
Supporting Collaborative Software Development through
the Visualization of Socio-Technical Dependencies

Cleidson R. B. de Souza1, Stephen Quirk2, Erik Trainer2, David F. Redmiles2
1Universidade Federal do Pará

Belém, PA, Brazil
66075-110

+55-91-3201-7835

cdesouza@ufpa.br

2University of California, Irvine
Irvine, CA, USA

92607-3425
+1-949-824-0247

{squirk, etrainer, redmiles}ics.uci.edu

ABSTRACT
One of the reasons large-scale software development is difficult is
the number of dependencies that software engineers face. These
dependencies create a need for communication and coordination
that requires continuous effort by developers. Empirical studies,
including our own, suggest that technical dependencies among
software components create social dependencies among the
software developers implementing those components. Based on
this observation, we developed Ariadne, a plug-in for Eclipse.
Ariadne analyzes software projects for dependencies and collects
authorship information about projects relying on configuration
management repositories. Ariadne can "translate" technical
dependencies among components into social dependencies among
developers. We have created visualizations to convey dependency
information and the presence of coordination problems identified
in our previous work. We believe the information conveyed in the
visualizations will prove useful for software developers.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
user interfaces. H.5.3 [Information Interfaces and
Presentation]: Group and Organization Interfaces – collaborative
computing, computer-supported cooperative work; H.1.2 [Models
and Principles]: User/Machine Systems – human factors, human
information processing.

General Terms
Design, Human Factors.

Keywords
Collaborative software development; socio-technical
dependencies; program dependencies; social dependencies;
visualization; awareness; coordination.

1. INTRODUCTION
Researchers and practitioners have long recognized that
breakdowns in communication and coordination efforts constitute
a major problem in software development (Curtis, Krasner et al.
1988). One of the reasons for this problem is the large number of
dependencies that any software development effort involves:
dependencies among activities in the development process and
dependencies among different software artifacts. To overcome
this problem, the field of software engineering has developed
tools, approaches, and principles to manage dependencies.
Configuration management and issue-tracking systems are
examples of such tools. The adoption of software development
processes (Nutt 1996; Fuggetta 2000) exemplifies an
organizational approach, while the information hiding (Parnas
1972) illustrates a fundamental principle that underpins several
mechanisms in programming languages (Larman 2001).

In any one of these cases, the underlying goal is to make
dependencies more manageable. By minimizing dependencies it is
possible to reduce required communication and coordination by
software developers. This was recognized by Conway (1968) and
Parnas (1972) over 30 years and validated by different empirical
studies more recently (Morelli, Eppinger et al. 1995; Sosa,
Eppinger et al. 2002; Grinter 2003; de Souza, Redmiles et al.
2004).

Despite the acknowledged relationship between dependencies and
coordination needs, this relationship has not been explored to
facilitate software development activities. Indeed, software
development is a strong candidate for exploring this relationship
since (i) dependencies among software components can be
automatically identified, and (ii) software is malleable (i.e.
dependencies, if so desired, can be more or less easily changed,
and consequently the coordination of those developing the
software). Ariadne aims to fill the gap between dependencies and
communication and coordination needs and explore this socio-
technical relationship. This article describes Ariadne’s motivation,
underlying architecture, and visualization-based approach.
Ariadne’s contribution is the usage of software dependency
analysis to facilitate the coordination and execution of software
development activities. By identifying the “social” dependencies
among software developers extracted from technical
dependencies, Ariadne is able to identify developers who are more
likely to be communicating, developers whose similar
dependencies make them likely to collaborate. Furthermore, our
approach uses visualization as a cognitive tool to aid developers in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GROUP’07, November 4–7, 2007, Sanibel Island, Florida, USA.
Copyright 2007 ACM 978-1-59593-845-9/07/0011...$5.00.

understanding these relationships as they arise from dependencies
in the project. Visualization of socio-technical dependencies is
Ariadne’s major strength..

The rest of the paper is organized as follows. We begin by
presenting the results of previous field studies that motivated our
approach and the construction of Ariadne. Then, we describe
Ariadne and our approach to extract code dependencies from the
source-code, and how we infer social dependencies between
software developers from source-code dependencies. We detail
Ariadne’s architecture in the next section. After that, we present
the visualizations that Ariadne provide and explain how they
relate to the problems that we observed in our field studies. After
that, a discussion is presented, followed by conclusions about our
work and avenues for future work.

2. MOTIVATION
This section describes a set of four scenarios identified during our
previous field studies of collaborative software development (de
Souza, Redmiles et al. 2004)(de Souza 2005)(de Souza,
Hildenbrand et al. 2007)(de Souza and Redmiles 2007). They
were chosen because (i) they illustrate that software developers
are aware of the relationship between dependencies and
coordination, and, more importantly, (ii) they illustrate
problematic situations that emerge when these dependency
relationships are unknown. We identify two major problems
uncovered in the scenarios, notably a lack of awareness among
developers of one another's work and the challenge of finding
developers of interest in software projects.

In the scenarios, specific names of individuals, organizational
units, and software have been changed to provide anonymity.

2.1 Introduction to the Setting
All scenarios take place at the same organization, BSC, which
recently adopted an organization-wide reuse program. Through
this program, each team in the organization is responsible for
developing particular components and, whenever possible, they
should reuse software components that provide the services they
require. That is, instead of implementing a particular feature, a
developer (or team) should reuse the component that provides this
same (or close enough) feature, if a component is available.

