort them efficiently?

I We cannot “just count” integers anymore
I But we still can profit from using the keys as array indices
I Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

1/K 2/E 5/W 4/J 3/U 2/K 1/Z 4/A 3/Q 1/X 5/E

1

2

3

4

5 Z

4 / 5



Bucket sort

Given: N key-value pairs, keys are integers from [1;M], M is quite small.
How to sort them efficiently?

I We cannot “just count” integers anymore
I But we still can profit from using the keys as array indices
I Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

2/E 5/W 4/J 3/U 2/K 1/Z 4/A 3/Q 1/X 5/E

1 K

2

3

4

5 Z

4 / 5



Bucket sort

Given: N key-value pairs, keys are integers from [1;M], M is quite small.
How to sort them efficiently?

I We cannot “just count” integers anymore
I But we still can profit from using the keys as array indices
I Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

5/W 4/J 3/U 2/K 1/Z 4/A 3/Q 1/X 5/E

1 K

2 E

3

4

5 Z

4 / 5



Bucket sort

Given: N key-value pairs, keys are integers from [1;M], M is quite small.
How to sort them efficiently?

I We cannot “just count” integers anymore
I But we still can profit from using the keys as array indices
I Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

4/J 3/U 2/K 1/Z 4/A 3/Q 1/X 5/E

1 K

2 E

3

4

5 Z W

4 / 5



Bucket sort

Given: N key-value pairs, keys are integers from [1;M], M is quite small.
How to sort them efficiently?

I We cannot “just count” integers anymore
I But we still can profit from using the keys as array indices
I Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

3/U 2/K 1/Z 4/A 3/Q 1/X 5/E

1 K

2 E

3

4 J

5 Z W

4 / 5



Bucket sort

Given: N key-value pairs, keys are integers from [1;M], M is quite small.
How to sort them efficiently?

I We cannot “just count” integers anymore
I But we still can profit from using the keys as array indices
I Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

2/K 1/Z 4/A 3/Q 1/X 5/E

1 K

2 E

3 U

4 J

5 Z W

4 / 5



Bucket sort

Given: N key-value pairs, keys are integers from [1;M], M is quite small.
How to sort them efficiently?

I We cannot “just count” integers anymore
I But we still can profit from using the keys as array indices
I Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

1/Z 4/A 3/Q 1/X 5/E

1 K

2 E K

3 U

4 J

5 Z W

4 / 5



Bucket sort

Given: N key-value pairs, keys are integers from [1;M], M is quite small.
How to sort them efficiently?

I We cannot “just count” integers anymore
I But we still can profit from using the keys as array indices
I Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

4/A 3/Q 1/X 5/E

1 K Z

2 E K

3 U

4 J

5 Z W

4 / 5



Bucket sort

Given: N key-value pairs, keys are integers from [1;M], M is quite small.
How to sort them efficiently?

I We cannot “just count” integers anymore
I But we still can profit from using the keys as array indices
I Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

3/Q 1/X 5/E

1 K Z

2 E K

3 U

4 J A

5 Z W

4 / 5



Bucket sort

Given: N key-value pairs, keys are integers from [1;M], M is quite small.
How to sort them efficiently?

I We cannot “just count” integers anymore
I But we still can profit from using the keys as array indices
I Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

1/X 5/E

1 K Z

2 E K

3 U Q

4 J A

5 Z W

4 / 5



Bucket sort

Given: N key-value pairs, keys are integers from [1;M], M is quite small.
How to sort them efficiently?

I We cannot “just count” integers anymore
I But we still can profit from using the keys as array indices
I Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

5/E

1 K Z X

2 E K

3 U Q

4 J A

5 Z W

4 / 5



Bucket sort

Given: N key-value pairs, keys are integers from [1;M], M is quite small.
How to sort them efficiently?

I We cannot “just count” integers anymore
I But we still can profit from using the keys as array indices
I Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

1 K Z X

2 E K

3 U Q

4 J A

5 Z W E

4 / 5



Bucket sort

Given: N key-value pairs, keys are integers from [1;M], M is quite small.
How to sort them efficiently?

I We cannot “just count” integers anymore
I But we still can profit from using the keys as array indices
I Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

1/K

1 Z X

2 E K

3 U Q

4 J A

5 Z W E

4 / 5



Bucket sort

Given: N key-value pairs, keys are integers from [1;M], M is quite small.
How to sort them efficiently?

