. ° .
e.c.0%0
~.o:o:ofo’
. [] []

L] (]

ITMO UNIVERSITY

How to Win Coding Competitions: Secrets of Champions

Week 3: Sorting and Search Algorithms
Lecture 8: Integer sorting

Maxim Buzdalov
Saint Petersburg 2016

ITMO UNIVERSITY Sorting integers

How can we speed up sorting, if we know that we are sorting integers?

2/5

ITMO UNIVERSITY Sorting integers

How can we speed up sorting, if we know that we are sorting integers?

» Integers are typically bounded by 2" for some word size W

2/5

ITMO UNIVERSITY Sorting integers

How can we speed up sorting, if we know that we are sorting integers?

» Integers are typically bounded by 2" for some word size W

» We can use integers as indices for arrays

2/5

ITMO UNIVERSITY Sorting integers

How can we speed up sorting, if we know that we are sorting integers?

» Integers are typically bounded by 2" for some word size W
» We can use integers as indices for arrays

» We can perform mathematical operations with integers

2/5

ITMO UNIVERSITY Sorting integers

How can we speed up sorting, if we know that we are sorting integers?

» Integers are typically bounded by 2" for some word size W
» We can use integers as indices for arrays

» We can perform mathematical operations with integers

We are no longer limited by the Q(N log N) lower bound. ..

2/5

ITMO UNIVERSITY Sorting integers

How can we speed up sorting, if we know that we are sorting integers?

» Integers are typically bounded by 2" for some word size W
» We can use integers as indices for arrays

» We can perform mathematical operations with integers
We are no longer limited by the Q(N log N) lower bound. ..

> ...because we can perform operations which reveal more information

2/5

ITMO UNIVERSITY Sorting integers

How can we speed up sorting, if we know that we are sorting integers?

» Integers are typically bounded by 2" for some word size W
» We can use integers as indices for arrays

» We can perform mathematical operations with integers
We are no longer limited by the Q(N log N) lower bound. ..
> ...because we can perform operations which reveal more information

In this video:

2/5

ITMO UNIVERSITY Sorting integers

How can we speed up sorting, if we know that we are sorting integers?

» Integers are typically bounded by 2" for some word size W
» We can use integers as indices for arrays

» We can perform mathematical operations with integers
We are no longer limited by the Q(N log N) lower bound. ..
> ...because we can perform operations which reveal more information

In this video:

» Counting sort

2/5

ITMO UNIVERSITY Sorting integers

How can we speed up sorting, if we know that we are sorting integers?

» Integers are typically bounded by 2" for some word size W
» We can use integers as indices for arrays

» We can perform mathematical operations with integers
We are no longer limited by the Q(N log N) lower bound. ..
> ...because we can perform operations which reveal more information

In this video:
» Counting sort

» Bucket sort

2/5

ITMO UNIVERSITY Sorting integers

How can we speed up sorting, if we know that we are sorting integers?

» Integers are typically bounded by 2" for some word size W
» We can use integers as indices for arrays

» We can perform mathematical operations with integers
We are no longer limited by the Q(N log N) lower bound. ..
> ...because we can perform operations which reveal more information

In this video:
» Counting sort
» Bucket sort

» Radix sort

2/5

ITMO UNIVERSITY Counting sort

Given: N integers, each from [1; M|, M is quite small. How to sort them efficiently?

3/5

*ITMO UNIVERSITY Counting sort

Given: N integers, each from [1; M|, M is quite small. How to sort them efficiently?

» “Quite small” is “we can afford an array of M elements”

3/5

*ITMO UNIVERSITY Counting sort

Given: N integers, each from [1; M|, M is quite small. How to sort them efficiently?
» “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen

3/5

*ITMO UNIVERSITY Counting sort

Given: N integers, each from [1; M|, M is quite small. How to sort them efficiently?
» “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

3/5

ITMO UNIVERSITY Counting sort

Given: N integers, each from [1; M], M is quite small. How to sort them efficiently?
» “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

(8[1]2[5[4f3]2[t]4[3]1]5]
1[2]3[4]5
ojofojo]o

3/5

ITMO UNIVERSITY Counting sort

Given: N integers, each from [1; M], M is quite small. How to sort them efficiently?
» “Quite small” is “we can afford an array of M elements”
Idea: Just count how many times a certain value was seen
This is Counting sort!
L [tl2]sf4afs[2[1]4]3[1]5]
112345
0/0|0|0]|1

