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7.1. MODELS OF SENSORS AND ACTUATORS

A sensor is a device that measures a physical quantity. An actuator is a device that
alters a physical quantity. In electronic systems, sensors usually produce a voltage that is
proportional to the physical quantity being measured. The voltage may then be converted
to a number by an analog-to-digital converter (ADC). A sensor that is packaged with
an ADC is called a digital sensor, whereas a sensor without an ADC is called an analog
sensor. A digital sensor will have a limited precision, determined by the number of
bits used to represent the number (this can be as few as one!). Conversely, an actuator
is commonly driven by a voltage that may be converted from a number by a digital-to-
analog converter (DAC). An actuator that is packaged with a DAC is called a digital
actuator.

Key properties of sensors and actuators include the proportionality constant that relates
the physical quantity to the measurement or control signal, the offset or bias, and the
dynamic range. These properties are discussed in section 7.1.1 and the sidebar on page
179. For many sensors and actuators, it is useful to model the degree to which a sensor or
actuator deviates from a proportional measurement (its nonlinearity), and the amount of
random variation introduced by the measurement process (its noise).

7.1 Models of Sensors and Actuators

Sensors and actuators connect the world of computation with the physical world. Num-
bers in the first world bear a relationship with quantities in the second. In this section,
we provide models of that relationship. Having a good model of a sensor or actuator is
essential to effectively using it.

7.1.1 Linear and Affine Models of Sensors

A function f : R→ R is a linear function if there exists a proportionality constant
a ∈ R such that for all x ∈ R

f (x) = ax.

It is an affine function if there exists a proportionality constant a ∈ R and a bias b ∈ R
such that

f (x) = ax+b.

Clearly, every linear function is an affine function (with b = 0), but not vice versa.
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7. SENSORS AND ACTUATORS

Many sensors may be approximately modeled by an affine function. Interpreting the read-
ings of a sensor requires knowledge of the proportionality constant and bias. The propor-
tionality constant represents the sensitivity of the sensor, since it specifies the degree to
which the measurement changes when the physical quantity changes.

7.1.2 Dynamic Range of Sensors

The range of a sensor is the set of values of a physical quantity that it can measure.
For example, a thermometer designed for weather monitoring may have a range of −10◦

centigrade to 45◦ centigrade. Physical quantities outside this range will typically satu-
rate, meaning that they yield a maximum or a minimum reading outside their range. An
affine function model of a sensor may be augmented to take this into account as follows,

f (x) =


ax+b if L≤ x≤ H
aH +b if x > H
aL+b if x < L,

(7.1)

where L,H ∈ R, L < H, are the low and high end of the sensor range, respectively.

A relation between a physical quantity and a measurement given by (7.1) is not an affine
relation. In fact, this is a simple form nonlinearity that is shared by all sensors. The
sensor is reasonably modeled by an affine function within an operating range (L,H), but
outside that operating range, its behavior is distinctly nonlinear.

7.1.3 Quantization and Dynamic Range

Digital sensors are unable to distinguish between two closely-spaced values of the physi-
cal quantity. The precision p∈R+ of a sensor is the smallest absolute difference between
two values of a physical quantity whose sensor readings are distinguishable. The dynamic
range D ∈ R+ of a digital sensor is the ratio

D =
H−L

p
.

Dynamic range is usually measured in decibels (see sidebar on page 179), as follows:

DdB = 20log10

(
H−L

p

)
. (7.2)
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7.1. MODELS OF SENSORS AND ACTUATORS

7.1.4 Noise

For an analog sensor, the precision is harder to characterize precisely. Instead, we in-
troduce noise: if the ideal (noiseless) measurement is f (x), but additive noise n ∈ R is
present, then the actual measurement is

f ′(x) = f (x)+n.

The root-mean-square (RMS) noise N ∈ R+ is equal to the square root of the average
value of n2. This is a measure of (the square root of) noise power. The dynamic range (in
decibels) is defined to in terms of RMS noise,

DdB = 20log10

(
H−L

N

)
.