I We cannot “just count” integers anymore
I But we still can profit from using the keys as array indices
I Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

1/K 1/Z

1 X

2 E K

3 U Q

4 J A

5 Z W E

4 / 5



Bucket sort

Given: N key-value pairs, keys are integers from [1;M], M is quite small.
How to sort them efficiently?

I We cannot “just count” integers anymore
I But we still can profit from using the keys as array indices
I Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

1/K 1/Z 1/X

1

2 E K

3 U Q

4 J A

5 Z W E

4 / 5



Bucket sort

Given: N key-value pairs, keys are integers from [1;M], M is quite small.
How to sort them efficiently?

I We cannot “just count” integers anymore
I But we still can profit from using the keys as array indices
I Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

1/K 1/Z 1/X 2/E

1

2 K

3 U Q

4 J A

5 Z W E

4 / 5



Bucket sort

Given: N key-value pairs, keys are integers from [1;M], M is quite small.
How to sort them efficiently?

I We cannot “just count” integers anymore
I But we still can profit from using the keys as array indices
I Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

1/K 1/Z 1/X 2/E 2/K

1

2

3 U Q

4 J A

5 Z W E

4 / 5



Bucket sort

Given: N key-value pairs, keys are integers from [1;M], M is quite small.
How to sort them efficiently?

I We cannot “just count” integers anymore
I But we still can profit from using the keys as array indices
I Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

1/K 1/Z 1/X 2/E 2/K 3/U

1

2

3 Q

4 J A

5 Z W E

4 / 5



Bucket sort

Given: N key-value pairs, keys are integers from [1;M], M is quite small.
How to sort them efficiently?

I We cannot “just count” integers anymore
I But we still can profit from using the keys as array indices
I Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

1/K 1/Z 1/X 2/E 2/K 3/U 3/Q

1

2

3

4 J A

5 Z W E

4 / 5



Bucket sort

Given: N key-value pairs, keys are integers from [1;M], M is quite small.
How to sort them efficiently?

I We cannot “just count” integers anymore
I But we still can profit from using the keys as array indices
I Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

1/K 1/Z 1/X 2/E 2/K 3/U 3/Q 4/J

1

2

3

4 A

5 Z W E

4 / 5



Bucket sort

Given: N key-value pairs, keys are integers from [1;M], M is quite small.
How to sort them efficiently?

I We cannot “just count” integers anymore
I But we still can profit from using the keys as array indices
I Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

1/K 1/Z 1/X 2/E 2/K 3/U 3/Q 4/J 4/A

1

2

3

4

5 Z W E

4 / 5



Bucket sort

Given: N key-value pairs, keys are integers from [1;M], M is quite small.
How to sort them efficiently?

I We cannot “just count” integers anymore
I But we still can profit from using the keys as array indices
I Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

1/K 1/Z 1/X 2/E 2/K 3/U 3/Q 4/J 4/A 5/Z

1

2

3

4

5 W E

4 / 5



Bucket sort

Given: N key-value pairs, keys are integers from [1;M], M is quite small.
How to sort them efficiently?

I We cannot “just count” integers anymore
I But we still can profit from using the keys as array indices
I Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

1/K 1/Z 1/X 2/E 2/K 3/U 3/Q 4/J 4/A 5/Z 5/W

1

2

3

4

5 E

4 / 5



Bucket sort

Given: N key-value pairs, keys are integers from [1;M], M is quite small.
How to sort them efficiently?

I We cannot “just count” integers anymore
I But we still can profit from using the keys as array indices
I Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

1/K 1/Z 1/X 2/E 2/K 3/U 3/Q 4/J 4/A 5/Z 5/W 5/E

1

2

3

4

5

4 / 5



Bucket sort

Given: N key-value pairs, keys are integers from [1;M], M is quite small.
How to sort them efficiently?

I We cannot “just count” integers anymore
I But we still can profit from using the keys as array indices
I Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort! Θ(N + M) time, Θ(N + M) space.

1/K 1/Z 1/X 2/E 2/K 3/U 3/Q 4/J 4/A 5/Z 5/W 5/E

1

2

3

4

5

4 / 5



Bucket sort

Given: N key-value pairs, keys are integers from [1;M], M is quite small.
How to sort them efficiently?

I We cannot “just count” integers anymore
I But we still can profit from using the keys as array indices
I Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort! Θ(N + M) time, Θ(N + M) space. It is also stable.

1/K 1/Z 1/X 2/E 2/K 3/U 3/Q 4/J 4/A 5/Z 5/W 5/E

1

2

3

4

5

4 / 5



Radix sort

Given: N integer arrays, each of length L.
Each integer is from [1;M], M is quite small.
How to sort these arrays lexicographically?

