
UG643 December 14, 2010 www.xilinx.com 1

© 2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries.
All other trademarks are the property of their respective owners.

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development of
designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the Documentation
in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves the right, at its sole discretion,
to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors contained in the Documentation, or to
advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be
provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER WARRANTIES,
WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL
XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF
DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

Summary A variety of Xilinx® software packages is provided with the Embedded Development Kit (EDK),
including drivers, libraries, board support packages, and complete operating systems to help
you develop a software platform. This document collection provides information on these and
on development of the Board Support Package for the VxWorks, Linux 2.4 (Monta Vista Linux
3.1), and Linux 2.6 operating systems. Complete documentation for other operating systems
can be found in the reference guides specific to each. Device drivers are documented along
with the corresponding peripheral documentation.

The documents in the following table are included in this collection. To view a document, click
its name.

UG643 December 14, 2010

OS and Libraries Document Collection

Table 1: OS and Libraries Document Collection Contents

Document Name Summary

LibXil Standard C Libraries Describes the software libraries available for the embedded processors.

Standalone (v.3.00.a) The Standalone platform is a single-threaded, simple operating system (OS)
platform that provides the lowest layer of software modules used to access
processor-specific functions. Some typical functions offered by the Standalone
platform include setting up the interrupts and exceptions systems, configuring
caches, and other hardware specific functions.
The Hardware Abstraction Layer (HAL) is described in this document.

Xilkernel (v5.00.a) Xilkernel is a simple embedded processor kernel that can be customized to a
large degree for a given system. Xilkernel has the key features of an embedded
kernel such as multi-tasking, priority-driven preemptive scheduling, inter-
process communication, synchronization facilities, and interrupt handling.
Xilkernel is small, modular, user-customizable, and it can be used in different
system configurations. Applications link statically with the kernel to form a single
executable.

LibXil FATFile System (FATFS) (v1.00.a) The XilFATFS FAT file system access library provides read and write access to files
stored on a Xilinx System ACE™ compact flash or microdrive device.

LibXil Memory File System (MFS) (v1.00.a) Describes a simple, memory-based file system that can reside in RAM, ROM,
or Flash memory.

lwIP 1.3.0 Library (v3.00.a) Describes the EDK port of the third party networking library, Light Weight IP (lwIP)
for embedded processors.

http://www.xilinx.com

UG643 December 14, 2010 www.xilinx.com 2

About the Libraries

About the
Libraries

The Standard C support library consists of the newlib, libc, which contains the standard C
functions such as stdio, stdlib, and string routines. The math library is an enhancement
over the newlib math library, libm, and provides the standard math routines.

The LibXil libraries consist of the following:

• LibXil Driver (Xilinx device drivers)

• LibXil MFS (Xilinx memory file system)

• LibXil Flash (a parallel flash programming library)

• LibXil Isf (a serial flash programming library)

There are two operating system options provided in the Xilinx software package: the
Standalone Platform and Xilkernel.

The Hardware Abstraction Layer (HAL) provides common functions related to register IO,
exception, and cache. These common functions are uniform across MicroBlaze™, PowerPC®
405, and PowerPC 440 processors. The Standalone platform document provides some
processor specific functions and macros for accessing the processor-specific features.

Most routines in the library are written in C and can be ported to any platform. The Library
Generator (Libgen) configures the libraries for an embedded processor, using the attributes
defined in the Microprocessor Software Specification (MSS) file.

User applications must include appropriate headers and link with required libraries for proper
compilation and inclusion of required functionality. These libraries and their corresponding
include files are created in the processor \lib and \include directories, under the current
project, respectively. The -I and -L options of the compiler being used should be leveraged to
add these directories to the search paths. Libgen tailors the compilation of each software
component. Refer to the “Libgen” and “Microprocessor Software Specification” chapters in the
Embedded Systems Tools Reference Manual for more information.

LibXil Flash (v2.02.a) Describes the functionality provided in the flash programming library. This library
provides access to flash memory devices that conform to the Common Flash
Interface (CFI) standard. Intel and AMD CFI devices for some specific part layouts
are currently supported.

LibXil Isf (v2.01.a) Describes the In System Flash hardware library, which enables higher-layer
software (such as an application) to communicate with the Isf. LibXil Isf supports
the Xilinx In-System Flash and external Serial Flash memories from Atmel
(AT45XXXD), Intel (S33), and ST Microelectornics (STM) (M25PXX).

Automatic Generation of Wind River
VxWorks 6.3 Board Support Packages

Describes the development of Wind River VxWorks 6.3 BSPs.

Automatic Generation of Wind River
VxWorks 6.5 Board Support Packages

Describes the development of Wind River VxWorks 6.5 BSPs.

Automatic Generation of Wind River
VxWorks 6.7 Board Support Packages

Describes the development of Wind River VxWorks 6.7 BSPs.

Automatic Generation of Linux 2.6 Board
Support Packages

Describes the development of Linux 2.6 BSPs.

Table 1: OS and Libraries Document Collection Contents (Cont’d)

Document Name Summary

http://www.xilinx.com

UG643 December 14, 2010 www.xilinx.com 3

Library Organization

Library
Organization

The organization of the libraries is illustrated in the figure below. As shown, your application
can interface with the components in a variety of ways. The libraries are independent of each
other, with the exception of some interactions. For example, Xilkernel uses the Standalone
platform internally. The LibXil Drivers and the Standalone form the lowermost hardware
abstraction layer. The library and OS components rely on standard C library components. The
math library, libm.a is also available for linking with the user applications.

Note: “LibXil Drivers” are the device drivers included in the software platform to provide an interface to
the peripherals in the system. These drivers are provided along with EDK and are configured by Libgen.
This document collection contains a section that briefly discusses the concept of device drivers and the
way they integrate with the board support package in EDK.

Taking into account some restrictions and implications, which are described in the reference
guides for each component, you can mix and match the component libraries.

Figure 0: Library Organization

stdio

stdlib

string

Other

X10968_102908

User Application

Xilkernel

XilFlash

C, Math and GCC Libraries

XilMFS

Standalone

XillSF

Xilinx Drivers

http://www.xilinx.com

UG643 December 14, 2010 www.xilinx.com 4

Library Organization

http://www.xilinx.com

UG 645 June 23, 2010 www.xilinx.com 1

© 2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries.
All other trademarks are the property of their respective owners.

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development of
designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the Documentation
in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves the right, at its sole discretion,
to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors contained in the Documentation, or to
advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be
provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER WARRANTIES,
WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL
XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF
DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

Summary This document describes the software libraries available for the embedded processors. The
document contains the following sections:

• “Overview”

• “Additional Resources”

• “Standard C Library (libc.a)”

• “Xilinx C Library (libxil.a)”

• “Input/Output Functions”

• “Memory Management Functions”

• “Arithmetic Operations”

• “Thread Safety”

Overview The Xilinx® Embedded Development Kit (EDK) libraries and device drivers provide standard C
library functions, as well as functions to access peripherals. The EDK libraries are
automatically configured by Libgen for every project based on the Microprocessor Software
Specification (MSS) file. These libraries and include files are saved in the current project lib
and include directories, respectively. The -I and -L options of mb-gcc are used to add these
directories to its library search paths.

Additional
Resources

• MicroBlaze Processor Reference Guide
http://www.xilinx.com/ise/embedded/mb_ref_guide.pdf

• Embedded System Tools Reference Manual
http://www.xilinx.com/ise/embedded_design_prod/platform_studio.htm

UG 645 June 23, 2010

LibXil Standard C Libraries

http://www.xilinx.com
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12/est_rm.pdf

UG 645 June 23, 2010 www.xilinx.com 2

Standard C Library (libc.a)

Standard C
Library (libc.a)

The standard C library, libc.a, contains the standard C functions compiled for the
MicroBlaze™ processor or the PowerPC® processor. You can find the header files
corresponding to these C standard functions in
<XILINX_EDK>/gnu/<processor>/<platform>/<processor-lib>/include, where:

• <XILINX_EDK> is the <Installation directory>

• <processor> is powerpc-eabi or microblaze

• <platform> is sol, nt, or lin

• <processor-lib> is powerpc-eabi or microblaze-xilinx-elf

The lib.c directories and functions are:

Programs accessing standard C library functions must be compiled as follows:

For MicroBlaze processors:

mb-gcc <C files>

For PowerPC processors:

powerpc-eabi-gcc <C files>

The libc library is included automatically.

For programs that access libm math functions, specify the lm option.

Refer to the “MicroBlaze Application Binary Interface (ABI)” section in the MicroBlaze
Processor Reference Guide for information on the C Runtime Library. The “Additional
Resources,” page 1 contains a link to the document.

Xilinx C Library
(libxil.a)

The Xilinx C library, libxil.a, contains the following object files for the MicroBlaze processor
embedded processor:

_exception_handler.o
_interrupt_handler.o
_program_clean.o
_program_init.o

Default exception and interrupt handlers are provided. The libxil.a library is included
automatically.

Programs accessing Xilinx C library functions must be compiled as follows:

mb-gcc <C files>

_ansi.h fastmath.h machine/ reent.h stdlib.h utime.h

_syslist.h fcntl.h malloc.h regdef.h string.h utmp.h

ar.h float.h math.h setjmp.h sys/

assert.h grp.h paths.h signal.h termios.h

ctype.h ieeefp.h process.h stdarg.h time.h

dirent.h limits.h pthread.h stddef.h unctrl.h

errno.h locale.h pwd.h stdio.h unistd.h

http://www.xilinx.com

UG 645 June 23, 2010 www.xilinx.com 3

Input/Output Functions

Input/Output
Functions

The EDK libraries contains standard C functions for I/O, such as printf and scanf. These
functions are large and might not be suitable for embedded processors.