The scenarios described below are based on observations from
two different software development teams: MCW and MBL.
MCW is responsible for developing a client-server application
that had not yet been released during the period of the study.
These developers are divided in five sub-teams. Because of the
reuse program, MCW developers need to interact with other
software developers in other parts of the organization to reuse
their components and, whenever necessary, request changes in
these components. The second team is called MBL, which is
responsible for developing a mobile application. The project staff
was distributed over five different sites spread in 3 different
countries: Raleigh, US; Westford, US; Beijing, China; Shanghai,
China; and Taipei, Taiwan. The main coordination of the project
and the project manager for this project was located in Westford,
US, where all the data was collected.

The following scenarios were extracted from either the 32 semi-
structured interviews (McCracken 1988) with MCW and MBL
team members or the field notes that we collected using non-
participant observation (Jorgensen 1989) over a period of 11

weeks at the field site. All interviews were transcribed and
alongside with the field notes were coded using grounded theory
techniques (Strauss and Corbin 1998). These scenarios illustrate
problems faced by software developers at BSC. The reason for
these problems can be found elsewhere (de Souza, Redmiles et al.
2004) (de Souza 2005)(de Souza, Hildenbrand et al. 2007)(de
Souza and Redmiles 2007).

2.2 Problems with Software Development at
BSC
2.2.1 Problems with Awareness of software
developers
Scenario 1 – Manager’s Lack of Awareness of Evolving Social
Dependencies

Cathy is the project manager for one of the MCW sub-teams. She
leads eight developers developing the client-side of the MCW
application. This means that Cathy’s team’s work is especially
tightly integrated with the MCW server side team. In fact, she has
just had a meeting with the manager of this other team. They
discussed the new schedule, since both teams’ schedules have
started to slip. Now, at the weekly group meeting with her team,
Cathy wants to find out about her team members’ progress so she
can make decisions about the next release of the software. Each
developer reports to Cathy what they think will be ready by the
deadline. When she finds out that Francis, a developer in her
team, has not started to integrate his code with two other
developers in her own team, Alfred and Denise, she realizes that
Francis’ deadline is not “realistic”: he will not be able to finish his
implementation before the deadline.

Scenario 2 – Developers’ Lack of Awareness of Evolving Code
Dependencies

Jacqueline is developing a component that provides services to the
user-interface layer in the multi-tier architecture adopted by the
MBL software. Meanwhile, Alfred is implementing a software
component in the UI that requests services from Jacqueline’s
code. That is, Alfred’s code is dependent upon Jacqueline’s code.
Jacqueline has already finished the implementation of her
component. However, she does not know if Alfred has already
started integrating his code with her code, or the way she put it if
her “API is being exercised”. She is concerned because the
deadline for this integration is coming. But more importantly, if
Alfred finds some problem in her implementation, she might not
have much time to change her implementation. She wishes she
could know about Alfred’s integration status without having to
keep asking him about it.

Again, according to MBL developers, it is important for them to
know who is consuming their code and when this integration
starts, i.e., when a developer starts to use another developer’s
code. This information is useful because it allows the developer to
anticipate the work that will be requested of him before the
deadline. This information is necessary from both collocated and
distributed colleagues. Indeed, the distributed nature of the MBL
team project was particularly relevant in this case. The informal
conversations that are afforded by the collocation simplify this
process of finding information among local colleagues. In
contrast, it is much more difficult for a developer to find this
status information when his colleagues are distributed over
different countries – across space and time. For instance,

Jacqueline reported that in one occasion a developer in China was
already using her code and she did not know. Similarly, Chinese
developers reported not knowing when their American colleagues
started using their code.

2.2.2 Finding Software Developers
Scenario 3 – Developers finding the “right” developer

Fred is a software developer in the MCW team working on a
client component that requests services from a server component.
The server developer assigned to implement the server component
is Peter. There is a software interface between the client and
server software components, which is used by Fred and Peter to
divide and organize their work: Peter is implementing the services
described in the interface, while Fred is using the services
provided by this interface. Fred needs to contact Peter in order to
find out how to use Peter’s component. However, Fred and Peter
have never met and Fred does not know how to contact him.
Furthermore, Fred has only access to a “dummy” implementation
of the interfaces and that’s what he has been programming
against. This implementation and the interfaces were designed by
the software architect, Jack.

To find information about Peter, Fred needs to contact his
colleagues who might know Peter. Another option for Fred would
be to look up the information in the CM system. However, in this
case, he would only find Jack (the software interface designer) in
the CM database, not the actual developer implementing this
interface. Fred would have then to look up Jack’s contact
information and query as to whether he knew Peter. Another
alternative to Fred is to contact his manager, Cathy, and let her
find out Peter’s contact information. In all cases, while Peter is
only “two degrees separated” from Fred, Fred is required to
navigate this chain of communication to reach Peter.

Scenario 4 – Developers finding “similar” developers

Jake is a software developer in the MCW team who needs a
particular service in order to implement his own component. He
has recently contacted Bob, the developer responsible for the
component that provides the service he needs. Bob works in a
team, not MCW, which has a different deadline. Because of the
deadline, Bob has not been very responsive to Jake’s requests. To
make things worse, there are other developers in the same
organization who also need to use Bob’s component and who also
have been sending requests to him. Because Bob has not been
very responsive to Jake’s requests, Jake has not been able to make
a lot of progress and his schedule is starting to slip. Jake meets (by
accident) the three other developers from BSC that also require
services from Bob. Those four developers start to interact and
divide the work, which previously was redundant. Furthermore,
they start to request features from Bob that will be useful for the
four of them.