3/5

ITMO UNIVERSITY Counting sort

Given: N integers, each from [1; M], M is quite small. How to sort them efficiently?
» “Quite small” is “we can afford an array of M elements”
Idea: Just count how many times a certain value was seen
This is Counting sort!
L | l2lsfafsf2[1]4]3[1]5]
112345
110[0/0|1

3/5

ITMO UNIVERSITY Counting sort

Given: N integers, each from [1; M], M is quite small. How to sort them efficiently?
» “Quite small” is “we can afford an array of M elements”
Idea: Just count how many times a certain value was seen
This is Counting sort!
[[Isfafsf2[1]4]3[1]5]
112345
111/0/0|1

3/5

ITMO UNIVERSITY Counting sort

Given: N integers, each from [1; M], M is quite small. How to sort them efficiently?
» “Quite small” is “we can afford an array of M elements”
Idea: Just count how many times a certain value was seen
This is Counting sort!
L[[| [afs[2[s]4]3[1]5]
112345
1{1(0/0)2

3/5

ITMO UNIVERSITY Counting sort

Given: N integers, each from [1; M], M is quite small. How to sort them efficiently?
» “Quite small” is “we can afford an array of M elements”
Idea: Just count how many times a certain value was seen
This is Counting sort!
L[[[[[s[2]s]4]3[1]5]
112345
1/1/01|2

3/5

ITMO UNIVERSITY Counting sort

Given: N integers, each from [1; M], M is quite small. How to sort them efficiently?
» “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

LT 1]

|
1123
1

2|1]4[3[1]5]
415
12

3/5

ITMO UNIVERSITY

Counting sort

Given: N integers, each from [1; M], M is quite small. How to sort them efficiently?

» “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen

This is Counting sort!

L[]

|

1]4[3]1]5]

1

2

3

|
4
1

|
5
2

3/5

ITMO UNIVERSITY

Counting sort

Given: N integers, each from [1; M], M is quite small. How to sort them efficiently?

» “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen

This is Counting sort!

L[]

|

|

[4]3]1]5]

1

2

3

5

2

3/5

ITMO UNIVERSITY

Counting sort

Given: N integers, each from [1; M], M is quite small. How to sort them efficiently?

» “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen

This is Counting sort!

L[]

|

|

|

[3[t]5]

1

2

3

4

5

3/5

ITMO UNIVERSITY

Counting sort

Given: N integers, each from [1; M], M is quite small. How to sort them efficiently?

» “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen

This is Counting sort!

L[]

|

|

|

| [t]5]

1

2

3

4

5

3/5

ITMO UNIVERSITY

Counting sort

Given: N integers, each from [1; M], M is quite small. How to sort them efficiently?

» “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen

This is Counting sort!

L[]

|

|

|

| [5]

1

2

3

4

5

3/5

ITMO UNIVERSITY

Counting sort

Given: N integers, each from [1; M], M is quite small. How to sort them efficiently?

» “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen

This is Counting sort!

L[]

|

|

|

[1]

1

2

3

4

5

3/5

ITMO UNIVERSITY Counting sort

Given: N integers, each from [1; M], M is quite small. How to sort them efficiently?
» “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

3/5

ITMO UNIVERSITY Counting sort

Given: N integers, each from [1; M], M is quite small. How to sort them efficiently?
» “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

HERERENRENNN

112345

3/5

ITMO UNIVERSITY Counting sort

Given: N integers, each from [1; M], M is quite small. How to sort them efficiently?
» “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

(efefef T T LT TP T[]
112345

3/5

ITMO UNIVERSITY Counting sort

Given: N integers, each from [1; M], M is quite small. How to sort them efficiently?
» “Quite small” is “we can afford an array of M elements”
Idea: Just count how many times a certain value was seen
This is Counting sort!
(efefefaf [[[T T [[]

112345
011223

3/5

ITMO UNIVERSITY Counting sort

Given: N integers, each from [1; M], M is quite small. How to sort them efficiently?
» “Quite small” is “we can afford an array of M elements”
Idea: Just count how many times a certain value was seen
This is Counting sort!
(tfefefafal [[[[[[|
112345
00223

3/5

ITMO UNIVERSITY Counting sort

Given: N integers, each from [1; M], M is quite small. How to sort them efficiently?
» “Quite small” is “we can afford an array of M elements”
Idea: Just count how many times a certain value was seen
This is Counting sort!
(tfefefaf2afs] [[| [[|
112345
00123

3/5

ITMO UNIVERSITY

Counting sort

Given: N integers, each from [1; M], M is quite small. How to sort them efficiently?