The prototypes for these functions are in stdio.h.

Note: The C standard I/O routines such as printf, scanf, vfprintf are, by default, line buffered.
To change the buffering scheme to no buffering, you must call setvbuf appropriately. For example:

setvbuf (stdout, NULL, _IONBF, 0);

These Input/Output routines require that a newline is terminated with both a CR and LF. Ensure
that your terminal CR/LF behavior corresponds to this requirement.

Refer to the “Microprocessor Software Specification (MSS)” chapter in the Embedded System
Tools Reference Manual for information on setting the standard input and standard output
devices for a system. The “Additional Resources,” page 1 contains a link to the document.

In addition to the standard C functions, the EDK processors (MicroBlaze processor and
PowerPC 405 processor) library provides the following smaller I/O functions:

void print (char *)

This function prints a string to the peripheral designated as standard output in the
Microprocessor Software Specification (MSS) file. This function outputs the passed string as is
and there is no interpretation of the string passed. For example, a “\n” passed is interpreted as
a new line character and not as a carriage return and a new line as is the case with ANSI C
printf function.

void putnum (int)

This function converts an integer to a hexadecimal string and prints it to the peripheral
designated as standard output in the MSS file.

http://www.xilinx.com

UG 645 June 23, 2010 www.xilinx.com 4

Input/Output Functions

void xil_printf (const *char ctrl1,...)

xil_printf is a light-weight implementation of printf. It is much smaller in size (only 1 kB).
It does not have support for floating point numbers. xil_printf also does not support
printing of long (such as 64-bit) numbers.

Note: About Format String Support:

The format string is composed of zero or more directives: ordinary characters (not %),
which are copied unchanged to the output stream; and conversion specifications, each of
which results in fetching zero or more subsequent arguments. Each conversion
specification is introduced by the character %, and ends with a conversion specifier.
In between there can be (in order) zero or more flags, an optional minimum field width and
an optional precision. Supported flag characters are:

The character % is followed by zero or more of the following flags:

0 The value should be zero padded. For d, x conversions, the converted value is
padded on the left with zeros rather than blanks.
If the 0 and - flags both appear, the 0 flag is ignored.

- The converted value is to be left adjusted on the field boundary.
(The default is right justification.) Except for n conversions, the converted value is
padded on the right with blanks, rather than on the left with blanks or zeros. A -
overrides a 0 if both are given.

Note: About Supported Field Widths:

Field widths are represented with an optional decimal digit string (with a nonzero in the first
digit) specifying a minimum field width. If the converted value has fewer characters than the
field width, it is padded with spaces on the left (or right, if the left-adjustment flag has been
given). The supported conversion specifiers are:

d The int argument is converted to signed decimal notation.

l The int argument is converted to a signed long notation.

x The unsigned int argument is converted to unsigned hexadecimal notation. The
letters abcdef are used for x conversions.

c The int argument is converted to an unsigned char, and the resulting character is
written.

s The const char* argument is expected to be a pointer to an array of character
type (pointer to a string).
Characters from the array are written up to (but not including) a terminating NULL
character; if a precision is specified, no more than the number specified are written.
If a precision s given, no null character need be present; if the precision is not
specified, or is greater than the size of the array, the array must contain a
terminating NULL character.

http://www.xilinx.com

UG 645 June 23, 2010 www.xilinx.com 5

Memory Management Functions

Memory
Management
Functions

The MicroBlaze processor and PowerPC processor C libraries support the standard memory
management functions such as malloc(), calloc(), and free(). Dynamic memory
allocation provides memory from the program heap. The heap pointer starts at low memory and
grows toward high memory. The size of the heap cannot be increased at runtime. Therefore an
appropriate value must be provided for the heap size at compile time. The malloc() function
requires the heap to be at least 128 bytes in size to be able to allocate memory dynamically
(even if the dynamic requirement is less than 128 bytes). The return value of malloc must
always be checked to ensure that it could actually allocate the memory requested.

Arithmetic
Operations

Software implementations of integer and floating point arithmetic is available as library routines
in libgcc.a for both processors. The compiler for both the processors inserts calls to these
routines in the code produced, in case the hardware does not support the arithmetic primitive
with an instruction.

MicroBlaze Processor

Integer Arithmetic

By default, integer multiplication is done in software using the library function __mulsi3.
Integer multiplication is done in hardware if the mb-gcc option, -mno-xl-soft-mul, is
specified.

Integer divide and mod operations are done in software using the library functions __divsi3
and __modsi3. The MicroBlaze processor can also be customized to use a hard divider, in
which case the div instruction is used in place of the __divsi3 library routine.

Double precision multiplication, division and mod functions are carried out by the library
functions __muldi3, __divdi3, and __moddi3, respectively.

The unsigned version of these operations correspond to the signed versions described above,
but are prefixed with an __u instead of __.

Floating Point Arithmetic

All floating point addition, subtraction, multiplication, division, and conversions are
implemented using software functions in the C library.

PowerPC Processor

Integer Arithmetic

Integer addition and subtraction operations are provided in hardware; no specific software
library is available for the PowerPC processor.

Floating Point Arithmetic

The PowerPC processor supports all floating point arithmetic implemented in the standard C
library.

Thread Safety The standard C library provided with EDK is not built for a multi-threaded environment. STDIO
functions like printf(), scanf() and memory management functions like malloc() and
free() are common examples of functions that are not thread-safe. When using the C library
in a multi-threaded environment, proper mutual exclusion techniques must be used to protect
thread unsafe functions.

http://www.xilinx.com

UG 645 June 23, 2010 www.xilinx.com 6

Thread Safety

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 1

© 2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries.
All other trademarks are the property of their respective owners.

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development of
designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the Documentation
in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves the right, at its sole discretion,
to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors contained in the Documentation, or to
advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be
provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER WARRANTIES,
WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL
XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF
DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

Summary Standalone is the lowest layer of software modules used to access processor specific
functions. Standalone is used when an application accesses board/processor features directly
and is below the operating system layer.

This document contains the following sections:

• “Additional Resources”

• “MicroBlaze Processor API”

• “PowerPC 405 Processor API”

• “PowerPC 440 Processor API”

• “Xilinx Hardware Abstraction Layer”

• “Program Profiling”

• “Configuring the Standalone OS”

• “MicroBlaze MMU Example”

Additional
Resources

MicroBlaze Processor Reference Guide
PowerPC Processor Reference Guide
Embedded System Tools Reference Manual

http://www.xilinx.com/support/documentation/dt_edk.htm

UG 647 December 14, 2010

Standalone (v.3.00.a)

http://www.xilinx.com
http://www.xilinx.com/support/documentation/dt_ise12-1.htm

UG 647 December 14, 2010 www.xilinx.com 2

MicroBlaze Processor API

MicroBlaze
Processor API

The following list is a summary of the MicroBlaze™ processor API sections. You can click on a
link to go directly to the function section.

• “MicroBlaze Processor Interrupt Handling”

• “MicroBlaze Processor Exception Handling”

• “MicroBlaze Processor Instruction Cache Handling”

• “MicroBlaze Processor Data Cache Handling”

• “MicroBlaze Processor Fast Simplex Link (FSL) Interface Macros”

• “MicroBlaze Processor FSL Macro Flags”

• “MicroBlaze Processor Pseudo-asm Macro Summary”

• “MicroBlaze Processor Version Register (PVR) Access Routine and Macros”

• “MicroBlaze Processor File Handling”

• “MicroBlaze Processor Errno”

MicroBlaze Processor Interrupt Handling

The interrupt handling functions help manage interrupt handling on MicroBlaze processor
devices. To use these functions you must include the header file mb_interface.h in your
source code.

MicroBlaze Processor Interrupt Handling Function Summary

The following table provides a summary of the available functions. Click on a link to go to the
function description.

MicroBlaze Processor Interrupt Handling Function Descriptions

void microblaze_enable_interrupts(void)

Enable interrupts on the MicroBlaze processor. When the MicroBlaze processor starts up,
interrupts are disabled. Interrupts must be explicitly turned on using this function.

void microblaze_disable_interrupts(void)

Disable interrupts on the MicroBlaze processor. This function can be called when entering a
critical section of code where a context switch is undesirable.

void microblaze_register_handler(XInterruptHandler
Handler, void *DataPtr)

Register the interrupt handler for the MicroBlaze processor. This handler is invoked in turn, by
the first level interrupt handler that is present in Standalone.

The first level interrupt handler saves and restores registers, as necessary for interrupt
handling, so that the function you register with this handler can be dedicated to the other
aspects of interrupt handling, without the overhead of saving and restoring registers.

void microblaze_enable_interrupts(void)
void microblaze_disable_interrupts(void)
void microblaze_register_handler(XInterruptHandler Handler, void *DataPtr)

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 3

MicroBlaze Processor API

MicroBlaze Processor Exception Handling

This section describes the exception handling functionality available on the MicroBlaze
processor. This feature and the corresponding interfaces are not available on versions of the
MicroBlaze processor older than v3.00.a.

Note: These functions work correctly only when the parameters that determine hardware exception
handling are configured appropriately in the MicroBlaze Microprocessor Hardware Specification (MHS)
hardware block. For example, you can register a handler for divide by zero exceptions only if hardware
divide by zero exceptions are enabled on the MicroBlaze processor. Refer to the MicroBlaze
Processor Reference Guide for information on how to configure these cache parameters. A link to
that document can be found in “Additional Resources,” page 1.

MicroBlaze Processor Exception Handling Function Summary

The following is a summary of the Exception Handler functions for the MicroBlaze processor. To
to go to the description, click on the function name.