2.2.3 Observations
Scenarios 1 and 2 draw attention to an important point in software
development: the lack of awareness among software developers
(Grinter 1995; de Souza, Redmiles et al. 2003; Sarma, Noroozi et
al. 2003). For instance, scenario 1 illustrates how the software
manager is not aware of the current level of integration between
her team members and other software developers in the project.
When she finds out that integration has not started, she realizes
that this particular developer is not going to be able to make the

deadline. Similarly, in the second scenario, Jacqueline is
concerned with the integration that Alfred is going to perform
because he might ask for changes in her code and there will be
little time left for her. This scenario illustrates that Jacqueline, to
some extent, might be aware of who depends on her code,
especially when these developers are collocated, but might not be
aware when these developers are distributed. More importantly,
Jacqueline wants more information; she wants to be aware of
when these dependencies are made concrete, or when Alfred starts
integrating his code with hers. Overall, this suggests that analysis
of the source-code in combination with CM information could
have given an answer to Jacqueline and Cathy: by inspecting a
data structure that contains the dependencies of each component
in the project they would know if the integration had already
started. They only need to find out if the strength of the
connection between their code and the other developers’ code is
changing over time.

Scenario 1 also illustrates how software developers are, at least to
some extent, aware of the coordination effort necessary to
integrate code. To be more specific, because Cathy finds out that
Francis needs to integrate his code with two other developers and
because of the coordination effort necessary to perform such
integration, she knows that Francis will not be able to meet the
deadline.

Scenarios 3 and 4 illustrate one common problem in software
development: finding people (McDonald and Ackerman 1998;
Herbsleb, Mockus et al. 2001). In the first scenario (number 3), it
describes the need to find the “right” developer, the one actually
implementing the API. The next scenario (number 4) illustrates a
situation where developers with similar dependencies were
performing redundant work because they did not know about each
other. What is most striking about these scenarios is that they
describe situations in which developers could be found through
dependency analysis of the source-code combined with
information from the configuration management repository. Jake
and Fred have the same dependency on the code than the people
they were trying to find:

 - Fred depends on Jack’s code, and Peter depends on Jack’s code.
Fred wants to find Peter to remove his dependency on Jack’s code
(the dummy implementation); and

- Jake depends on Bob’s code and found out that three other
software developers also depend on Bob’s code.

To summarize, these scenarios suggest that software dependency
analysis, in addition to facilitating software reuse, software
understanding, and other technical aspects (see next section); can
be used by software developers to facilitate the coordination and
execution of software development activities. These results are
also supported by additional work described in (de Souza,
Hildenbrand et al. 2007). In the next section, we will describe
similar previous work.

3. Related Work
Many sub-disciplines of software engineering have researched
various aspects of software dependencies. For example,
dependency analysis techniques have focused on programs
(Ferrante, Ottenstein et al. 1987; Podgurski and Clarke 1989),
component-based systems (Vieira and Richardson 2002), and
software architectures (Stafford, Wolf et al. 1998). Minimizing
dependencies facilitates software reuse, understanding and testing.

For instance, program dependencies are used to improve software
testing, maintenance, parallelization, and computer security.
Another approach adopted by researchers and practitioners to deal
with software dependencies is the creation of mechanisms in
programming languages to reduce dependencies between software
elements. In this case, the most important principle is information
hiding (Parnas 1972), which motivates several mechanisms in
programming languages, including data encapsulation, interfaces,
and polymorphism; and is one of the key principles behind object-
oriented programming (Larman 2001).

All these approaches, however, are purely technical. They do not
take into account the relationship between software dependencies
and the coordination of the work, a socio-technical relationship.
Parnas, about 30 years ago, was one of the first researchers to
recognize this relationship. He suggested that by reducing
dependencies at the artifact level, it is possible to reduce
developers’ dependencies on one another, creating a managerial
advantage (Parnas 1972; Herbsleb and Grinter 1999). Nowadays,
this is a well-known argument among researchers and
practitioners and is even cited in software engineering textbooks
(Ghezzi, Jazayeri et al. 2003). Conversely, but also supporting this
relationship between dependencies and coordination, Conway
(1968) postulated that the structure of a software system would
reflect the communication needs of the people performing the
work. In short, whereas Parnas argues that dependencies shape the
coordination and communication activities performed by software
developers, Conway argues the converse: that dependencies
reflect these coordination and communication activities. That is,
technical dependencies between components create a need for
communication and coordination between developers, and
similarly, dependencies between the development tasks are
reflected in the software.

Both Parnas’ and Conway’s arguments have been validated by
several different empirical studies. Curtis et al. (1988) discussed
how the system architecture affected the communication required
among project personnel, and at the same time, he recognized that
“occasionally, the partitioning [of components to reduce
dependencies between components] was based not only on the
logical connectivity among components, but also on the social
connectivity among the staff”. More recently, Herbsleb and
Grinter (1999) discussed the influence of the software architecture
in the coordination of distributed software development. They
argued that “the more cleanly separated the modules, the more
likely the organization can successfully develop them at different
sites”, because this will remove the communication required
among the different sites. Finally, Sosa and colleagues (2004)
found a strong correlation between dependent components in a
software system and the frequency of communication among the
team members dealing with these components.