» “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen

This is Counting sort!

[t[t]2]2]2]3]3]

|

[1]

1

2

3

4

5

0

0

0

2

3/5

ITMO UNIVERSITY

Counting sort

Given: N integers, each from [1; M], M is quite small. How to sort them efficiently?

» “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen

This is Counting sort!

HEREIFIEEIE

[1]

1

2

3

4

5

0

0

0

1

3

3/5

ITMO UNIVERSITY Counting sort

Given: N integers, each from [1; M], M is quite small. How to sort them efficiently?
» “Quite small” is “we can afford an array of M elements”
Idea: Just count how many times a certain value was seen
This is Counting sort!
(tfsle]2f2[s[3[ala] [[|
112345
0/0|0|0]3

3/5

ITMO UNIVERSITY Counting sort

Given: N integers, each from [1; M], M is quite small. How to sort them efficiently?
» “Quite small” is “we can afford an array of M elements”
Idea: Just count how many times a certain value was seen
This is Counting sort!
(tfsle]2f2[s[3[4al4a]5] [|
112345
0/0|0|0]2

3/5

ITMO UNIVERSITY Counting sort

Given: N integers, each from [1; M], M is quite small. How to sort them efficiently?
» “Quite small” is “we can afford an array of M elements”
Idea: Just count how many times a certain value was seen
This is Counting sort!
(tfsle]2f2[s[3[4l4]5][5] |
112345
0/0|0|0]|1

3/5

ITMO UNIVERSITY Counting sort

Given: N integers, each from [1; M], M is quite small. How to sort them efficiently?
» “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

(1]1]1]2]2[3]3[4[4[5]5]5]
1[2]3[4]5
ojofojo]o

3/5

ITMO UNIVERSITY Counting sort

Given: N integers, each from [1; M], M is quite small. How to sort them efficiently?
» “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

(1]1]1]2]2[3]3[4[4[5]5]5]
1[2]3[4]5
ojofojo]o

Running time: ©(N + M), additional space: ©(M)

3/5

ITMO UNIVERSITY Counting sort

Given: N integers, each from [1; M], M is quite small. How to sort them efficiently?
» “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

(1]1]1]2]2[3]3[4[4[5]5]5]
112345
0/,0/0(0]0
Running time: ©(N + M), additional space: ©(M)

» Faster than comparison-based sorting algorithms when M is small

3/5

ITMO UNIVERSITY Bucket sort

Given: N key-value pairs, keys are integers from [1; M], M is quite small.
How to sort them efficiently?

4/5

 ITMO UNIVERSITY Bucket sort

Given: N key-value pairs, keys are integers from [1; M], M is quite small.
How to sort them efficiently?

» We cannot “just count” integers anymore
» But we still can profit from using the keys as array indices

4/5

 ITMO UNIVERSITY Bucket sort

Given: N key-value pairs, keys are integers from [1; M], M is quite small.
How to sort them efficiently?

» We cannot “just count” integers anymore

» But we still can profit from using the keys as array indices

» Have an array of lists of size M, and collect the pairs under their keys

4/5

 ITMO UNIVERSITY Bucket sort

Given: N key-value pairs, keys are integers from [1; M], M is quite small.
How to sort them efficiently?

» We cannot “just count” integers anymore
» But we still can profit from using the keys as array indices
» Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

4/5

ITMO UNIVERSITY Bucket sort

Given: N key-value pairs, keys are integers from [1; M], M is quite small.
How to sort them efficiently?

» We cannot “just count” integers anymore
» But we still can profit from using the keys as array indices
» Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!
(s/z | 1/x [2/E[s/w]|4/3[3/u]2/k[1/2][4/a[3/Q [1/X] 5/E |
1

1w N

ITMO UNIVERSITY Bucket sort

Given: N key-value pairs, keys are integers from [1; M], M is quite small.
How to sort them efficiently?