MicroBlaze Processor Exception Handler Function Descriptions

The following functions help manage exceptions on the MicroBlaze processor. You must
include the mb_interface.h header file in your source code to use these functions.

void microblaze_disable_exceptions(void)

Disable hardware exceptions from the MicroBlaze processor. This routine clears the
appropriate “exceptions enable” bit in the model-specific register (MSR) of the processor.

void microblaze_enable_exceptions(void)

Enable hardware exceptions from the MicroBlaze processor. This routine sets the appropriate
“exceptions enable” bit in the MSR of the processor.

void microblaze_register_exception_handler(Xuint8
ExceptionId, XExceptionHandler Handler, void *DataPtr)

Register a handler for the specified exception type. Handler is the function that handles the
specified exception. DataPtr is a callback data value that is passed to the exception handler
at run-time. By default the exception ID of the corresponding exception is passed to the
handler.

void microblaze_disable_exceptions(void)

void microblaze_enable_exceptions(void)

void microblaze_register_exception_handler(Xuint8 ExceptionId, XExceptionHandler Handler, void
*DataPtr)

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 4

MicroBlaze Processor API

The following table describes the valid exception IDs, which are defined in the
microblaze_exceptions_i.h file.

By default, Standalone provides empty, no-op handlers for all the exceptions except unaligned
exceptions. A default, fast, unaligned access exception handler is provided by Standalone.

An unaligned exception can be handled by making the corresponding aligned access to the
appropriate bytes in memory. Unaligned access is transparently handled by the default handler.
However, software that makes a significant amount of unaligned accesses will see the
performance effects of this at run-time. This is because the software exception handler takes
much longer to satisfy the unaligned access request as compared to an aligned access.

In some cases you might want to use the provision for unaligned exceptions to just trap the
exception, and to be aware of what software is causing the exception. In this case, you should
set breakpoints at the unaligned exception handler, to trap the dynamic occurrence of such an
exception or register your own custom handler for unaligned exceptions.

Note: The lowest layer of exception handling, always provided by Standalone, stores volatile and
temporary registers on the stack; consequently, your custom handlers for exceptions must take into
consideration that the first level exception handler will have saved some state on the stack, before invoking
your handler.

Nested exceptions are allowed by the MicroBlaze processor. The exception handler, in its
prologue, re-enables exceptions. Thus, exceptions within exception handlers are allowed and
handled.

Table 1: Valid Exception IDs

Exception ID Value Description

XEXC_ID_FSL 0 FSL bus exceptions.

XEXC_ID_UNALIGNED_ACCESS 1 Unaligned access exceptions.

XEXC_ID_<BUS>_EXCEPTION(1) 2 Exception due to a timeout from the Instruction
side system bus.

Note: BUS can be OPB or PLB

XEXC_ID_ILLEGAL_OPCODE 3 Exception due to an attempt to execute an illegal
opcode.

XEXC_ID_D<BUS>_EXCEPTION(1
)

4 Exception due to a timeout on the Data side
system bus.
BUS can be OPB or PLB

XEXC_ID_DIV_BY_ZERO 5 Divide by zero exceptions from the hardware
divide.

XEXC_ID_FPU 6 Exceptions from the floating point unit on the
MicroBlaze processor.

Note: This exception is valid only on v4.00.a and
later versions of the MicroBlaze processor.

XEXC_ID_MMU 7 Exceptions from the MicroBlaze processor
MMU. All possible MMU exceptions are vectored
to the same handler.

Note: This exception is valid only on v7.00.a and
later versions of the MicroBlaze processor.

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 5

MicroBlaze Processor API

When the predecode_fpu_exceptions parameter is set to true, it causes the low-level
exception handler to:

• Decode the faulting floating point instruction

• Determine the operand registers

• Store their values into two global variables

You can register a handler for floating point exceptions and retrieve the values of the operands
from the global variables. You can use the microblaze_getfpex_operand_a() and
microblaze_getfpex_operand_b() macros.

Note: These macros return the operand values of the last floating point (FP) exception. If there are
nested exceptions, you cannot retrieve the values of outer exceptions. An FP instruction might have one
of the source registers being the same as the destination operand. In this case, the faulting instruction
overwrites the input operand value and it is again irrecoverable.

MicroBlaze Processor Instruction Cache Handling

The following functions help manage instruction caches on the MicroBlaze processor. You must
include the mb_interface.h header file in your source code to use these functions.

Note: These functions work correctly only when the parameters that determine the caching system are
configured appropriately in the MicroBlaze Microprocessor Hardware Specification (MHS) hardware
block. Refer to the MicroBlaze Reference Guide for information on how to configure these cache
parameters. “Additional Resources,” page 1 contains a link to this document.

MicroBlaze Processor Instruction Cache Handling Function Summary

The following are links to the function descriptions. Click on the name to go to that function.

MicroBlaze Processor Instruction Cache Handling Function Descriptions

void microblaze_enable_icache(void)

Enable the instruction cache on the MicroBlaze processor. When the MicroBlaze processor
starts up, the instruction cache is disabled. The instruction cache must be explicitly turned on
using this function.

void microblaze_disable_icache(void)

Disable the instruction cache on the MicroBlaze processor.

void microblaze_invalidate_icache()

Invalidate the instruction icache.

Note: For MicroBlaze processors prior to version v7.20.a:
The cache and interrupts are disabled before invalidation starts and restored to their previous state after
invalidation.

void microblaze_enable_icache(void)

void microblaze_disable_icache(void)

void microblaze_invalidate_icache()

void microblaze_invalidate_icache_range(unsigned int cache_addr, unsigned int
cache_size)

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 6

MicroBlaze Processor API

void microblaze_invalidate_icache_range(unsigned int
cache_addr, unsigned int cache_size)

Invalidate the specified range in the instruction icache. This function can be used for
invalidating all or part of the instruction icache. The parameter cache_addr indicates the
beginning of the cache location to be invalidated. The cache_size represents the number of
bytes from the cache_addr to invalidate. Note that cache lines are invalidated starting from
the cache line to which cache_addr belongs and ending at the cache line containing the
address (cache_addr + cache_size - 1).

For example, microblaze_invalidate_icache_range (0x00000300, 0x100) invalidates
the instruction cache region from 0x300 to 0x3ff (0x100 bytes of cache memory is cleared
starting from 0x300).

Note: For MicroBlaze processors prior to version v7.20.a:
The cache and interrupts are disabled before invalidation starts and restored to their previous state after
invalidation.

MicroBlaze Processor Data Cache Handling

The following functions help manage data caches on the MicroBlaze processor. You must
include the header file mb_interface.h in your source code to use these functions.

Note: These functions work correctly only when the parameters that determine the caching system are
configured appropriately in the MicroBlaze MHS hardware block. Refer to the MicroBlaze Processor
Reference Guide for information on how to configure these cache parameters. “Additional Resources,”
page 1 contains a link to this document.

MicroBlaze Processor Data Cache Handling Function Summary

The following are links to the function descriptions. Click on the name to go to that function.

Data Cache Handling Functions

void microblaze_enable_dcache(void)

Enable the data cache on the MicroBlaze processor. When the MicroBlaze processor starts up,
the data cache is disabled. The data cache must be explicitly turned on using this function.

void microblaze_disable_dcache(void)

Disable the data cache on the MicroBlaze processor. If writeback caches are enabled in the
MicroBlaze processor hardware, this function also flushes the dirty data in the cache back to
external memory and invalidates the cache. For write through caches, this function does not do
any extra processing other than disabling the cache.

void microblaze_enable_dcache(void)

void microblaze_disable_dcache(void)

void microblaze_flush_dcache()

void microblaze_flush_dcache_range(unsigned int cache_addr, unsigned int cache_len)

void microblaze_invalidate_dcache()

void microblaze_invalidate_dcache_range(unsigned int cache_addr, unsigned int cache_size)

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 7

MicroBlaze Processor API

void microblaze_flush_dcache()

Flush the entire data cache. This function can be used when write-back caches are turned on
in the MicroBlaze processor hardware. Executing this function ensures that the dirty data in the
cache is written back to external memory and the contents invalidated.

• The cache is disabled before the flush starts and is restored to its previous state after the
flush is complete.

• Interrupts are disabled while the cache is being flushed and restored to their previous
state after the flush is complete.

void microblaze_flush_dcache_range(unsigned int
cache_addr, unsigned int cache_len)

Flush the specified data cache range. This function can be used when write-back caches are
enabled in the MicroBlaze processor hardware. Executing this function ensures that the dirty
data in the cache range is written back to external memory and the contents of the cache range
are invalidated. Note that cache lines will be flushed starting from the cache line to which
cache_addr belongs and ending at the cache line containing the address (cache_addr +
cache_size - 1).

For example, microblaze_flush_dcache_range (0x00000300, 0x100) flushes the
data cache region from 0x300 to 0x3ff (0x100 bytes of cache memory is flushed starting from
0x300).

void microblaze_invalidate_dcache()

Invalidate the instruction data cache.

Note: For MicroBlaze processors prior to version v7.20.a:
The cache and interrupts are disabled before invalidation starts and restored to their previous state after
invalidation.

void microblaze_invalidate_dcache_range(unsigned int
cache_addr, unsigned int cache_size)

Invalidate the data cache. This function can be used for invalidating all or part of the data cache.
The parameter cache_addr indicates the beginning of the cache location and cache_size
represents the size from cache_addr to invalidate.

Note that cache lines will be invalidated starting from the cache line to which cache_addr
belongs and ending at the cache line containing the address (cache_addr +
cache_size - 1).

Note: For MicroBlaze processors prior to version v7.20.a:
The cache and interrupts are disabled before invalidation starts and restored to their previous state after
invalidation.