7.1.5 Sampling

7.1.6 Harmonic Distortion

A form of nonlinearity that occurs even within the operating range of sensors and ac-
tuators is harmonic distortion. Harmonic distortion is a nonlinear effect that can be
modeled by powers of the physical quantity. Specifically, second harmonic distortion is
a dependence on the square of the physical quantity. That is, given a physical quantity x,
the measurement is modeled as

f (x) = ax+b+d2x2, (7.3)

where d2 is the amount of second harmonic distortion. If d2 is small, then the model is
nearly affine. If d2 is large, then it is far from affine. The d2x2 term is called second
harmonic distortion because of the effect it has the frequency content of a signal x that is
varying in time.

Example 7.1: Suppose that a microphone is stimulated by a purely sinusoidal
input sound

x(t) = cos(ω0t),
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7. SENSORS AND ACTUATORS

Decibels

The term “decibel” is literally one tenth of a bel, which is named after Alexander
Graham Bell. This unit of measure was originally developed by telephone engineers at
Bell Telephone Labs to designate the ratio of the power of two signals.

Power is a measure of energy dissipation (work done) per unit time. It is measured in
watts for electronic systems. One bel is defined to be a factor of 10 in power. Thus, a
1000 watt hair dryer dissipates 1 bel, or 10 dB, more power than a 100 watt light bulb.
Let p1 = 1000 watts be the power of the hair dryer and p2 = 100 be the power of the light
bulb. Then the ratio is

log10(p1/p2) = 1 bel, or

10log10(p1/p2) = 10 dB.

Comparing against (7.2) we notice a discrepancy. There, the multiplying factor is 20, not
10. That is because the ratio in (7.2) is a ratio of amplitude (magnitude), not powers. In
electronic circuits, if an amplitude represents the voltage across a resistor, then the power
dissipated by the resistor is proportional to the square of the amplitude. Let a1 and a2 be
two such amplitudes. Then the ratio of their powers is

10log10(a
2
1/a2

2) = 20log10(a1/a2).

Hence the multiplying factor of 20 instead of 10 in (7.2). A 3 dB power ratio amounts to
a factor of 2 in power. In amplitudes, this is a ratio of

√
2.

In audio, decibels are used to measure sound pressure. A statement like “a jet engine
at 10 meters produces 120 dB of sound,” by convention, compares sound pressure to a
defined reference of 20 micropascals, where a pascal is a pressure of 1 newton per square
meter. For most people, this is approximately the threshold of hearing at 1 kHz. Thus, a
sound at 0 dB is barely audible. A sound at 10 dB has 10 times the power. A sound at 100
dB has 1010 times the power. The jet engine, therefore, would probably make you deaf
without ear protection.
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7.2. COMMON SENSORS

where t is time in seconds and ω0 is the frequency of the sinusoid in radians per
second. If the frequency is within the human auditory range, then this will sound
like a pure tone.

A sensor modeled by (7.3) will produce at time t the measurement

( f (x))(t) = ax(t)+b+d2(x(t))2

= acos(ω0t)+b+d2 cos2(ω0t)

= acos(ω0t)+b+
d2

2
+

d2

2
cos(2ω0t),

where we have used the trigonometric identity

cos2(θ) =
1
2
(1+ cos(2θ)).

To humans, the constant term b+ d2/2 is not audible. Hence, this signal consists
of a pure tone, scaled by a, and a distortion term at twice the frequency, scaled by
d2/2. This distortion term is audible as harmonic distortion as long as 2ω0 is in the
human auditory range.

A cubic term will introduce third harmonic distortion, and higher powers will introduce
higher harmonics.

The importance of harmonic distortion depends on the application. The human auditory
system is very sensitive to harmonic distortion, but the human visual system much less
so, for example.

7.2 Common Sensors

In this section, we describe a number of sensors and show how to obtain and use reason-
able models of these sensors.

7.2.1 Measuring Sound

microphone
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Figure 7.1: A schematic of an accelerometer as a spring-mass system.

7.2.2 Measuring Tilt and Acceleration

An accelerometer is a sensor that measures proper acceleration, which is the accelera-
tion of an object as observed by an observer in free fall. As we explain here, gravitational
force is indistinguishable from acceleration, and therefore an accelerometer measures not
just acceleration, but also gravitational force. This result is a precursor to Albert Ein-
stein’s Theory of General Relativity and is known as Einstein’s equivalence principle
(Einstein, 1907).