In general, what can be observed is that despite the acknowledged
relationship between dependencies and communication and
coordination needs, this relationship has not been explored to
facilitate software development activities. Software development
is indeed a strong candidate for exploring this relationship since
(i) dependencies among software components can be
automatically identified, and (ii) software is malleable (i.e.
dependencies, if so desired, can be more or less easily changed,
and consequently the coordination of those developing the
software). Ariadne, the tool described in this paper, aims to fill the
gap between dependencies and communication and coordination

needs and explore this important and powerful socio-technical
relationship. In this paper, we describe Ariadne’s underlying
architecture and, more importantly, how Ariadne addresses the
problems identified in the scenarios that ultimately motivate our
work. Ariadne’s most important contribution is the usage of
software dependency analysis to facilitate the coordination and
execution of software development activities. By identifying the
“social” dependencies among software developers extracted from
technical dependencies, Ariadne is able to identify developers
who are more likely to be communicating as well as developers
whose similar dependencies make them likely to collaborate.
Furthermore, it can even facilitate people finding. Ariadne is
described in the next section. An earlier version of Ariadne
appeared in (Trainer, Quirk et al. 2005).

4. Ariadne
A simple restatement of the above arguments and scenarios is that
software developers working on dependent pieces of code are
more likely to engage in communication and coordination
activities than developers working on unrelated pieces of code.
Ariadne aims to explore this relationship to facilitate the
coordination of software development efforts. Specifically,
Ariadne is designed to perform automatic dependency analysis on
software projects shared in configuration management repositories
and generate visualizations of social dependency information. The
visualizations generated by Ariadne can be used by software
developers to identify two important pieces of information: who
they depend on and who depends on their work. We hypothesize,
based on our field studies, that by identifying these set of
developers, developers can more easily coordinate their work.

4.1 Creating Social Dependencies
Creating social dependencies involves collecting code dependency
information and retrieving authorship information of the source-
code to identify the authors associated with a code dependency.
Initially, Ariadne identifies the technical dependencies in the
source-code by constructing call-graphs. According to Callahan
and colleagues, a call-graph “summarizes the dynamic invocation
relationships between procedures.” (Callahan, Carle et al. 1990).
However, in our approach we generate invocation information by
leveraging Eclipse's existing SearchEngine API, which parses
source-code to generate a call-graph (i.e. before runtime). As
such, we generate static call-graphs rather than dynamic ones. A
call-graph can be represented as a square matrix (Technical
matrix) where entries represent the number of relationships
between two procedures, or units of code (i.e. packages, classes,
etc.). By describing dependencies in the source-code, a call-graph
potentially unveils dependencies among software developers
responsible for the software components (de Souza, Froehlich et
al. 2005). In order to reveal dependencies among developers, it is
necessary to annotate the call-graph with "social information."
The associations between authors and code can be represented as
a matrix (Sociotechnical matrix) where entries represent a value
for the strength of a connection between author and code.
As the Technical and Sociotechnical matrices describe both
technical dependencies and authorship information, they can be
used to generate sociograms describing the dependence
relationship only among software developers. That is, social
dependencies between developers that exist because of
dependencies in the source-code they are working on. A
sociogram, as used in social network analysis (Wasserman and
Faust, 1994) is a graphical representation of a set of items,

vertices or nodes, connected to one another via links or edges.
Ariadne uses well-established social network operations to
produce information about which developers depend on which
other developers. To infer social dependencies, and create a
sociogram, requires first multiplying the Sociotechnical matrix by
the Technical matrix to produce an author by code matrix
indicating which code units authors depend on. Multiplying this
product by the transpose of the Sociotechnical matrix yields an
author by author matrix (Social matrix) representing the extent of
code dependencies between a pair of authors (Cataldo, Wagstrom
et al. 2006). Figure 1 presents an example of a sociogram of the
Sourceforge.net project Tyrant, created using Ariadne version 0.1.
The sociogram is presented as a View within the Eclipse
enviroment, so that it is easily accessible by software developers
from their own work environment.

Figure 1 - Tyrant sociogram

4.2 Ariadne’s Architecture
Ariadne is implemented as a Java plug-in to the popular Eclipse
IDE. As such, Ariadne is integrated into this environment and
makes heavy use of Eclipse functionality and its plug-in model.
The dependency processing functionality is encapsulated in a
main control plug-in that delegates source-code analysis,
annotation of the source-code analysis data, and visualization of
the created data structure to sub plug-ins. As a result, Ariadne
offers users the flexibility to use dependency generators for a
diverse set of source languages, configuration management
repositories, and methods of visualization.

Ariadne automatically selects (while offering users the ability to
override this choice) appropriate plug-ins for analyzing the user’s
project based on the project’s context. Once the control plug-in
has located appropriate sub plug-ins to analyze the project’s
source-code and query the project’s configuration management,
the control plug-in automatically generates social dependencies
for that project. Using one of the installed visualization plug-ins, it
is possible to display all three types of dependency information to
the user: technical dependencies, social call-graph (call-graphs
annotated with authorship information), and sociograms.

Our current implementation can present call-graphs and social
call-graphs at three different levels of abstraction, based on the
programming language’s hierarchy (e.g. packages, classes, and
methods in Java). Essentially, information is aggregated at each

hierarchy level to, potentially, average the different results
provided by diverse call-graph extractors (Murphy, Notkin et al.
1998). For instance, class dependencies are displayed as the
aggregation of method dependencies (i.e., the call-graph).

5. Our Approach: Visualization
As exemplified by the software scenarios above, a key issue in
collaborative activities, particularly software development, is
awareness or "knowing what is going on" (Dourish and Bellotti
1992; Heath and Luff 1992).