For example, microblaze_invalidate_dcache_range (0x00000300, 0x100) invalidates
the data cache region from 0x300 to 0x3ff (0x100 bytes of cache memory is cleared starting
from 0x300).

Software Sequence for Initializing Instruction and Data Caches

Typically, before using the cache, your program must perform a particular sequence of cache
operations to ensure that invalid/dirty data in the cache is not being used by the processor. This
would typically happen during repeated program downloads and executions.

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 8

MicroBlaze Processor API

The following example snippets show the necessary software sequence for initializing
instruction and data caches in your program.

/* Initialize ICache *//
microblaze_invalidate_icache();
microblaze_enable_icache ();

/* Initialize DCache */
microblaze_invalidate_dcache();
microblaze_enable_dcache ();

At the end of your program, you should also put in a sequence similar to the example snippet
below. This ensures that the cache and external memory are left in a valid and clean state.

/* Clean up DCache. For writeback caches, the disable_dcache routine
internally does the flush and invalidate. For write through caches,

 an explicit invalidation must be performed on the entire cache. */

#if XPAR_MICROBLAZE_DCACHE_USE_WRITEBACK == 0
microblaze_invalidate_dcache();
#endif

microblaze_disable_dcache();

/* Clean up ICache */
microblaze_invalidate_icache();
microblaze_disable_icache();

MicroBlaze Processor Fast Simplex Link (FSL) Interface Macros

Standalone includes macros to provide convenient access to accelerators connected to the
MicroBlaze Fast Simplex Link (FSL) Interfaces.

MicroBlaze Processor Fast Simplex Link (FSL) Interface Macro Summary

The following is a list of the available macros. You can click on a macro name in the table to go
to the description of the active macros.

getfslx(val,id,flags)

putfslx(val,id,flags)

tgetfslx(val,id,flags)

tputfslx(val,id,flags)

getd fslx(val,id,flags)

putdfslx(val,id,flags)

tgetdfslx(val,id,flags)

tputdfslx(val,id,flags)

fsl_isinvalid(invalid)

fsl_iserror(error)

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 9

MicroBlaze Processor API

MicroBlaze Processor FSL Macro Descriptions

The following macros provide access to all of the functionality of the MicroBlaze FSL feature in
one simple and parameterized interface. Some capabilities are available on MicroBlaze v7.00.a
and later only, as noted in the descriptions.

In the macro descriptions, val refers to a variable in your program that can be the source or
sink of the FSL operation.

Note: id must be an integer literal in the basic versions of the macro (getfslx, putfslx,
tgetfslx, tputfslx) and can be an integer literal or an integer variable in the dynamic versions of the
macros (getdfslx, putdfslx, tgetdfslx, tputdfslx.)

You must include fsl.h in your source files to make these macros available.

getfslx(val,id,flags)

Performs a get function on an input FSL of the MicroBlaze processor; id is the FSL identifier
and is a literal in the range of 0 to 7 (0 to 15 for MicroBlaze v7.00.a and later). The semantics
of the instruction is determined by the valid FSL macro flags, which are listed in Table 2,
page 11.

putfslx(val,id,flags)

Performs a put function on an input FSL of the MicroBlaze processor; id is the FSL identifier
and is a literal in the range of 0 to 7 (0 to 15 for MicroBlaze processor v7.00.a and later). The
semantics of the instruction is determined by the valid FSL macro flags, which are listed in
Table 2, page 11.

tgetfslx(val,id,flags)

Performs a test get function on an input FSL of the MicroBlaze processor; id is the FSL identifier
and is a literal in the ranging of 0 to 7 (0 to 15 for MicroBlaze v7.00.a and later). This macro can
be used to test writing a single value to the FSL. The semantics of the instruction is determined
by the valid FSL macro flags, which are listed in Table 2, page 11.

tputfslx(val,id,flags)

Performs a put function on an input FSL of the MicroBlaze processor; id is the FSL identifier
and is a literal in the range of 0 to 7 (0 to 15 for MicroBlaze processor v7.00.a and later). This
macro can be used to test getting a single value from the FSL.The semantics of the put
instruction is determined by the valid FSL macro flags, which are listed in Table 2, page 11.

getd fslx(val,id,flags)

Performs a get function on an input FSL of the MicroBlaze processor; id is the FSL identifier
and is an integer value or variable in the range of 0 to 15. The semantics of the instruction is
determined by the valid FSL macro flags, which are listed in Table 2, page 11. This macro is
available on MicroBlaze processor v7.00.a and later only.

putdfslx(val,id,flags)

Performs a put function on an input FSL of the MicroBlaze processor; id is the FSL identifier
and is an integer value or variable in the range of 0 to 15. The semantics of the instruction is
determined by the valid FSL macro flags, which are listed in Table 2, page 11. This macro is
available on MicroBlaze processor v7.00.a and later only.

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 10

MicroBlaze Processor API

tgetdfslx(val,id,flags)

Performs a test get function on an input FSL of the MicroBlaze processor; id is the FSL identifier
and is an integer or variable in the range of 0 to 15. This macro can be used to test writing a
single value to the FSL. The semantics of the instruction is determined by the valid FSL macro
flags, listed in Table 2. This macro is available on MicroBlaze processor v7.00.a and later only.

tputdfslx(val,id,flags)

Performs a put function on an input FSL of the MicroBlaze processor; id is the FSL identifier
and is an integer or variable in the range of 0 to 15. This macro can be used to test getting a
single value from the FSL.The semantics of the instruction is determined by the valid FSL
macro flags, listed in Table 2. This macro is available on MicroBlaze processor v7.00.a and
later only.

fsl_isinvalid(invalid)

Checks if the last FSL operation returned valid data. This macro is applicable after invoking a
non-blocking FSL put or get instruction. If there was no data on the FSL channel on a get, or if
the FSL channel was full on a put, invalid is set to 1; otherwise, it is set to 0.

fsl_iserror(error)

This macro is used to check if the last FSL operation set an error flag. This macro is applicable
after invoking a control FSL put or get instruction. If the control bit was set error is set to 1;
otherwise, it is set to 0.

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 11

MicroBlaze Processor API

MicroBlaze Processor FSL Macro Flags

The following table lists the available FSL Macro flags.

Deprecated MicroBlaze Processor Fast Simplex Link (FSL) Macros

The following macros are deprecated:

getfsl(val,id)(deprecated)

Performs a blocking data get function on an input FSL of the MicroBlaze processor; id is the
FSL identifier in the range of 0 to 7. This macro is uninterruptible.

putfsl(val,id)(deprecated)

Performs a blocking data put function on an output FSL of the MicroBlaze processor; id is the
FSL identifier in the range of 0 to 7. This macro is uninterruptible.

Table 2: FSL Macro Flags

Flag Description

FSL_DEFAULT Blocking semantics (on MicroBlaze processor v7.00.a
and later this mode is interruptible).

FSL_NONBLOCKING Non-blocking semantics.1

1. When non-blocking semantics are not applied, blocking semantics are implied.

FSL_EXCEPTION Generate exceptions on control bit mismatch.2

2. This combination of flags is available only on MicroBlaze processor v7.00.a and later versions.

FSL_CONTROL Control semantics.

FSL_ATOMIC Atomic semantics.2

A sequence of FSL instructions cannot be interrupted.

FSL_NONBLOCKING_EXCEPTION Combines non-blocking and exception semantics.2

FSL_NONBLOCKING_CONTROL Combines non-blocking and control semantics.

FSL_NONBLOCKING_ATOMIC Combines non-blocking and atomic semantics.2

FSL_EXCEPTION_CONTROL Combines exception and control semantics.2

FSL_EXCEPTION_ATOMIC Combines exception and atomic semantics.2

FSL_CONTROL_ATOMIC Combines control and atomic semantics.2

FSL_NONBLOCKING_EXCEPTION_
CONTROL

Combines non-blocking, exception, and control
semantics.2

FSL_NONBLOCKING_EXCEPTION_
ATOMIC

Combines non-blocking, exception, and atomic
semantics.2

FSL_NONBLOCKING_CONTROL_
ATOMIC

Combines non-blocking, atomic, and control
semantics.2

FSL_EXCEPTION_CONTROL_
ATOMIC

Combines exception, atomic, and control semantics.2

FSL_NONBLOCKING_EXCEPTION_
CONTROL_ATOMIC

Combines non-blocking, exception, control, and atomic
semantics.2

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 12

MicroBlaze Processor API

ngetfsl(val,id)(deprecated)

Performs a non-blocking data get function on an input FSL of the MicroBlaze processor; id is
the FSL identifier in the range of 0 to 7.

nputfsl(val,id)(deprecated)

Performs a non-blocking data put function on an output FSL of the MicroBlaze processor; id is
the FSL identifier in the range of 0 to 7.

cgetfsl(val, id)(deprecated)

Performs a blocking control get function on an input FSL of the MicroBlaze processor; id is the
FSL identifier in the range of 0 to 7. This macro is uninterruptible.

cputfsl(val, id)(deprecated)

Performs a blocking control put function on an output FSL of the MicroBlaze processor; id is
the FSL identifier in the range of 0 to 7. This macro is uninterruptible.

ncgetfsl(val, id)(deprecated)

Performs a non-blocking control get function on an input FSL of the MicroBlaze processor; id
is the FSL identifier in the range of 0 to 7.

ncputfsl(val, id)(deprecated)

Performs a non-blocking control put function on an output FSL of the MicroBlaze processor; id
is the FSL identifier in the range of 0 to 7.

getfsl_interruptible(val, id)(deprecated)

Performs repeated non-blocking data get operations on an input FSL of the MicroBlaze
processor until valid data is actually fetched; id is the FSL identifier in the range of 0 to 7.
Because the FSL access is non-blocking, interrupts will be serviced by the processor.

putfsl_interruptible(val, id)(deprecated)

Performs repeated non-blocking data put operations on an output FSL of the MicroBlaze
processor until valid data is sent out; id is the FSL identifier in the range of 0 to 7. Because the
FSL access is non-blocking, interrupts will be serviced by the processor.

cgetfsl_interruptible(val, id)(deprecated)

Performs repeated non-blocking control get operations on an input FSL of the MicroBlaze
processor until valid data is actually fetched; id is the FSL identifier in the range of 0 to 7.
Because the FSL access is non-blocking, interrupts are serviced by the processor.