A schematic view of an accelerometer is shown in Figure 7.1. A movable mass is attached
via a spring to a fixed frame. Assume that the sensor circuitry can measure the position of
the movable mass relative to the fixed frame (this can be done, for example, by measuring
capacitance). When the frame accelerates in the direction of the double arrow in the figure,
the acceleration results in displacement of the movable mass, and hence this acceleration
can be measured.

Lee & Seshia, Introduction to Embedded Systems 181

http://LeeSeshia.org


7.2. COMMON SENSORS

The movable mass has a neutral position, which is its position when the spring is not
deformed at all. It will occupy this neutral position if the entire assembly is in free fall,
or if the assembly is lying horizontally. If the assembly is instead aligned vertically, then
gravitational force will compress the spring and displace the mass. To an observer in free
fall, this looks exactly as if the assembly were accelerating upwards at the acceleration
of gravity, which is approximately g = 9.8meters/second2.

An accelerometer, therefore, can measure the tilt (relative to gravity) of the fixed frame.
Any acceleration experienced by the fixed frame will add or subtract from this measure-
ment. It can be challenging to separate these two effects, gravity and acceleration. The
combination of the two is what we call proper acceleration.

Assume x is the proper acceleration of the fixed frame of an accelerometer at a particular
time. A digital accelerometer will produce a measurement f (x) where

f : (L,H)→{0, . . . ,2B−1}

where L ∈R is the minimum measurable proper acceleration and H ∈R is the maximum,
and B ∈ N is the number of bits of the ADC.

Today, accelerometers are typically implemented in silicon (see Figure 7.2), where silicon
fingers deform under gravitational pull or acceleration (see for example Lemkin and Boser
(1999)). Circuitry measures the deformation and provides a digital reading. Often, three
accelerometers are packaged together, giving a three-axis accelerometer. This can be used
to measure orientation of an object relative to gravity, plus acceleration in any direction
in three-dimensional space.

7.2.3 Measuring Temperature

Measurement of temperature is central to HVAC systems, automotive engine controllers,
overcurrent protectection, and many industrial chemical processes. This section, when
written, will give an overview of such technologies.

(FIXME: See: http://en.wikipedia.org/wiki/Thermostat)

7.2.4 Measuring Motion

This section, when written, will give an overview of accelerometers, gyroscopes, and
encoders for measuring motion.
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Figure 7.2: A silicon accelerometer consists of flexible silicon fingers that deform
under gravitational pull or acceleration (Lemkin and Boser, 1999).

7.2.5 Measuring Time

This section, when written, will give an overview of technologies for measuring the pas-
sage of time, including crystal oscillators.

7.3 Actuators

7.3.1 Motion Control

pulse width modulation (PWM).
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7.3.2 Producing Sound

7.3.3 Heating and Cooling

7.3.4 Light and Displays
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Exercises

1. Show that the composition f ◦g of two affine functions f and g is affine.

2. The following questions are about how to determine the function

f : (L,H)→{0, . . . ,2B−1},

for an accelerometer, which given a proper acceleration x yields a digital number
f (x). We will assume that x has units of “g’s,” where 1g is the acceleration of
gravity, approximately g = 9.8meters/second2.

(a) Let the bias b∈ {0, . . . ,2B−1} be the output of the ADC when the accelerom-
eter measures no proper acceleration. How can you measure b?

(b) Let a ∈ {0, . . . ,2B− 1} be the difference in output of the ADC when the ac-
celerometer measures 0g and 1g of acceleration. This is the ADC conversion
of the sensitivity of the accelerometer. How can you measure a?

(c) Suppose you have measurements of a and b from parts (2b) and (2a). Give an
affine function model for the accelerometer, assuming the proper acceleration
is x in units of g’s. Discuss how accurate this model is.

(d) Given a measurement f (x) (under the affine model), find x, the proper accel-
eration in g’s.

(e) The process of determining a and b by measurement is called calibration
of the sensor. Discuss why it might be useful to individually calibrate each
particular accelerometer, rather than assume fixed calibration parameters a
and b for a collection of accelerometers.

(f) Suppose you have an ideal 8-bit digital accelerometer that produces the value
f (x)= 128 when the proper acceleration is 0g, value f (x)= 1 when the proper
acceleration is 3g to the right, and value f (x) = 255 when the proper acceler-
ation is 3g to the left. Find a and b. What is the dynamic range (in decibels)
of this accelerometer? Assume the accelerometer never yields f (x) = 0.
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