Awareness of colleagues’ activities facilitates the coordination of
collaborative efforts and is achieved by social actors through
different channels. Depending on several factors such as the
geographical distance between teams, cultural differences, and
rules and norms in an organization, it may be difficult for
developers to discern the activities of their colleagues. As such,
various tools have been developed by the software engineering
research community to both provide and augment developers'
awareness in software projects. Many tools rely on visualization
techniques as a means to provide awareness (Al-Ani, Sarma et al.
2006). Visualization is generally accepted as a good candidate for
conveying awareness information because of its ability to
capitalize on perceptual effects familiar to users, such as
foreground/background effects and use of color to make the
information of interest more salient. However, merely
simplifying the logical representation of the data is not a panacea.
As noted by Petre, Blackwell, and Green, the complexity of the
visualization technique is linked to not only the information to be
visualized, but also to its context of use (Petre, Blackwell et al.
1997).

In other words, the visualization should be designed to support the
particular roles of users and the specific tasks they need to
accomplish. For example, the same bit of information that is
highly important for one user may be completely uninteresting for
another user in the same situation. As such, we have designed our
visualizations to not only address the specific problems outlined
in the aforementioned scenarios, but also to present the
information in a way that integrates seamlessly with developers'
activities in Eclipse.

For displaying data entities and the relationships among them, two
popular representations have been commonly espoused by
researchers: matrices and graphs. In an empirical study by
Novick and Hurley that examined the use of three spatial
diagrams, including graphs and matrices, and reasons to use one
over the other, matrices were deemed desirable for representing
associative links (non-directional) and the absence of a link
between two elements. On the other hand, graphs were found to
be useful when any node can be linked to another node without
specific constraints. Graphs were also determined to be
appropriate for visualizing the fact that any number of links can
start from and terminate at a given node (e.g. many-to-many, one-
to-many relationships). Additionally, it is much easier to traverse
a given path through the data when the representation is a graph
rather than a matrix (Novick and Hurley, 2001). Moreover, in
judging the applicability of graph visualizations to data, Herman
(Herman, 2000) ask whether there are inherent relations among
the data elements. If the answer is "yes", then the data can be
represented by nodes of a graph with edges representing the
relationships between the data.

Based on the considerations above, we use a graph-based
visualization to represent the three different types of dependency
information generated by Ariadne. Because Ariadne deals with
dependencies, or more specifically, the relationships between
code modules and code modules, authors to code modules, and
authors, an appropriate visual representation should convey both
these relationships and the data entities themselves. As illustrated
in the previous paragraph, one of the most important utility of
graphs, as opposed to matrices, is the explicit emphasis on the
relationships between the data and their semantic meanings.
Because Ariadne seeks to extract meaningful information from
dependencies that developers and mangers can leverage to
increase their awareness of others' work activities, we choose
graph-based visualizations to represent our data rather than
matrices.

When using a graph-based visualization to represent data, the
layout of the graph is an important cue for understanding
underlying structures in the data (Petre, Blackwell et al. 1997;
Herman, Melancon et al. 2000; Otjacques and Feltz, 2005).
Because Ariadne is used primarily for uncovering the meaning of
relationships between developers and their code rather than their
structural properties, the layouts do not always provide added
value. In each scenario we explicitly state whether or not the
layout of the visualization is meant to convey additional
information to developers.

In order to rapidly test and refine our graph-based visualizations,
we use the JUNG (Java Universal Network/Graph) framework
(O'Madadhain and Fisher, 2003). JUNG provides a general,
flexible API for creating, manipulating, and visualizing graph and
network data. Although it is not a mature, fully-featured
framework and is largely intended to be extended by developers,
JUNG does come with some standard libraries for rendering a
limited number of node and edge shapes. As such, developers can
quickly produce graph-based visualizations comprised of nodes
and edges. However, because JUNG is a general framework and
provides limited functionality without being extended, it is
difficult to quickly experiment with some visual affordances such
as the shapes of edges and the specific positions of nodes and
edges. On the other hand, JUNG's extensibility has allowed us to
easily utilize other visual cues such as node and edge size, color,
and different views of abstraction to convey meaningful,
contextual information to developers.

This section describes four different visualizations, each tailored
to the problems uncovered in the scenarios described in section 2.
In each visualization:

- Code modules are designated by green nodes in keeping
with Eclipse's Java coloring scheme;

- Software interfaces are designated by purples nodes in
keeping with Eclipse's Java coloring scheme;

- Authors are represented as icons, code modules are
designated by circular shapes;

- The local developer in the local workspace is designated
as an orange node with his name in bold;

- Other developers are designated by cyan nodes;

- A directed edge from a code module to code module
indicates a technical dependency; and

- A directed edge from a developer to a code module
indicates a socio-technical dependency (authorship) .`

5.1 Visualization / Scenario 1

Figure 2 - Manager Awareness View

In order to meet project deadlines, managers need to know when
team members have started integrating their code with other team
members’ code. To this end, the Manager Awareness View
presents a project's sociogram with recency information encoded
in the shading of edges between authors. More recent
dependencies created between authors appear as more deeply
shaded connections, while older connections are lighter. The
graph and recency information help managers create an
understanding of the state of integration between project
developers by highlighting recent connections between authors.
Recent connections signify to managers that two developers who
must integrate code with each other are, in fact, integrating their
code. To discover the specific artifacts through which those
developers are connected, managers can drill down into the
connections for more detailed information. Users of this
visualization can interact with the graph by clicking on authors
and edges to find information on what an author has most recently
authored and the code dependencies underlying an edge,
respectively.

