A Proof of that Linearizability is a Compositional Condition

Niklas Ekström & Seif Haridi

Compositionality

- A correctness condition CC is compositional if:
 - History H satisfies CC iff every register subhistory
 H|x satisfies CC
- Linearizability is compositional:
 LIN(H) ⇔ ∀x: LIN(H|x)

• We will prove that this is the case

Definition of Linearizability

- Remember the definition of linearizability:
 - LIN(H) iff there exists a sequential history S satisfying the following requirements:
 - (1) S is legal
 - (2) S and H are equivalent
 - (3) If $o_1 <_H o_2$ then $o_1 <_S o_2$

$$-o_1 <_H o_2$$
 denotes that res $(o_1) \rightarrow_H inv(o_2)$

• $e_1 \rightarrow_H e_2$ denotes that e_1 precedes e_2 in H

The Proof

- We must show that:
 - LIN(H) $\Rightarrow \forall x$: LIN(H|x), and
 - LIN(H) $\Leftarrow \forall x$: LIN(H|x)
- The \Rightarrow direction follows trivially
 - Exercise: Complete the proof
 - Assume LIN(H), implying that there exists a sequential history S satisfying requirements (1)-(3)
 - Show that subhistory S|x satisfies the requirements of a sequential history for LIN(H|x)

The \Leftarrow Direction

- We must show that $LIN(H) \Leftarrow \forall x: LIN(H|x)$
- Assume that the right-hand side holds:
 - For each x, there exists a sequential history Sx that satisfies the requirements of LIN(H|x)
 - (1) Sx is legal

(2) Sx and H|x are equivalent

(3) If $o_1 <_{H|x} o_2$ then $o_1 <_{Sx} o_2$

 We will construct a sequential history S that satisfies the requirements of LIN(H)

Constructing Operation Graph

 Create a graph, whose vertices are operations in H, and edges are added as follows:

– Add an edge from o to o' if o <_{sx} o'

- Add an edge from o to o' if $o <_{H} o'$

We refer to an edge as a <_{sx} edge or
 a <_H edge (there can be zero, one, or
 two edges from o to o')

Constructing Sequential History S

- If the constructed graph is acyclic, then a topological sort can be performed
 - Creates a total order on operations, compatible with the partial ordering in the graph
 - History S is created directly from this total ordering
- Sequential history S created in this way satisfies the requirements for LIN(H) by construction:
 - S is legal since the total ordering in $<_{sx}$ is legal,
 - S and H are equivalent,
 - $o_1 <_H o_2$ implies $o_1 <_S o_2$

Acyclic

- We need to show that any graph constructed as described is acyclic
 - So that the graph can be topologically sorted
 - Proof by contradiction: assume a minimal cycle exists of a certain length, and reach contradiction

Cycle of Length n=2

- Cycles with two operations:
 - $-o_{1} <_{H} o_{2} <_{H} o_{1}$
 - Not possible, as <_H is a partial order

$$-o_1 <_{Sx} o_2 <_{Sx} o_1$$

- Not possible, as <_{sx} is a total order
- $-o_{1} <_{H} o_{2} <_{Sx} o_{1}$
 - As o_1 and o_2 are both ops on x, then $o_1 <_H o_2$ implies that $o_1 <_{Sx} o_2$, which is contradicted in previous case

Cycle of Length n=3

- Cycles with three operations:
 - $-o_1 <_H o_2 <_H o_3 <_H o_1$
 - Not minimal as <_H is partial order
 - Similar contradiction if $<_{Sx}$ instead of $<_{H}$
 - $-o_1 <_H o_2 <_H o_3 <_{Sx} o_1$
 - Not minimal as <_H is partial order
 - In fact any cycle of length three must have two consecutive edges of same type (<_H or <_{Sx}), and therefore cannot be minimal

Cycle of Length n≥4

- Consider a cycle of arbitrary length n≥4
- At some point in the cycle there is a section:

 $-o_1 <_H o_2 <_{Sx} o_3 <_H o_4$

- We will show that this cycle is not minimal, as there must exist an edge o₁ <_H o₄
- Focus on edge $o_2 <_{Sx} o_3$, there are two cases:
 - Either $o_2 <_H o_3$, and hence $o_1 <_H o_4$ by transitivity of $<_H$
 - Or, not($o_3 <_H o_2$), this case is handled on next slide

Cycle of Length n≥4, case 2

- Second case, continued from previous slide:
 not(o₃ <_H o₂) implies that not(res(o₃) →_H inv(o₂))
 As →_H is a total order, we have inv(o₂) →_H res(o₃)
 - Together with $o_1 <_H o_2$, and $o_3 <_H o_4$, we have:
 - $\operatorname{res}(o_1) \rightarrow_H \operatorname{inv}(o_2) \rightarrow_H \operatorname{res}(o_3) \rightarrow_H \operatorname{inv}(o_4)$
 - Implying that $res(o_1) \rightarrow_H inv(o_4) \Rightarrow o_1 <_H o_4$
 - Hence, the cycle containing $o_1 <_H o_2 <_{Sx} o_3 <_H o_4$ is not minimal

Summary

- Cycles of all lengths have been contradicted and the graph is therefore acyclic
- It can be topologically sorted into a sequential history S that meets requirements of LIN(H)

- We have proven that:
 - Linearizability is compositional
 - $LIN(H) \Leftrightarrow \forall x: LIN(H|x)$