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 13

MicroBlaze Processor API

cputfsl_interruptible(val, id)(deprecated)

Performs repeated non-blocking control put operations on an output FSL of the MicroBlaze
processor until valid data is sent out; id is the FSL identifier in the range of 0 to 7. Because the
FSL access is non-blocking, interrupts are serviced by the processor.

MicroBlaze Processor Pseudo-asm Macros

Standalone includes macros to provide convenient access to various registers in the
MicroBlaze processor. Some of these macros are very useful within exception handlers for
retrieving information about the exception. To use these macros, you must include the
mb_interface.h header file in your source code.

MicroBlaze Processor Pseudo-asm Macro Summary

The following is a summary of the MicroBlaze processor pseudo-asm macros. Click on the
macro name to go to the description.

MicroBlaze Processor Pseudo-asm Macro Descriptions

mfgpr(rn)

Return value from the general purpose register (GPR) rn.

mfmsr()

Return the current value of the MSR.

mfesr()

Return the current value of the Exception Status Register (ESR).

mfear()

Return the current value of the Exception Address Register (EAR).

mffsr()

Return the current value of the Floating Point Status (FPS).

mtmsr(v)

Move the value v to MSR.

mfgpr(rn)
mfmsr()
mfesr()
mfear()
mffsr()
mtmsr(v)
mtgpr(rn,v)
microblaze_getfpex_operand_a()
microblaze_getfpex_operand_b()

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 14

MicroBlaze Processor API

mtgpr(rn,v)

Move the value v to GPR rn.

microblaze_getfpex_operand_a()

Return the saved value of operand A of the last faulting floating point instruction.

microblaze_getfpex_operand_b()

Return the saved value of operand B of the last faulting floating point instruction.

Note: Because of the way some of these macros have been written, they cannot be used as parameters
to function calls and other such constructs.

MicroBlaze Processor Version Register (PVR) Access Routine and
Macros

MicroBlaze processor v5.00.a and later versions have configurable Processor Version
Registers (PVRs). The contents of the PVR are captured using the pvr_t data structure, which
is defined as an array of 32-bit words, with each word corresponding to a PVR register on
hardware. The number of PVR words is determined by the number of PVRs configured in the
hardware. You should not attempt to access PVR registers that are not present in hardware, as
the pvr_t data structure is resized to hold only as many PVRs as are present in hardware.

To access information in the PVR:

1. Use the microblaze_get_pvr() function to populate the PVR data into a pvr_t data
structure.

2. In subsequent steps, you can use any one of the PVR access macros list to get individual
data stored in the PVR.

Note: The PVR access macros take a parameter, which must be of type pvr_t.

PVR Access Routine

The following routine is used to access the PVR. You must include pvr.h file to make this
routine available.

int_microblaze_get_pvr(pvr_t_*pvr)

Populate the PVR data structure to which pvr points with the values of the hardware PVR
registers. This routine populates only as many PVRs as are present in hardware and the rest
are zeroed. This routine is not available if C_PVR is set to NONE in hardware.

PVR Macros

The following processor macros are used to access the PVR. You must include pvr.h file to
make these macros available.

The following table lists the MicroBlaze processor PVR macros and descriptions.

Table 3: PVR Access Macros

Macro Description

MICROBLAZE_PVR_IS_FULL(pvr) Return non-zero integer if PVR is of type
FULL, 0 if basic.

MICROBLAZE_PVR_USE_BARREL(pvr) Return non-zero integer if hardware barrel
shifter present.

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 15

MicroBlaze Processor API

MICROBLAZE_PVR_USE_DIV(pvr) Return non-zero integer if hardware divider
present.

MICROBLAZE_PVR_USE_HW_MUL(pvr) Return non-zero integer if hardware
multiplier present.

MICROBLAZE_PVR_USE_FPU(pvr) Return non-zero integer if hardware floating
point unit (FPU) present.

MICROBLAZE_PVR_USE_FPU2(pvr) Return non-zero integer if hardware floating
point conversion and square root
instructions are present.

MICROBLAZE_PVR_USE_ICACHE(pvr) Return non-zero integer if I-cache present.

MICROBLAZE_PVR_USE_DCACHE(pvr) Return non-zero integer if D-cache present.

MICROBLAZE_PVR_MICROBLAZE_VERSION
(pvr)

Return MicroBlaze processor version
encoding. Refer to the MicroBlaze
Processor Reference Guide for mappings
from encodings to actual hardware versions.
“Additional Resources,” page 1 contains a
link to this document.

MICROBLAZE_PVR_USER1(pvr) Return the USER1 field stored in the PVR.

MICROBLAZE_PVR_USER2(pvr) Return the USER2 field stored in the PVR.

MICROBLAZE_PVR_INTERCONNECT(pvr) Return non-zero if MicroBlaze processor
has PLB interconnect; otherwise return
zero.

MICROBLAZE_PVR_D_PLB(pvr) Return non-zero integer if Data Side PLB
interface is present.

MICROBLAZE_PVR_D_OPB(pvr) Return non-zero integer if Data Side On-
chip Peripheral Bus (OPB) interface
present.

MICROBLAZE_PVR_D_LMB(pvr) Return non-zero integer if Data Side Local
Memory Bus (LMB) interface present.

MICROBLAZE_PVR_I_PLB(pvr) Return non-zero integer if Instruction Side
PLB interface is present.

MICROBLAZE_PVR_I_OPB(pvr) Return non-zero integer if Instruction side
OPB interface present.

MICROBLAZE_PVR_I_LMB(pvr) Return non-zero integer if Instruction side
LMB interface present.

MICROBLAZE_PVR_INTERRUPT_IS_EDGE
(pvr)

Return non-zero integer if interrupts are
configured as edge-triggered.

MICROBLAZE_PVR_EDGE_IS_POSITIVE
(pvr)

Return non-zero integer if interrupts are
configured as positive edge triggered.

MICROBLAZE_PVR_USE_MUL64(pvr) Return non-zero integer if MicroBlaze
processor supports 64-bit products for
multiplies.

MICROBLAZE_PVR_OPCODE_OxO_ILLEGAL
(pvr)

Return non-zero integer if opcode 0x0 is
treated as an illegal opcode.

MICROBLAZE_PVR_UNALIGNED_EXCEPTION
(pvr)

Return non-zero integer if unaligned
exceptions are supported.

Table 3: PVR Access Macros (Cont’d)

Macro Description

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 16

MicroBlaze Processor API

MICROBLAZE_PVR_ILL_OPCODE_EXCEPTION
(pvr)

Return non-zero integer if illegal opcode
exceptions are supported.

MICROBLAZE_PVR_IOPB_EXCEPTION(pvr) Return non-zero integer if I-OPB exceptions
are supported.

MICROBLAZE_PVR_DOPB_EXCEPTION(pvr) Return non-zero integer if D-OPB
exceptions are supported.

MICROBLAZE_PVR_IPLB_EXCEPTION(pvr) Return non-zero integer if I-PLB exceptions
are supported.

MICROBLAZE_PVR_DPLB_EXCEPTION(pvr) Return non-zero integer if D-PLB exceptions
are supported.

MICROBLAZE_PVR_DIV_ZERO_EXCEPTION
(pvr)

Return non-zero integer if divide by zero
exceptions are supported.

MICROBLAZE_PVR_FPU_EXCEPTION(pvr) Return non-zero integer if FPU exceptions
are supported.

MICROBLAZE_PVR_FSL_EXCEPTION(pvr) Return non-zero integer if FSL exceptions
are present.

MICROBLAZE_PVR_DEBUG_ENABLED(pvr) Return non-zero integer if debug is enabled.

MICROBLAZE_PVR_NUM_PC_BRK(pvr) Return the number of hardware PC
breakpoints available.

MICROBLAZE_PVR_NUM_RD_ADDR_BRK(pvr) Return the number of read address
hardware watchpoints supported.

MICROBLAZE_PVR_NUM_WR_ADDR_BRK(pvr) Return the number of write address
hardware watchpoints supported.

MICROBLAZE_PVR_FSL_LINKS(pvr) Return the number of FSL links present.

MICROBLAZE_PVR_ICACHE_BASEADDR(pvr) Return the base address of the I-cache.

MICROBLAZE_PVR_ICACHE_HIGHADDR(pvr) Return the high address of the I-cache.

MICROBLAZE_PVR_ICACHE_ADDR_TAG_BITS
(pvr)

Return the number of address tag bits for
the I-cache.

MICROBLAZE_PVR_ICACHE_USE_FSL(pvr) Return non-zero if I-cache uses FSL links.

MICROBLAZE_PVR_ICACHE_ALLOW_WR(pvr) Return non-zero if writes to I-caches are
allowed.

MICROBLAZE_PVR_ICACHE_LINE_LEN(pvr) Return the length of each I-cache line in
bytes.

MICROBLAZE_PVR_ICACHE_BYTE_SIZE
(pvr)

Return the size of the D-cache in bytes.

MICROBLAZE_PVR_DCACHE_BASEADDR(pvr) Return the base address of the D-cache.

MICROBLAZE_PVR_DCACHE_HIGHADDR(pvr) Return the high address of the D-cache.