» We cannot “just count” integers anymore
» But we still can profit from using the keys as array indices
» Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!
[Ji/x[2/E]s/m|4a/3[3/v]2/k]1/2]4/a[3/Q [1/X] 5/E |
1

1w N

ITMO UNIVERSITY Bucket sort

Given: N key-value pairs, keys are integers from [1; M], M is quite small.
How to sort them efficiently?

» We cannot “just count” integers anymore

» But we still can profit from using the keys as array indices

» Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

[| J2E[sm|a/3[3/uv]2/k]1/2]4/a]3/Q[1/X] 5/E]
1]k

1w N

ITMO UNIVERSITY Bucket sort

Given: N key-value pairs, keys are integers from [1; M], M is quite small.
How to sort them efficiently?

» We cannot “just count” integers anymore

» But we still can profit from using the keys as array indices

» Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

[[1 [smfa/3[3/u]2/k[1/z[4/a]3/Q[1/X|5/E |

1| K
2 || E
3
4
51 2

ITMO UNIVERSITY Bucket sort

Given: N key-value pairs, keys are integers from [1; M], M is quite small.
How to sort them efficiently?

» We cannot “just count” integers anymore

» But we still can profit from using the keys as array indices

» Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

[1 T 1 TJa/3[s/v]2/k[1/z[4/a]3/Q[1/X|5/E |

1| K

2 || E

3

4

50112 |Ww

ITMO UNIVERSITY

Bucket sort

Given: N key-value pairs, keys are integers from [1; M], M is quite small.
How to sort them efficiently?

» We cannot “just count” integers anymore

» But we still can profit from using the keys as array indices

» Have an array of lists of size M, and collect the pairs under their keys
This is Bucket sort!

[T T T T Ts/w]2/k[1/z[4/A[3/Q[1/Xx]5/E |

K
L

Gl W N~

ITMO UNIVERSITY Bucket sort

Given: N key-value pairs, keys are integers from [1; M], M is quite small.
How to sort them efficiently?

» We cannot “just count” integers anymore

» But we still can profit from using the keys as array indices

» Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

T T T T [[eR[z]4A[5/ /X[Sk]

Gl W N~
N Gl ME =

ITMO UNIVERSITY Bucket sort

Given: N key-value pairs, keys are integers from [1; M], M is quite small.
How to sort them efficiently?

» We cannot “just count” integers anymore
» But we still can profit from using the keys as array indices
» Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!
b [Jaz]4a/mafs/a]1/x]5/E]

1| K
2 E|K
3||U
41 J
512 | W

ITMO UNIVERSITY Bucket sort

Given: N key-value pairs, keys are integers from [1; M], M is quite small.
How to sort them efficiently?

» We cannot “just count” integers anymore
» But we still can profit from using the keys as array indices
» Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!
1 [[[[4als/@[1/x][5/E]

1//K|Z
2 E|K
3||U
41 J
512 | W

ITMO UNIVERSITY Bucket sort

Given: N key-value pairs, keys are integers from [1; M], M is quite small.
How to sort them efficiently?

» We cannot “just count” integers anymore
» But we still can profit from using the keys as array indices
» Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!
1 [3afu/x[s/E]

1//K|Z
2 E|K
3||U

41 J]A
512 | W

ITMO UNIVERSITY Bucket sort

Given: N key-value pairs, keys are integers from [1; M], M is quite small.
How to sort them efficiently?

» We cannot “just count” integers anymore
» But we still can profit from using the keys as array indices
» Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

L [T |

\ | | | 1/X | 5/E |

Gl W N =
N Gl ME =
== 0| X|N|—

ITMO UNIVERSITY

Bucket sort

Given: N key-value pairs, keys are integers from [1; M], M is quite small.
How to sort them efficiently?

» We cannot “just count” integers anymore

» But we still can profit from using the keys as array indices

» Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

L [T |

| 5/E |

Gl W N =
N Gl ME =
== 0| X|N|—

ITMO UNIVERSITY

Bucket sort

Given: N key-value pairs, keys are integers from [1; M], M is quite small.
How to sort them efficiently?

