Foundations of Computer Graphics

Online Lecture 4: Transformations 2 Homogeneous Coordinates

Ravi Ramamoorthi

To Do

Start doing HW 1

- Specifics of HW 1
 Last lecture covered basic material on transformations in 2D Likely need this lecture to understand full 3D transformations
- Last lecture: full derivation of 3D rotations. You only need final formula
- gluLookAt derivation later this lecture helps clarifying some ideas

Outline

- Translation: Homogeneous Coordinates
- Transforming Normals
- Rotations revisited: coordinate frames
- gluLookAt (quickly)

Homogeneous Coordinates

- Add a fourth homogeneous coordinate (w=1)
- 4x4 matrices very common in graphics, hardware
- Last row always 0 0 0 1 (until next lecture)

$$\begin{array}{c} x'\\ y'\\ z'\\ w' \end{array} = \left(\begin{array}{cccc} 1 & 0 & 0 & 5\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{array} \right) \left(\begin{array}{c} x\\ y\\ z\\ 1 \end{array} \right) = \left(\begin{array}{c} x+5\\ y\\ z\\ 1 \end{array} \right)$$

finite point. For w = 0, point at infinity (used for vectors to stop translation)

Advantages of Homogeneous Coords

- Unified framework for translation, viewing, rot...
- Can concatenate any set of transforms to 4x4 matrix
- No division (as for perspective viewing) till end
- Simpler formulas, no special cases
- Standard in graphics software, hardware

Gener	al	Т	ra	nslation Matrix
	1	0	0	T_{x}
τ_{-}	0	1	0	$T_{y} = \left(I_{3} T \right)$
, -	0	0	1	$T_z = \begin{bmatrix} 0 & 1 \end{bmatrix}$
	0	0	0	1)
(1	0	0	T_x	$\begin{pmatrix} x \end{pmatrix} \begin{pmatrix} x + T_x \end{pmatrix}$
$P' = TP = \begin{bmatrix} 0 \end{bmatrix}$	1	0	T_y	$\begin{vmatrix} y \end{vmatrix} = \begin{vmatrix} y + T_y \end{vmatrix} = P + T$
0	0	1	T _z	$\begin{bmatrix} z \\ z \end{bmatrix} = \begin{bmatrix} z + T_z \end{bmatrix}$
(0	0	0	1	

Combining Translations, Rotations

- Order matters!! TR is not the same as RT (demo)
- General form for rigid body transforms
- We show rotation first, then translation (commonly used to position objects) on next slide. Slide after that works it out the other way
- Demos with applet

Combining Translations, Rotations
P' = (TR)P = MP = RP + T
Transformations game demo

Foundations of Computer Graphics

Online Lecture 4: Transformations 2 Transforming Normals

Ravi Ramamoorthi

Outline

- Translation: Homogeneous Coordinates
- Transforming Normals
- Rotations revisited: coordinate frames
- gluLookAt (quickly)

Finding Normal Transformation

$$t \to Mt \qquad n \to Qn \qquad Q = ?$$
$$n^{T}t = 0$$
$$n^{T}Q^{T}Mt = 0 \implies Q^{T}M = I$$
$$Q = (M^{-1})^{T}$$

Foundations of Computer Graphics

Online Lecture 4: Transformations 2 Rotations Revisited: Coordinate Frames

Ravi Ramamoorthi

Outline

- Translation: Homogeneous Coordinates
- Transforming Normals
- Rotations revisited: coordinate frames
- gluLookAt (quickly)

Geometric Interpretation 3D Rotations

- Rows of matrix are 3 unit vectors of new coord frame
- Can construct rotation matrix from 3 orthonormal vectors

$$R_{uvw} = \begin{pmatrix} x_u & y_u & z_u \\ x_v & y_v & z_v \\ x_w & y_w & z_w \end{pmatrix} \qquad u = x_u X + y_u Y + z_u Z$$

Axis-Angle formula (summary)