MICROBLAZE_PVR_DCACHE_ADDR_TAG_BITS
(pvr)

Return the number of address tag bits for
the D-cache.

MICROBLAZE_PVR_DCACHE_USE_FSL(pvr) Return non-zero if the D-cache uses FSL
links.

MICROBLAZE_PVR_DCACHE_ALLOW_WR(pvr) Return non-zero if writes to D-cache are
allowed.

Table 3: PVR Access Macros (Cont’d)

Macro Description

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 17

MicroBlaze Processor API

MicroBlaze Processor File Handling

The following routine is included for file handling:

int_fcntl(int fd, int cmd, long arg);

A dummy implementation of fcntl(), which always returns 0, is provided. fcntl is
intended to manipulate file descriptors according to the command specified by cmd. Because
Standalone does not provide a file system, this function is included for completeness only.

MicroBlaze Processor Errno

The following routine provides the error number value:

int_errno();

Return the global value of errno as set by the last C library call.

MICROBLAZE_PVR_DCACHE_LINE_LEN(pvr) Return the length of each line in the
D-cache in bytes.

MICROBLAZE_PVR_DCACHE_BYTE_SIZE
(pvr)

Return the size of the D-cache in bytes.

MICROBLAZE_PVR_TARGET_FAMILY(pvr) Return the encoded target family identifier.

MICROBLAZE_PVR_MSR_RESET_VALUE Refer to the MicroBlaze Processor
Reference Guide for mappings from
encodings to target family name strings.
“Additional Resources,” page 1 contains a
link to this document.

MICROBLAZE_PVR_MMU_TYPE(pvr) Returns the value of C_USE_MMU. Refer to
the MicroBlaze Processor Reference Guide
for mappings from MMU type values to
MMU function. “Additional Resources,”
page 1 contains a link to this document.

Table 3: PVR Access Macros (Cont’d)

Macro Description

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 18

PowerPC 405 Processor API

PowerPC 405
Processor API

Standalone for the PowerPC® 405 processor contains boot code, cache, file and memory
management, configuration, exception handling, time and processor-specific include functions.

The following is a list of the PowerPC 405 processor API sections. To go the function
description, click the function name in the summary.

• “PowerPC 405 Processor Boot Code”

• “PowerPC 405 Processor Cache Functions”

• “PowerPC 405 Processor Exception Handling Function Summary”

• “PowerPC 405 Processor Files”

• “PowerPC 405 Processor Errno”

• “PowerPC 405 Processor Memory Management”

• “PowerPC 405 Processing Functions”

• “PowerPC 405 Processor-Specific Include Files”

• “PowerPC 405 Processor Time Functions”

• “PowerPC 405 Processor Fast Simplex Link Interface Macros”

• “PowerPC 405 Processor Pseudo-asm Macro Summary”

• “PowerPC 405 Macros for APU FCM User-Defined Instructions”

PowerPC 405 Processor Boot Code

The boot.S file contains a minimal set of code for transferring control from the processor’s
reset location to the start of the application. Code in the boot.S consists of the two sections
boot and boot0. The boot section contains only one instruction that is labeled with _boot.
During the link process, this instruction is mapped to the reset vector and the _boot label
marks the application's entry point. The boot instruction is a jump to the _boot0 label. The
_boot0 label must reside within a ±23-bit address space of the _boot label. It is defined in the
boot0 section. The code in the boot0 section calculates the 32-bit address of the _start
label and jumps to that address.

PowerPC 405 Processor Cache Functions

The xcache_l.c file and corresponding xcache_l.h include file provide access to the
following cache and cache-related operations

PowerPC 405 Processor Cache Function Summary

The following are links to the function descriptions. Click on the name to go to that function.

void XCache_WriteCCR0(unsigned int val)
void XCache_EnableDCache(unsigned int regions)
void XCache_DisableDCache(void)
void XCache_FlushDCacheLine(unsigned int adr)
void XCache_InvalidateDCacheLine(unsigned int adr)
void XCache_FlushDCacheRange(unsigned int adr, unsigned len)
void XCache_InvalidateDCacheRange(unsigned int adr, unsigned len)
void XCache_StoreDCacheLine(unsigned int adr);
void XCache_EnableICache(unsigned int regions);
void XCache_DisableICache(void);
void XCache_InvalidateICache(void);
void XCache_InvalidateICacheLine(unsigned int adr)

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 19

PowerPC 405 Processor API

PowerPC 405 Processor Cache Function Descriptions

void XCache_WriteCCR0(unsigned int val)

Writes an integer value to the CCR0 register. Below is a sample code sequence. Before writing
to this register, the instruction cache must be enabled to prevent a lockup of the processor core.
After writing the CCR0, the instruction cache can be disabled, if not needed.

XCache_EnableICache(0x80000000) /* enable instruction cache for first 128
MB memory region */
XCache_WriteCCR0(0x2700E00) /* enable 8 word pre-fetching */
XCache_DisableICache() /* disable instruction cache */

void XCache_EnableDCache(unsigned int regions)

Enables the data cache for a specific memory region. Each bit in the regions parameter
represents 128 MB of memory.

A value of 0x80000000 enables the data cache for the first 128 MB of memory
(0 - 0x07FFFFFF). A value of 0x1 enables the data cache for the last 128 MB of memory
(0xF8000000 - 0xFFFFFFFF).

void XCache_DisableDCache(void)

Disables the data cache for all memory regions.

void XCache_FlushDCacheLine(unsigned int adr)

Flushes and invalidates the data cache line that contains the address specified by the adr
parameter. A subsequent data access to this address results in a cache miss and a cache line
refill.

void XCache_InvalidateDCacheLine(unsigned int adr)

Invalidates the data cache line that contains the address specified by the adr parameter. If the
cache line is currently dirty, the modified contents are lost and are not written to system
memory. A subsequent data access to this address results in a cache miss and a cache line
refill.

void XCache_FlushDCacheRange(unsigned int adr, unsigned len)

Flushes and invalidates the data cache lines that are described by the address range starting
from adr and len bytes long. A subsequent data access to any address in this range results in
a cache miss and a cache line refill.

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 20

PowerPC 405 Processor API

void XCache_InvalidateDCacheRange(unsigned int adr,
unsigned len)

Invalidates the data cache lines that are described by the address range starting from adr and
len bytes long. If a cache line is currently dirty, the modified contents are lost and are not written
to system memory. A subsequent data access to any address in this range results in a cache
miss and a cache line refill.

void XCache_StoreDCacheLine(unsigned int adr);

Stores in memory the data cache line that contains the address specified by the adr
parameter. A subsequent data access to this address results in a cache hit if the address was
already cached; otherwise, it results in a cache miss and cache line refill.

void XCache_EnableICache(unsigned int regions);

Enables the instruction cache for a specific memory region. Each bit in the regions parameter
represents 128 MB of memory.

A value of 0x80000000 enables the instruction cache for the first 128 MB of memory
(0 - 0x07FFFFFF). A value of 0x1 enables the instruction cache for the last 128 MB of
memory (0xF8000000 - 0xFFFFFFFF).

void XCache_DisableICache(void);

Disables the instruction cache for all memory regions.

void XCache_InvalidateICache(void);

Invalidates the whole instruction cache. Subsequent instructions produce cache misses and
cache line refills.

void XCache_InvalidateICacheLine(unsigned int adr)

Invalidates the instruction cache line that contains the address specified by the adr parameter.
A subsequent instruction to this address produces a cache miss and a cache line refill.

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 21

PowerPC 405 Processor API

PowerPC 405 Processor Exception Handling

An exception handling API is provided in Standalone. For an in-depth explanation on how
exceptions and interrupts work on the PowerPC processor, refer to the chapter “Exceptions and
Interrupts” in the PowerPC Processor Reference Guide. A link to this document is provided in
“Additional Resources,” page 1.

Note: Exception handlers do not automatically reset (disable) the wait state enable bit in the MSR when
returning to user code. You can force exception handlers to reset the Wait-Enable bit to zero on return
from all exceptions by compiling Standalone with the preprocessor symbol
PPC405_RESET_WE_ON_RFI defined. You can add this to the compiler flags associated with the
libraries. This pre-processor define turns the behavior on.

The exception handling API consists of a set of the files xvectors.S, xexception_l.c, and
the corresponding header file xexception_l.h.

For additional information on interrupt handing see the XPS Help and the “Interrupt
Management” appendix in the Embedded System Tools Reference Manual (available in the
/doc directory of your EDK installation).

PowerPC 405 Processor Exception Handling Function Summary

The following are links to the function descriptions. Click on the name to go to that function.

PowerPC 405 Processor Exception Handling Function Descriptions

void XExc_Init(void)

Sets up the interrupt vector table and registers a “do nothing” function for each exception. This
function has no parameters and does not return a value.

This function must be called before registering any exception handlers or enabling any
interrupts. When using the exception handler API, this function should be called at the
beginning of your main() routine.

IMPORTANT: If you are not using the default linker script, you need to reserve memory space
for storing the vector table in your linker script. The memory space must begin on a 64 k
boundary.

The linker script entry should look like this example:

.vectors :
 {
 . = ALIGN(64k);
 *(.vectors)
 }

For further information on linker scripts, refer to the Linker documentation.

void XExc_Init(void)
void XExc_RegisterHandler(Xuint8 ExceptionId, XExceptionHandler Handler, void *DataPtr)
void XExc_RemoveHandler(Xuint8 ExceptionId)
void XExc_mEnableExceptions (EnableMask)
void XExc_mDisableExceptions (DisableMask)

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 22

PowerPC 405 Processor API

void XExc_RegisterHandler(Xuint8 ExceptionId,
XExceptionHandler Handler, void *DataPtr)

Registers an exception handler for a specific exception; does not return a value. Refer to the
following table for a list of exception types and their values.