5.2 Visualization / Scenario 2

Figure 3 - Developers’ Awareness of Real-time Code
Dependencies

In both collocated and distributed software engineering
environments, it is important for developers to be aware of who is
a consumer of their code and when the "consumption" starts. The
Establishing Dependencies View (Figure 3) provides a means
through which developers can see such information. As we noted
earlier, it is important to contextualize the information displayed
in the visualization in a way that flows with the user's normal
activities. Consequently, the focal point of the Establishing
Dependencies View is the developer (indicated by the "person"
icon and accompanying user name, e.g. liemt) surrounded by the
code modules that he has authored. By displaying only a subset
of developer-specific information, the developer can see how the
code he writes is being utilized by other developers without
having to traverse socio-technical dependency relationships for
the whole project.

In any visualization, it is important that the mapping from the
visual variables to the attributes of the data is appropriate and
meaningful given how humans visually perceive things (Ware,
2000). As such, in our visualization we make use of both size and
color to guide the developer toward the information he desires.
According to the second scenario, the developer's interest lies in
both figuring out who is utilizing code and when the code is being
called. In order to facilitate the developer's understanding of the
code modules that are being consumed, we highlight code
modules that are more highly depended upon than others by
displaying them in a larger size. In this way, the developer's
attention is immediately focused on potential code modules of
interest and diverted from others. Indeed, according to the second
scenario, the developer is more likely to be interested in certain
modules that are being heavily consumed rather than code
modules with little to no activity. Once the developer has
identified code modules of interest, he can look at the darkness of
the node's color to determine if the module has been recently
utilized by another developer. To view authors and code modules
consuming a particular module of interest, the user/developer left-
clicks on the desired code module surrounding him. A panel
below displays a list of authors and the code modules they have
written that consume the code module in question.

By contextualizing a project's socio-technical dependency
relationships and making use of color and size to highlight
particular areas of interest, the Establishing Dependencies View
visualization has potential to increase developers' awareness of
evolving code dependencies. If by examining a code module that
should be the center of activity for many other developers in the
project, a developer finds that no one has started utilizing it, he
can determine that immediate communication with those other
developers is necessary to avoid delays, or other potential
breakdowns in the project.

5.3 Visualization / Scenario 3

Figure 4 - Finding the "right" person

A common problem in software development is finding the right
person to talk to about a piece of code, an interface’s
implementation for instance. Rather than merely identifying the
author of an interface, this view allows the developer to identify
others who implement an interface of interest and the code
modules through which they do so. As in the previous
visualizations, we make use of visual cues such as color and size
to convey important contextual information.

As we indicated before, the layout of the visualization can
influence interpretations of the data. In our visualization, we
leverage this ability of a graph layout to facilitate the developer's
discovery of paths to an interface. We choose to represent
interfaces, implementing code modules, and authors as a
hierarchical static ordering (Figure 3). This approach has two
advantages. First, because the layout is static, users do not have
to spend time arranging the nodes and edges to discover how
other developers are connected to the same interface. Rather the
layout ensures that the same information will be presented to the
user in the same exact way each time. Second, the layout
reinforces the user's understanding that the process of uncovering
the information of interest involves three major components:
authors, implementing code modules, and the interface. Authors
are connected to code modules which are connected to the
interface that they implement. By breaking each component into
its own level, developers can more easily trace each step in the
process.

5.4 Visualization / Scenario 4

Figure 5 - Finding “similar” developers

In order to eliminate redundant work and to ask other developers
for help with particular code modules, developers should be able
to identify other developers who share similar socio-technical
dependencies. Once the developer identifies others who are
performing similar work, he can coordinate with them
accordingly. The Finding Similar Developers View (Figure 4)
aims to facilitate this process. Similar to the second visualization,
this view aims to contextualize the information displayed to the
developer by placing him in the center of the graph. However,
rather than showing code modules the developer has authored, we
display other developers who are dependent on the same pieces of
code. Moreover, to direct the developer's attention toward other
developers who have many dependencies in common - developers
who may potentially be performing overlapping work - we display
these developers in a larger size than others. Because there is not
necessarily a social dependency between ego and another
"similar" developer, we use undirected edges to represent the
relationship between similar developers. To view the
dependencies that are shared between developers, the user can
click on an edge of interest.

6. DISCUSSION
The visualizations provided by Ariadne have been heavily
influenced by the scenarios drawn from the MCW and MBL
project teams field data, and, as such, aim to solve specific
problems in software development. The first two visualizations
aim to increase both managers' and developers' awareness of code
dependencies and when they are established in a software project.
The first visualization allows managers to gain an understanding
of the status of code integration among developers, enhancing
managers' ability to assess developers' progress and to
subsequently determine whether or not project deadlines will be
met in time. Similarly, the second visualization allows a
developer to determine if and when other developers have started
to integrate code with theirs. If, for example, developer A knows
that developer B has not started to integrate his code within the
last month, more work may be requested of developer A by
developer B before the deadline. The last two visualizations are
aimed at helping a developer find other developers who are
related through the code they write. In the third visualization, a
developer can identify other developers who implement a

particular interface and the specific code modules through which
they do so. In the event that developers are performing
overlapping work or need assistance in programming against
specific code modules, the last visualization directs the developer
toward other "similar" developers and the underlying technical
dependencies they have in common.