» We cannot “just count” integers anymore

» But we still can profit from using the keys as array indices

» Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

L [T |

|
1||K|Z|X
2 E|K
31U0|Q
41 J]A
51Z|W|E

ITMO UNIVERSITY

Bucket sort

Given: N key-value pairs, keys are integers from [1; M], M is quite small.
How to sort them efficiently?

» We cannot “just count” integers anymore

» But we still can profit from using the keys as array indices

» Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

(k[[[[[[|
1 Z X
2 [E[K
31U0|Q
AIEE
52z |W|E

ITMO UNIVERSITY

Bucket sort

Given: N key-value pairs, keys are integers from [1; M], M is quite small.
How to sort them efficiently?

» We cannot “just count” integers anymore

» But we still can profit from using the keys as array indices

» Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

(wkfoz] | [[[[[[]
1 X
2 [E[K
31U0|Q
AIEE
52z |W|E

ITMO UNIVERSITY

Bucket sort

Given: N key-value pairs, keys are integers from [1; M], M is quite small.
How to sort them efficiently?

» We cannot “just count” integers anymore

» But we still can profit from using the keys as array indices

» Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

EVZS RV Y2 S N N R R D

Gl W N~
N|«|a|H

== 0=

ITMO UNIVERSITY

Bucket sort

Given: N key-value pairs, keys are integers from [1; M], M is quite small.
How to sort them efficiently?

» We cannot “just count” integers anymore

» But we still can profit from using the keys as array indices

» Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

| 1/K | 1/Z | 1/X | 2/E | \ \ \

Gl W N~
(e

o
== 0=

ITMO UNIVERSITY

Bucket sort

Given: N key-value pairs, keys are integers from [1; M], M is quite small.
How to sort them efficiently?

» We cannot “just count” integers anymore

» But we still can profit from using the keys as array indices

» Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

| 1/K | 1/Z | 1/X | 2/E | 2/K |

1

[
=

1w N
(e
o

ITMO UNIVERSITY

Bucket sort

Given: N key-value pairs, keys are integers from [1; M], M is quite small.
How to sort them efficiently?

» We cannot “just count” integers anymore

» But we still can profit from using the keys as array indices

» Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

| 1/K | 1/Z | 1/X | 2/E [2/K | 3/U | \

1

1w N
()
=

ITMO UNIVERSITY

Bucket sort

Given: N key-value pairs, keys are integers from [1; M], M is quite small.
How to sort them efficiently?

» We cannot “just count” integers anymore

» But we still can profit from using the keys as array indices

» Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

[1/xk [1/z [1/x [2/E| 2/K [3/U] 3/Q]

1

1w N
()
=

ITMO UNIVERSITY

Bucket sort

Given: N key-value pairs, keys are integers from [1; M], M is quite small.
How to sort them efficiently?

» We cannot “just count” integers anymore

» But we still can profit from using the keys as array indices

» Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

[1/k[1/z | 1/Xx [2/E [2/K[3/u]3/q [4/7 |

1

1w N
=

ITMO UNIVERSITY Bucket sort

Given: N key-value pairs, keys are integers from [1; M], M is quite small.
How to sort them efficiently?

» We cannot “just count” integers anymore
» But we still can profit from using the keys as array indices
» Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!
[tk [1/z1/x[2/E]2/K[3/u]3/q[4/3]a/a] [|]
1

1w N

ITMO UNIVERSITY Bucket sort

Given: N key-value pairs, keys are integers from [1; M], M is quite small.
How to sort them efficiently?

» We cannot “just count” integers anymore
» But we still can profit from using the keys as array indices
» Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!
[tk [1/z | 1/x[2/E[2/K[3/u[3/q[4/3[a/a]s/z] | |
1

1w N

ITMO UNIVERSITY Bucket sort

Given: N key-value pairs, keys are integers from [1; M], M is quite small.
How to sort them efficiently?

» We cannot “just count” integers anymore
» But we still can profit from using the keys as array indices
» Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!
[1/k[1/z | 1/x [2/E[2/K[3/u[3/q[4/3[4a/a]s/z][s/W] |
1

1w N

ITMO UNIVERSITY Bucket sort

Given: N key-value pairs, keys are integers from [1; M], M is quite small.
How to sort them efficiently?