The parameters are:

• ExceptionId is of parameter type Xuint8, and is the exception to which this handler
should be registered. The type and the values are defined in the xexception_l.h
header file. The following table lists the exception types and possible values.

• Handler is an XExceptionHandler parameter which is the pointer to the exception
handling function.

• DataPtr is of parameter type void * and is the user value to be passed when the
handling function is called.

The function provided as the Handler parameter must have the following function prototype:

typedef void (*XExceptionHandler)(void * DataPtr);

This prototype is declared in the xexception_l.h header file.

When this exception handler function is called, the parameter DataPtr contains the same
value as you provided when you registered the handler.

void XExc_RemoveHandler(Xuint8 ExceptionId)

De-register a handler function for a given exception. For possible values of parameter
ExceptionId, refer to Table 7, page 41.

Table 4: Registered Exception Types and Values

Exception Type Value

XEXC_ID_MACHINE_CHECK 1

XEXC_ID_CRITICAL_INT 2

XEXC_ID_DATA_STORAGE_INT 3

XEXC_ID_INSTRUCTION_STORAGE_INT 4

XEXC_ID_NON_CRITICAL_INT 5

XEXC_ID_ALIGNMENT_INT 6

XEXC_ID_PROGRAM_INT 7

XEXC_ID_FPU_UNAVAILABLE_INT 8

XEXC_ID_SYSTEM_CALL 9

XEXC_ID_APU_AVAILABLE 10

XEXC_ID_PIT_INT 11

XEXC_ID_FIT_INT 12

XEXC_ID_WATCHDOG_TIMER_INT 13

XEXC_ID_DATA_TLB_MISS_INT 14

XEXC_ID_INSTRUCTION_TLB_MISS_INT 15

XEXC_ID_DEBUG_INT 16

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 23

PowerPC 405 Processor API

void XExc_mEnableExceptions (EnableMask)

Enable exceptions. This macro must be called after initializing the vector table with function
exception_Init and registering exception handlers with function
XExc_RegisterHandler. The parameter EnableMask is a bitmask for exceptions to be
enabled. The EnableMask parameter can have the values XEXC_CRITICAL,
XEXC_NON_CRITICAL, or XEXC_ALL.

void XExc_mDisableExceptions (DisableMask)

Disable exceptions. The parameter DisableMask is a bitmask for exceptions to be
disabled.The DisableMask parameter can have the values XEXC_CRITICAL,
XEXC_NON_CRITICAL, or XEXC_ALL.

PowerPC 405 Processor Files

File support is limited to the stdin and stdout streams; consequently, the following functions
are not necessary:

• open() (in open.c)

• close() (in close.c)

• fstat() (in fstat.c)

• unlink() (in unlink.c)

• lseek() (in lseek.c)

These files are included for completeness and because they are referenced by the C library.

int read(int fd, char *buf, int nbytes)

The read() function in read.c reads nbytes bytes from the standard input by calling
inbyte(). It blocks until all characters are available, or the end of line character is read. The
read() function returns the number of characters read. The fd parameter is ignored.

int write(int fd, char *buf, int nbytes)

Writes nbytes bytes to the standard output by calling outbyte(). It blocks until all characters
have been written. The write() function returns the number of characters written. The fd
parameter is ignored.

int isatty(int fd)

Reports if a file is connected to a tty. This function always returns 1, Because only the stdin
and stdout streams are supported.

int fcntl(int fd, int cmd, long arg);

A dummy implementation of fcntl, which always returns 0. fcntl is intended to manipulate
file descriptors according to the command specified by cmd. Because Standalone does not
provide a file system, this function is not used.

PowerPC 405 Processor Errno

int errno()

Returns the global value of errno as set by the last C library call.

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 24

PowerPC 405 Processor API

PowerPC 405 Processor Memory Management

char *sbrk(int nbytes)

Allocates nbytes of heap and returns a pointer to that piece of memory. This function is called
from the memory allocation functions of the C library.

PowerPC 405 Processing Functions

The functions getpid() in getpid.c and kill() in kill.c are included for
completeness and because they are referenced by the C library.

PowerPC 405 Processor-Specific Include Files

The xreg405.h include file contains the register numbers and the register bits for the
PowerPC 405 processor.

The xpseudo-asm.h include file contains the definitions for the most often used inline
assembler instructions, available as macros. These can be very useful for tasks such as setting
or getting special purpose registers, synchronization, or cache manipulation.

These inline assembler instructions can be used from drivers and user applications written in C.

PowerPC 405 Processor Time Functions

The xtime_l.c file and corresponding xtime_l.h include file provide access to the 64-bit
time base counter inside the PowerPC core. The counter increases by one at every processor
cycle.

The sleep.c file and corresponding sleep.h include file implement sleep functions. Sleep
functions are implemented as busy loops

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 25

PowerPC 405 Processor API

PowerPC 405 Processor Time Function Summary

The following are links to the function descriptions. Click on the name to go to that function.

PowerPC 405 Processor Time Function Descriptions

typedef unsigned long long XTime

The XTime type in xtime_l.h represents the Time Base register. This struct consists of the
Time Base Low (TBL) and Time Base High (TBH) registers, each of which is a 32-bit wide
register.

The definition of XTime is as follows:

typedef unsigned long long XTime;

void XTime_SetTime(XTime xtime)

Sets the time base register to the value in xtime.

void XTime_GetTime(XTime *xtime)

Writes the current value of the time base register to variable xtime.

void XTime_TSRClearStatusBits(unsigned long Bitmask)

Clears bits in the Timer Status Register (TSR). The parameter Bitmask designates the bits to
be cleared. A value of 1 in any position of the Bitmask parameter clears the corresponding bit
in the TSR. This function does not return a value.

typedef unsigned long long XTime
void XTime_SetTime(XTime xtime)
void XTime_GetTime(XTime *xtime)
void XTime_TSRClearStatusBits(unsigned long Bitmask)
void XTime_PITSetInterval(unsigned long interval)
void XTime_PITEnableInterrupt(void)
void XTime_PITDisableInterrupt(void)
void XTime_PITEnableAutoReload(void)
void XTime_PITDisableAutoReload(void)
void XTime_PITClearInterrupt(void)
void XTime_FITEnableInterrupt(void)
void XTime_FITDisableInterrupt(void)
void XTime_FITClearInterrupt(void)
void XTime_FITSetPeriod(unsigned long Period)
void XTime_WDTEnableInterrupt(void)
void XTime_WDTDisableInterrupt(void)
void XTime_WDTClearInterrupt(void)
void XTime_WDTSetPeriod(unsigned long Period)
void XTime_WDTResetControl(unsigned long ControlVal)
void XTime_WDTEnableNextWatchdog(void)
void XTime_WDTClearResetStatus(void)
unsigned int usleep(unsigned int _useconds)
unsigned int sleep(unsigned int _seconds)
int nanosleep(const struct timespec *rqtp, struct timespec *rmtp)

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 26

PowerPC 405 Processor API

Example:

XTime_TSRClearStatusBits(TSR_CLEAR_ALL);

The following table contains the values for the Bitmask parameters which are specified in the
xreg405.h header file.

void XTime_PITSetInterval(unsigned long interval)

Loads a new value into the Programmable-Interval Timer Register. This register is a 32-bit
decrementing counter clocked at the same frequency as the time-base register. Depending on
the AutoReload setting the PIT is automatically reloaded with the last written value or must be
reloaded manually. This function does not return a value.

Example:

XTime_PITSetInterval(0x00ffffff);

Table 5: Bitmask Parameter Values

Name Value Description

XREG_TSR_WDT_ENABLE_NEXT_WATCHDOG 0x80000000 Clearing this bit disables the
watchdog timer event

XREG_TSR_WDT_INTERRUPT_STATUS 0x40000000 Clears the Watchdog Timer
Interrupt Status bit. This bit is
set after a watchdog interrupt
occurs

XREG_TSR_WDT_RESET_STATUS_11 0x30000000 Clears the Watchdog Timer
Reset Status bits. These bits
specify the type of reset that
occurred as a result of a
watchdog timer event

XREG_TSR_PIT_INTERRUPT_STATUS 0x08000000 Clears the Programmable
Interval Timer (PIT) Status
bit. This bit is set after a PIT
interrupt occurrence

XREG_TSR_FIT_INTERRUPT_STATUS 0x04000000 Clears the Fixed Interval
Timer Status (FIT) bit. This
bit is set after a FIT interrupt
has occurred

XREG_TSR_CLEAR_ALL 0xFFFFFFFF Clears all bits in the TSR.
After a Reset, the content of
the TSR is not specified. Use
this Bitmask to clear all bits in
the TSR

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 27

PowerPC 405 Processor API

void XTime_PITEnableInterrupt(void)

Enables the generation of PIT interrupts. An interrupt occurs when the PIT register contains a
value of 1, and is then decremented. This function does not return a value. XExc_Init()
must be called, the PIT interrupt handler must be registered, and exceptions must be enabled
before calling this function.

Example:

XTime_PITEnableInterrupt();

void XTime_PITDisableInterrupt(void)

Disables the generation of PIT interrupts. It does not return a value.

Example:

XTime_PITDisableInterrupt();

void XTime_PITEnableAutoReload(void)

Enables the auto-reload function of the PIT Register. When auto-reload is enabled the PIT
Register is automatically reloaded with the last value loaded by calling the
XTime_PITSetInterval() function when the PIT Register contains a value of 1 and is
decremented. When auto-reload is enabled, the PIT Register never contains a value of 0. This
function does not return a value.