Increased awareness provided by the tool and the transparency it
brings to developers' work could have effects on the way
developers work, and even the tool's results. Ariadne allows
developers and supervisors greater insight into the work done by
their colleagues and collaborators, respectively, allowing them to
gauge their peers' progress, or the lack thereof. Although
developers' code becomes public when checked into a source
control system (or sometimes before), dependency and authorship
information of the kind produced by Ariadne is not usually so
easily available. Access to such information usually requires
significant effort and is confined to individuals or pairs of
individuals (when shared with the target of the investigation). As
such, developers may consider such information personal and
could take steps to "game" the results of the tool if they feel their
personal information might be used against them. Managing the
use of Ariadne is certainly a challenge for the future.

We believe that the principles highlighted in Ariadne's
visualizations will enhance developers' and managers' awareness
of their colleagues' development activities. By capitalizing on a
visualization's ability to perceptually highlight information of
interest through visual affordances such as color, size, different
views of abstraction, and layout, Ariadne both brings the most
relevant information to the foreground and presents it to the user
in a form that is cognitively easier to process. Moreover, by
gearing the visualizations toward particular coordination and
awareness problems in software development, Ariadne's
visualizations present information that is highly contextualized
toward specific project activities. The same information relevant
to a developer's work may not be of interest to a project manager
for example, and vice versa. Finally, because the tool and its
visualizations are seamlessly integrated into the Eclipse IDE,
developers can explore how they are linked to other developers
through the code they write, without disrupting their current work.

7. CONCLUSIONS AND FINAL REMARKS
This article described Ariadne, a plug-in to the Eclipse IDE that
aims to reduce the gap between technical and social dependencies,
and therefore facilitate the coordination of software development
work. Ariadne was motivated by our own field studies of software
development and reflects some of the insights that we learned
from these studies. We described Ariadne’s features as well as
architecture. Ariadne currently offers developers a variety of
visualizations. In the future, we plan to offer developers a choice
of many visualizations ranging from directed graphs, annotated
class diagrams, or decorators inside the Eclipse workbench.
Decorators are simple visual clues (usually in the form of an icon)
to developers that display additional information about resources
in the workspace. Eventually we plan to release Ariadne generally
as an open source tool.

Currently, Ariadne supports software developers working with
source-code, which allows us to perform automatic identification
of dependencies. We plan to investigate how to support other
software development artifacts. In this case, the dependency
analysis would be performed using traceability (Spanoudakis and

Zisman 2004) which describes dependency relationships among
different software development artifacts. In addition, we are
evaluating Ariadne using usability inspection methods and user-
studies.

8. ACKNOWLEDGMENTS
This research was supported by the U.S. National Science
Foundation under grants 0534775 and 0205724, by an IBM
Eclipse Technology Exchange grant, and by the Brazilian
Government under CAPES grant BEX 1312/99-5 and CNPq grant
479206/2006-6. We also gratefully acknowledge comments by
our colleague Steve Abrams.

9. REFERENCES
B. Al-Ani, A. Sarma, G. Bortis, I. Almeida da Silva, E. Trainer,
A. van der Hoek, and D. Redmiles , Continuous Coordination
(CC): A New Collaboration Paradigm. CSCW Workshop on
Supporting the Social Side of Large Scale Software Development,
Banff, Canada, November 2006, pages 69-72.

Callahan, D., A. Carle, et al. (1990). "Constructing the Procedure
Call Multigraph." IEEE Transactions on Software Engineering
16(4): 483-487.

Cataldo, M., P. A. Wagstrom, et al. (2006). Identification of
Coordination Requirements: implications for the Design of
Collaboration and Awareness Tools. 20th Conference on
Computer Supported Cooperative Work. Banff, Alberta, Canada,
ACM Press.
Conway, M. E. (1968). "How Do Committees invent?"
Datamation 14(4): 28-31.
Curtis, B., H. Krasner, et al. (1988). "A field study of the software
design process for large systems." Communications of the ACM
31(11): 1268-1287.
de Souza, C. R. B., D. Redmiles, et al. (2003). Management of
Interdependencies in Collaborative Software Development: A
Field Study. International Symposium on Empirical Software
Engineering (ISESE'2003), Rome, Italy, IEEE Press.

de Souza, C. R. B., D. Redmiles, et al. (2004). How a Good
Software Practice thwarts Collaboration - The Multiple roles of
APIs in Software Development. Foundations of Software
Engineering, Newport Beach, CA, USA, ACM Press.

de Souza, C. R. B., D. Redmiles, et al. (2004). Sometimes You
Need to See Through Walls - A Field Study of Application
Programming Interfaces. Conference on Computer-Supported
Cooperative Work (CSCW '04), Chicago, IL, USA, ACM Press.

de Souza, C. R. B., J. Froehlich, et al. (2005). Seeking the Source:
Software Source-code as a Social and Technical Artifact (to
appear). ACM Conference on Group Work, Sanibel Island, FL,
USA.

de Souza, C. R. B. (2005). On the Relationship between Software
Dependencies and Coordination: Field Studies and Tool Support.
Department of Informatics, Donald Bren School of Information
and Computer Sciences. Irvine, CA, University of California,
Irvine. Ph.D.: 186.

de Souza, C. R. B., T. Hildenbrand, et al. (2007). Towards
Visualization and Analysis of Traceability Relationships in
Distributed and Offshore Software Development Projects (to

appear). Software Engineering Approaches for Offshore and
Outsourced Development, Zurich, Springer.

de Souza, C. R. B. and D. Redmiles (2007). The Awareness
Network: To Whom Should I Display my Actions and Whose
Actions Should I Monitor? (to appear). European Conference on
Computer-Supported Cooperative Work. Limerick, Ireland,
Springer.

