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ITMO UNIVERSITY Bucket sort

Given: N key-value pairs, keys are integers from [1; M], M is quite small.
How to sort them efficiently?

» We cannot “just count” integers anymore
» But we still can profit from using the keys as array indices
» Have an array of lists of size M, and collect the pairs under their keys

This is Bucket sort! ©(N + M) time, ©(N + M) space. It is also stable.
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ITMO UNIVERSITY Radix sort

Given: N integer arrays, each of length L.
Each integer is from [1; M], M is quite small.
How to sort these arrays lexicographically?
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* ITMO UNIVERSITY Radix sort

Given: N integer arrays, each of length L.

Each integer is from [1; M], M is quite small.

How to sort these arrays lexicographically?
» Strings are integer arrays. M = 26 for Latin alphabet, 256 for ASCII, ...
» Big integers are integer arrays. M = 10 — or maybe 16, or 65536, or ...

Solution:

» Use bucket sort by the L-th value ~ — ©(N + M)
» Use bucket sort by the L — 1-th value — (N + M)

>

» Use bucket sort by the 1-st value — O(N + M)
This is Radix sort! ©((N + M)L) time, ©(N + M) space.
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