 $(b \setminus a)_{ROT} = (I_{3\times 3} \cos\theta - aa^{T} \cos\theta)b + (A^{*} \sin\theta)b$ $(b \to a)_{ROT} = (aa^{T})b$ $R(a,\theta) = I_{3\times 3} \cos\theta + aa^{T}(1 - \cos\theta) + A^{*} \sin\theta$

$$R(a,\theta) = \cos\theta \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + (1 - \cos\theta) \begin{pmatrix} x^2 & xy & xz \\ xy & y^2 & yz \\ xz & yz & z^2 \end{pmatrix} + \sin\theta \begin{pmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{pmatrix}$$

Foundations of Computer Graphics

Online Lecture 4: Transformations 2 Derivation of gluLookAt

Ravi Ramamoorthi

Outline

- Translation: Homogeneous Coordinates
- Transforming Normals
- Rotations revisited: coordinate frames
- gluLookAt (quickly)

Case Study: Derive gluLookAt

- Defines camera, fundamental to how we view images
- gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)
- Camera is at eye, looking at center, with the up direction being up
- May be important for HW1
- Combines many concepts discussed in lecture
- Core function in OpenGL for later assignments

Steps

- gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)
- Camera is at eye, looking at center, with the up direction being up
- First, create a coordinate frame for the camera
- Define a rotation matrix
- Apply appropriate translation for camera (eye) location

Steps

- gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)
- Camera is at eye, looking at center, with the up direction being up
- First, create a coordinate frame for the camera
- Define a rotation matrix
- Apply appropriate translation for camera (eye) location

Geometric Interpretation 3D Rotations

- Rows of matrix are 3 unit vectors of new coord frame
- Can construct rotation matrix from 3 orthonormal vectors

$$R_{uvw} = \begin{pmatrix} x_u & y_u & z_u \\ x_v & y_v & z_v \\ x_w & y_w & z_w \end{pmatrix} \qquad u = x_u X + y_u Y + z_u Z$$

Steps

gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz) Camera is at eye, looking at center, with the up direction being up

- First, create a coordinate frame for the camera
- Define a rotation matrix
- Apply appropriate translation for camera (eye) location

Translation

- gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)
- Camera is at eye, looking at center, with the up direction being up
- Cannot apply translation after rotation
- The translation must come first (to bring camera to origin) before the rotation is applied

Combining Translations, Rotations

$$P' = (RT)P = MP = R(P+T) = RP + RT$$

$$M = \begin{pmatrix} R_{11} & R_{12} & R_{13} & 0 \\ R_{21} & R_{22} & R_{23} & 0 \\ R_{31} & R_{32} & R_{33} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & T_{x} \\ 0 & 1 & 0 & T_{y} \\ 0 & 0 & 1 & T_{z} \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} R_{3\times3} & R_{3\times3}T_{3\times1} \\ 0_{1\times3} & 1 \end{pmatrix}$$

gl	uL	00	kA	t fii	na	l f	orm)	
x _u	y _u	z,	0)	(1	0	0	-e,		
X_{v}	y_v	Z_v	0	0	1	0	$-e_y$		
X _w	y _w	Z_w	0	0	0	1	-e_		
0	0	0	1)	(0	0	0	1,		

gluLookAt final form
$ \begin{pmatrix} x_u & y_u & z_u & 0 \\ x_v & y_v & z_v & 0 \\ x_w & y_w & z_w & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & -e_x \\ 0 & 1 & 0 & -e_y \\ 0 & 0 & 1 & -e_z \\ 0 & 0 & 0 & 1 \end{pmatrix} $ $ \begin{pmatrix} x_u & y_u & z_u & -x_u e_x - y_u e_y - z_u e_z \\ x_v & y_v & z_v & -x_v e_x - y_v e_y - z_v e_z \\ x_w & y_w & z_w & -x_w e_x - y_w e_y - z_w e_z \\ 0 & 0 & 0 & 1 \end{pmatrix} $