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Sorting integers

How can we speed up sorting, if we know that we are sorting integers?

I Integers are typically bounded by 2W for some word size W

I We can use integers as indices for arrays

I We can perform mathematical operations with integers

I . . . because we can perform operations which reveal more information

I Counting sort

I Bucket sort

I Radix sort
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Counting sort

Given: N integers, each from [1;M], M is quite small. How to sort them efficiently?

I “Quite small” is “we can afford an array of M elements”

Idea: Just count how many times a certain value was seen
This is Counting sort!

5 1 2 5 4 3 2 1 4 3 1 5

1 2 3 4 5

0 0 0 0 0

Running time: Θ(N + M), additional space: Θ(M)

I Faster than comparison-based sorting algorithms when M is small
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Bucket sort

Given: N key-value pairs, keys are integers from [1;M], M is quite small.
How to sort them efficiently?

I We cannot “just count” integers anymore
I But we still can profit from using the keys as array indices
I Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort!

5/Z 1/K 2/E 5/W 4/J 3/U 2/K 1/Z 4/A 3/Q 1/X 5/E

1

2

3

4

5
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Bucket sort

Given: N key-value pairs, keys are integers from [1;M], M is quite small.
How to sort them efficiently?

I We cannot “just count” integers anymore
I But we still can profit from using the keys as array indices
I Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort! Θ(N + M) time, Θ(N + M) space.
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Bucket sort

Given: N key-value pairs, keys are integers from [1;M], M is quite small.
How to sort them efficiently?

I We cannot “just count” integers anymore
I But we still can profit from using the keys as array indices
I Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort! Θ(N + M) time, Θ(N + M) space. It is also stable.
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Radix sort

Given: N integer arrays, each of length L.
Each integer is from [1;M], M is quite small.
How to sort these arrays lexicographically?

I Strings are integer arrays. M = 26 for Latin alphabet, 256 for ASCII, . . .

I Big integers are integer arrays. M = 10 – or maybe 16, or 65536, or . . .

I Use bucket sort by the L-th value → Θ(N + M)

I Use bucket sort by the L− 1-th value → Θ(N + M)

I . . .

I Use bucket sort by the 1-st value → Θ(N + M)
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Radix sort

Given: N integer arrays, each of length L.
Each integer is from [1;M], M is quite small.
How to sort these arrays lexicographically?

I Strings are integer arrays. M = 26 for Latin alphabet, 256 for ASCII, . . .

I Big integers are integer arrays. M = 10 – or maybe 16, or 65536, or . . .

Solution:

I Use bucket sort by the L-th value → Θ(N + M)

I Use bucket sort by the L− 1-th value → Θ(N + M)

I . . .

I Use bucket sort by the 1-st value → Θ(N + M)

This is Radix sort! Θ((N + M)L) time, Θ(N + M) space.
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