Dourish, P. and V. Bellotti (1992). Awareness and Coordination
in Shared Workspaces. Conference on Computer-Supported
Cooperative Work (CSCW '92), Toronto, Ontario, Canada, ACM
Press.
Ferrante, J., K. J. Ottenstein, et al. (1987). "The program
dependence graph and its use in optimization." ACM Transactions
on Programming Languages and Systems (TOPLAS) 9(3): 319-
349.
Fuggetta, A. (2000). Software Processes: A Roadmap. Future of
Software Engineering, Limerick, Ireland.
Ghezzi, C., M. Jazayeri, et al. (2003). Fundamentals of Software
Engineering, Prentice Hall.
Grinter, R. E. (1995). Using a Configuration Management Tool to
Coordinate Software Development. Conference on Organizational
Computing Systems, Milpitas, CA.
Grinter, R. E. (2003). "Recomposition: Coordinating a Web of
Software Dependencies." Journal of Computer Supported
Cooperative Work 12(3): 297-327.
Heath, C. and P. Luff (1992). "Collaboration and Control: Crisis
Management and Multimedia Technology in London
Underground Control Rooms." Computer Supported Cooperative
Work 1(1-2): 69-94.

Herbsleb, J. D. and R. E. Grinter (1999). "Architectures,
Coordination, and Distance: Conway's Law and Beyond." IEEE
Software: 63-70.

Herbsleb, J. D., A. Mockus, et al. (2001). An Empirical Study of
Global Software Development: Distance and Speed. International
Conference on Software Engineering, Toronto, Canada, IEEE
Press.

Herman, I., G. Melancon, and M. S. Marshall. Graph
visualization and navigation in information visualization: A
survey. IEEE Transactions on Visualization and Computer
Graphics, 6(1):24-43, 2000.

Jorgensen, D. L. (1989). Participant Observation: A Methodology
for Human Studies. Thousand Oaks, SAGE publications.

Larman, G. (2001). "Protected Variation: The Importance of
Being Closed." IEEE Software 18(3): 89-91.
McCracken, G. (1988). The Long Interview, SAGE Publications.
McDonald, D. W. and M. S. Ackerman (1998). Just Talk to Me: A
Field Study of Expertise Location. Conference on Computer
Supported Cooperative Work (CSCW '98), Seattle, Washington.
Morelli, M. D., S. D. Eppinger, et al. (1995). "Predicting
Technical Communication in Product Development
Organizations." IEEE Transactions on Engineering Management
42(3): 215-222.

Murphy, G., D. Notkin, et al. (1998). "An Empirical Study of
Static Call Graph Extractors." ACM Transactions on Software
Engineering and Methodology 7(2): 158-191.

Novick, L. and S. Hurley, To Matrix, Network, or Hierarchy: That
is the Question, Cognitive Psychology, Vol. 42, 2001, pp. 158-
216

Nutt, G. J. (1996). "The evolution toward flexible workflow
systems." Distributed Systems Engineering(3): 276-294.

Otjacques, B. and Feltz, F. 2005. Representation of Graphs on a
Matrix Layout. In Proceedings of the Ninth international
Conference on information Visualisation (Iv'05) - Volume 00
(July 06 - 08, 2005). IV. IEEE Computer Society, Washington,
DC, 339-344.

Parnas, D. L. (1972). "On the Criteria to be Used in Decomposing
Systems into Modules." Communications of the ACM 15(12):
1053-1058.

Petre, M., A. Blackwell, T. Green, Cognitive questions in
software visualization, in Software Visualization: Programming as
a Multi-Media Experience, MIT Press, Cambridge, MA, 1997, pp.
453–480.
Podgurski, A. and L. A. Clarke (1989). The Implications of
Program Dependencies for Software Testing, Debugging, and
Maintenance. Symposium on Software Testing, Analysis, and
Verification.

Sarma, A., Z. Noroozi, et al. (2003). Palantír: Raising Awareness
among Configuration Management Workspaces. Twenty-fifth
International Conference on Software Engineering, Portland,
Oregon.

Sosa, M. E., S. D. Eppinger, et al. (2002). "Factors that influence
Technical Communication in Distributed Product Development:

An Empirical Study in the Telecommunications Industry." IEEE
Transactions on Engineering Management 49(1): 45-58.

Sosa, M. E., S. D. Eppinger, et al. (2004). "The Misalignment of
Product Architecture and Organizational Structure in Complex
Product Development." Management Science 50(12): 1674-1689.

Spanoudakis, G. and A. Zisman (2004). Software Traceability: A
Roadmap. Handbook of Software Engineering and Knowledge
Engineering. S. K. Chang, World Scientific Publishing Co.

Stafford, J. A., A. L. Wolf, et al. (1998). Architecture-Level
Dependence Analysis for Software Systems. International
Workshop on the Role of Software Architecure in Testing and
Analysis (ROSATEA), Marsala, Sicily, Italy.

Strauss, A. and J. Corbin (1998). Basics of Qualitative Research:
Techniques and Procedures for Developing Grounded Theory.
Thousand Oaks, SAGE publications.

Trainer, E., S. Quirk, et al. (2005). Bridging the Gap between
Technical and Social Dependencies with Ariadne. Eclipse
Technology Exchange, San Diego, CA.

Vieira, M. R. E. and D. J. Richardson (2002). The Role of
Dependencies in Component-Based System Evolution.
International Workshop on Principles of Software Evolution,
Orlando, Florida.
Wasserman, S. and K. Faust, Social Network Analysis: Methods
and Applications. Structural Analysis in the Social Sciences.
1994, Cambridge, UK: Cambridge University Press.