I Strings are integer arrays. M = 26 for Latin alphabet, 256 for ASCII, . . .

I Big integers are integer arrays. M = 10 – or maybe 16, or 65536, or . . .

I Use bucket sort by the L-th value → Θ(N + M)

I Use bucket sort by the L− 1-th value → Θ(N + M)

I . . .

I Use bucket sort by the 1-st value → Θ(N + M)

5 / 5



Radix sort

Given: N integer arrays, each of length L.
Each integer is from [1;M], M is quite small.
How to sort these arrays lexicographically?

I Strings are integer arrays. M = 26 for Latin alphabet, 256 for ASCII, . . .

I Big integers are integer arrays. M = 10 – or maybe 16, or 65536, or . . .

I Use bucket sort by the L-th value → Θ(N + M)

I Use bucket sort by the L− 1-th value → Θ(N + M)

I . . .

I Use bucket sort by the 1-st value → Θ(N + M)

5 / 5



Radix sort

Given: N integer arrays, each of length L.
Each integer is from [1;M], M is quite small.
How to sort these arrays lexicographically?

I Strings are integer arrays. M = 26 for Latin alphabet, 256 for ASCII, . . .

I Big integers are integer arrays. M = 10 – or maybe 16, or 65536, or . . .

I Use bucket sort by the L-th value → Θ(N + M)

I Use bucket sort by the L− 1-th value → Θ(N + M)

I . . .

I Use bucket sort by the 1-st value → Θ(N + M)

5 / 5



Radix sort

Given: N integer arrays, each of length L.
Each integer is from [1;M], M is quite small.
How to sort these arrays lexicographically?

I Strings are integer arrays. M = 26 for Latin alphabet, 256 for ASCII, . . .

I Big integers are integer arrays. M = 10 – or maybe 16, or 65536, or . . .

Solution:

I Use bucket sort by the L-th value → Θ(N + M)

I Use bucket sort by the L− 1-th value → Θ(N + M)

I . . .

I Use bucket sort by the 1-st value → Θ(N + M)

5 / 5



Radix sort

Given: N integer arrays, each of length L.
Each integer is from [1;M], M is quite small.
How to sort these arrays lexicographically?

I Strings are integer arrays. M = 26 for Latin alphabet, 256 for ASCII, . . .

I Big integers are integer arrays. M = 10 – or maybe 16, or 65536, or . . .

Solution:

I Use bucket sort by the L-th value → Θ(N + M)

I Use bucket sort by the L− 1-th value → Θ(N + M)

I . . .

I Use bucket sort by the 1-st value → Θ(N + M)

5 / 5



Radix sort

Given: N integer arrays, each of length L.
Each integer is from [1;M], M is quite small.
How to sort these arrays lexicographically?

I Strings are integer arrays. M = 26 for Latin alphabet, 256 for ASCII, . . .

I Big integers are integer arrays. M = 10 – or maybe 16, or 65536, or . . .

Solution:

I Use bucket sort by the L-th value → Θ(N + M)

I Use bucket sort by the L− 1-th value → Θ(N + M)

I . . .

I Use bucket sort by the 1-st value → Θ(N + M)

5 / 5



Radix sort

Given: N integer arrays, each of length L.
Each integer is from [1;M], M is quite small.
How to sort these arrays lexicographically?

I Strings are integer arrays. M = 26 for Latin alphabet, 256 for ASCII, . . .

I Big integers are integer arrays. M = 10 – or maybe 16, or 65536, or . . .

Solution:

I Use bucket sort by the L-th value → Θ(N + M)

I Use bucket sort by the L− 1-th value → Θ(N + M)

I . . .

I Use bucket sort by the 1-st value → Θ(N + M)

5 / 5



Radix sort

Given: N integer arrays, each of length L.
Each integer is from [1;M], M is quite small.
How to sort these arrays lexicographically?

I Strings are integer arrays. M = 26 for Latin alphabet, 256 for ASCII, . . .

I Big integers are integer arrays. M = 10 – or maybe 16, or 65536, or . . .

Solution:

I Use bucket sort by the L-th value → Θ(N + M)

I Use bucket sort by the L− 1-th value → Θ(N + M)

I . . .

I Use bucket sort by the 1-st value → Θ(N + M)

This is Radix sort! Θ((N + M)L) time, Θ(N + M) space.

5 / 5