» We cannot “just count” integers anymore
» But we still can profit from using the keys as array indices
» Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!
[1/k[1/z | 1/X [2/E[2/K[3/U[3/Q[4/3[4/A[5/2[5/W]5/E |
1

1w N

ITMO UNIVERSITY Bucket sort

Given: N key-value pairs, keys are integers from [1; M], M is quite small.
How to sort them efficiently?

» We cannot “just count” integers anymore
» But we still can profit from using the keys as array indices
» Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort! ©(N + M) time, ©(N + M) space.
[1/k[1/z | 1/X [2/E[2/K[3/U[3/Q[4/3[4/A[5/2[5/W]5/E |
1

Gl W N

ITMO UNIVERSITY Bucket sort

Given: N key-value pairs, keys are integers from [1; M], M is quite small.
How to sort them efficiently?

» We cannot “just count” integers anymore
» But we still can profit from using the keys as array indices
» Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort! ©(N + M) time, ©(N + M) space. It is also stable.
[1/k[1/z | 1/X [2/E[2/K[3/U[3/Q[4/3[4/A[5/2[5/W]5/E |
1

Gl W N

ITMO UNIVERSITY Radix sort

Given: N integer arrays, each of length L.
Each integer is from [1; M], M is quite small.
How to sort these arrays lexicographically?

5/5

ITMO UNIVERSITY Radix sort

Given: N integer arrays, each of length L.
Each integer is from [1; M], M is quite small.
How to sort these arrays lexicographically?

» Strings are integer arrays. M = 26 for Latin alphabet, 256 for ASCII, ...

5/5

ITMO UNIVERSITY Radix sort

Given: N integer arrays, each of length L.
Each integer is from [1; M], M is quite small.
How to sort these arrays lexicographically?

» Strings are integer arrays. M = 26 for Latin alphabet, 256 for ASCII, ...
» Big integers are integer arrays. M = 10 — or maybe 16, or 65536, or ...

5/5

ITMO UNIVERSITY Radix sort

Given: N integer arrays, each of length L.
Each integer is from [1; M], M is quite small.
How to sort these arrays lexicographically?

» Strings are integer arrays. M = 26 for Latin alphabet, 256 for ASCII, ...
» Big integers are integer arrays. M = 10 — or maybe 16, or 65536, or ...

Solution:

5/5

ITMO UNIVERSITY Radix sort

Given: N integer arrays, each of length L.
Each integer is from [1; M], M is quite small.
How to sort these arrays lexicographically?

» Strings are integer arrays. M = 26 for Latin alphabet, 256 for ASCII, ...
» Big integers are integer arrays. M = 10 — or maybe 16, or 65536, or ...
Solution:

» Use bucket sort by the L-th value ~ — ©(N + M)

5/5

ITMO UNIVERSITY Radix sort

Given: N integer arrays, each of length L.
Each integer is from [1; M], M is quite small.
How to sort these arrays lexicographically?
» Strings are integer arrays. M = 26 for Latin alphabet, 256 for ASCII, ...
» Big integers are integer arrays. M = 10 — or maybe 16, or 65536, or ...
Solution:
» Use bucket sort by the L-th value — O(N + M)
» Use bucket sort by the L — 1-th value — ©(N + M)

5/5

ITMO UNIVERSITY

Radix sort

Given: N integer arrays, each of length L.
Each integer is from [1; M], M is quite small.
How to sort these arrays lexicographically?

» Strings are integer arrays. M = 26 for Latin alphabet, 256 for ASCII, ...
» Big integers are integer arrays. M = 10 — or maybe 16, or 65536, or ...

Solution:
» Use bucket sort by the L-th value ~ — ©(N + M)
» Use bucket sort by the L — 1-th value — (N + M)

>

» Use bucket sort by the 1-st value — O(N + M)

5/5

* ITMO UNIVERSITY Radix sort

Given: N integer arrays, each of length L.

Each integer is from [1; M], M is quite small.

How to sort these arrays lexicographically?
» Strings are integer arrays. M = 26 for Latin alphabet, 256 for ASCII, ...
» Big integers are integer arrays. M = 10 — or maybe 16, or 65536, or ...

Solution:

» Use bucket sort by the L-th value ~ — ©(N + M)
» Use bucket sort by the L — 1-th value — (N + M)

>

» Use bucket sort by the 1-st value — O(N + M)
This is Radix sort! ©((N + M)L) time, ©(N + M) space.

5/5