Example:

XTime_PITEnableAutoReload();

void XTime_PITDisableAutoReload(void)

Disables the auto-reload feature of the PIT Register. When auto-reload is disabled the PIT
decrements from 1 to 0. If it contains a value of 0 it stops decrementing until it is loaded with a
non-zero value. This function does not return a value.

Example:

XTime_PITDisableAutoReload();

void XTime_PITClearInterrupt(void)

Clears PIT-Interrupt-Status bit in the Timer-Status Register. This bit specifies whether a PIT
interrupt occurred. You must call this function in your interrupt-handler to clear the Status bit,
otherwise another PIT interrupt occurs immediately after exiting the interrupt handler function.
This function does not return a value. Calling this function is equivalent to calling
XTime_TSRClearStatusBits(XREG_TSR_PIT_INTERRUPT_STATUS).

Example:

XTime_PITClearInterrupt();

void XTime_FITEnableInterrupt(void)

Enable Fixed Interval Timer (FIT) interrupts.

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 28

PowerPC 405 Processor API

Example:

XTime_FITEnableInterrupt();

void XTime_FITDisableInterrupt(void)

Disable Fixed Interval Timer (FIT) interrupts.

Example:

XTime_FITDisableInterrupt();

void XTime_FITClearInterrupt(void)

Clear Fixed Interval Timer (FIT) interrupt status bit.This function is equivalent to calling
XTime_TSRClearStatusBits(XREG_TSR_FIT_INTERRUPT_STATUS).

Example:

XTime_FITDisableInterrupt();

void XTime_FITSetPeriod(unsigned long Period)

Set the Fixed Interval Timer (FIT) Period value. This value can be one of the following:

• XREG_TCR_FIT_PERIOD_11 (2^21 clocks)

• XREG_TCR_FIT_PERIOD_10 (2^17 clocks)

• XREG_TCR_FIT_PERIOD_01 (2^13 clocks)

• XREG_TCR_FIT_PERIOD_00 (2^9 clocks)

These values are defined in xreg405.h

Example:

XTime_FITSetPeriod(XREG_TCR_FIT_PERIOD_11);

void XTime_WDTEnableInterrupt(void)
Enable Watchdog Timer (WDT) interrupts.

Example:

XTime_WDTEnableInterrupt();

void XTime_WDTDisableInterrupt(void)
Disable Watchdog Timer (WDT) interrupts.

Example:

XTime_WDTDisableInterrupt();

void XTime_WDTClearInterrupt(void)

Clear Watchdog Timer (WDT) interrupt status bit. Calling this function is equivalent to calling
XTime_TSRClearStatusBits(XREG_TSR_WDT_INTERRUPT_STATUS).

Example:

XTime_WDTClearInterrupt();

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 29

PowerPC 405 Processor API

void XTime_WDTSetPeriod(unsigned long Period)

Set the period for a Watchdog Timer (WDT) event.

Example:

XTime_WDTSetPeriod(0x10000);

void XTime_WDTResetControl(unsigned long ControlVal)

Specify the type of reset that occurs as a result of a Watchdog Timer (WDT) event.

The control value may be one of the following:

• XREG_WDT_RESET_CONTROL_11 (System reset)

• XREG_WDT_RESET_CONTROL_10 (Chip reset)

• XREG_WDT_RESET_CONTROL_01 (processor reset)

• XREG_WDT_RESET_CONTROL_00 (no reset)

These values are defined in xreg405.h

Example:

XTime_WDTResetControl (XREG_WDT_RESET_CONTROL_11);

void XTime_WDTEnableNextWatchdog(void)

Enables Watchdog Timer (WDT) event.

Example:

XTime_WDTEnableNextWatchdog ();

void XTime_WDTClearResetStatus(void)

Clear Watchdog Timer (WDT) reset status bits.

Example:

XTime_WDTClearResetStatus ();

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 30

PowerPC 405 Processor API

unsigned int usleep(unsigned int _useconds)

Delays the execution of a program by __useconds microseconds. It always returns zero. This
function requires that the processor frequency (in Hz) is defined. The default value of this
variable is 400 MHz. This value can be overwritten in the Microprocessor Software
Specification (MSS) file as follows:

BEGIN PROCESSOR
PARAMETER HW_INSTANCE = PPC405_i
PARAMETER DRIVER_NAME = cpu_ppc405
PARAMETER DRIVER_VER = 1.00.a
PARAMETER CORE_CLOCK_FREQ_HZ = 20000000
END

The xparameters.h file can be modified with the correct value also, as follows:

#define XPAR_CPU_PPC405_CORE_CLOCK_FREQ_HZ 20000000

unsigned int sleep(unsigned int _seconds)

Delays the execution of a program by what is specified in _seconds. It always returns zero.This
function requires that the processor frequency (in Hz) is defined. The default value of this
variable is 400 MHz. This value can be overwritten in the Microprocessor Software
Specification (MSS) file as follows:

BEGIN PROCESSOR
PARAMETER HW_INSTANCE = PPC405_i
PARAMETER DRIVER_NAME = cpu_ppc405
PARAMETER DRIVER_VER = 1.00.a
PARAMETER CORE_CLOCK_FREQ_HZ = 20000000
END

The file xparameters.h can also be modified with the correct value, as follows:

#define XPAR_CPU_PPC405_CORE_CLOCK_FREQ_HZ 20000000

int nanosleep(const struct timespec *rqtp, struct timespec
*rmtp)

The nanosleep() function in sleep.c is not implemented. It is a placeholder for linking
applications against the C library, and returns zero.

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 31

PowerPC 405 Processor API

PowerPC 405 Processor Fast Simplex Link Interface Macros

Standalone includes macros to provide convenient access to accelerators connected to the
PowerPC 405 processor Auxiliary Processing Unit (APU) over the FSL interfaces.

PowerPC 405 Processor Fast Simplex Link Interface Macro Summary

The following is a linked list the macros; click on a macro name to go to the description.

PowerPC 405 Processor FSL Interface Macro Descriptions

In the macros, val refers to a variable in your program that can be the source or sink of the FSL
operation. You must include the fsl.h header file in your source files to make these macros
available.

getfsl(val, id)

Performs a blocking data get function on an input FSL interface; id is the FSL identifier in the
range of 0 to 31. This macro is interruptible.

putfsl(val, id)

Performs a blocking data put function on an output FSL interface; id is the FSL identifier in the
range of 0 to 31. This macro is interruptible.

ngetfsl(val, id)

Performs a non-blocking data get function on an input FSL interface; id is the FSL identifier in
the range of 0 to 31.

nputfsl(val, id)

Performs a non-blocking data put function on an output FSL interface; id is the FSL identifier
in the range of 0 to 31.

cgetfsl(val, id)

Performs a blocking control get function on an input FSL interface; id is the FSL identifier in
the range of 0 to 31. This macro is interruptible.

cputfsl(val, id)

Performs a blocking control put function on an output FSL interface; id is the FSL identifier in
the range of 0 to 31. This macro is interruptible.

getfsl(val, id)
putfsl(val, id)
ngetfsl(val, id)
nputfsl(val, id)
cgetfsl(val, id)
cputfsl(val, id)
ncgetfsl(val, id)

ncputfsl(val, id)
getfsl_interruptible(val, id)
putfsl_interruptible(val, id)
cgetfsl_interruptible(val, id)
cputfsl_interruptible(val, id)
fsl_isinvalid(invalid)
fsl_iserror(error)

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 32

PowerPC 405 Processor API

ncgetfsl(val, id)

Performs a non-blocking control get function on an input FSL interface; id is the FSL identifier
in the range of 0 to 31.

ncputfsl(val, id)

This macro performs a non-blocking data control function on an output FSL interface; id is the
FSL identifier in the range of 0 to 31.

getfsl_interruptible(val, id)

This macro is aliased to getfsl(val,id).

putfsl_interruptible(val, id)

This macro is aliased to putfsl(val,id).

cgetfsl_interruptible(val, id)

This macro is aliased to cgetfsl(val,id).

cputfsl_interruptible(val, id)

This macro is aliased to cputfsl(val,id).

fsl_isinvalid(invalid)

Checks to determine if the last FSL operation returned valid data. This macro is applicable after
invoking a non-blocking FSL put or get instruction. If there was no data on the FSL channel on
a get, or if the FSL channel was full on a put, then invalid is set to 1; otherwise, invalid is
set to 0.

fsl_iserror(error)

Checks to determine if the last FSL operation set an error flag. This macro is applicable after
invoking a control FSL put or get instruction. If the control bit was set error is set to 1;
otherwise, it is set to 0.

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 33

PowerPC 405 Processor API

PowerPC 405 Processor Pseudo-asm Macro
Standalone includes macros to provide convenient access to various registers on the PowerPC
405 processor. You must include the header file xpseudo_asm.h in your source code to use
these APIs.

PowerPC 405 Processor Pseudo-asm Macro Summary
The following is a linked list of the Pseudo-asm Macros; click on a macro name to go to the
description.

PowerPC 405 Processor Pseudo-asm Macro Descriptions

mfgpr(rn)

Return value from GPR rn.

mfspr(rn)

Return the current value of the special purpose register (SPR) rn.

mfmsr()

Return value from MSR.

mfdcr(rn)
Return value from the device control register (DCR) rn.

mtdcr(rn,v)
Move the value v to DCR rn.

mtevpr(addr)
Move the value addr to the exception vector prefix register (EVPR).

mtspr(rn,v)

Move the value v to SPR rn.

mfgpr(rn)

mfspr(rn)

mfmsr()

mfdcr(rn)

mtdcr(rn,v)

mtevpr(addr)

mtspr(rn,v)

mtgpr(rn,v)

iccci

icbi(adr)

icbt(adr)

isync

dccci(adr)

dcbi(adr)

dcbst(adr)

dcbf(adr)

dcread(adr)

eieio

sync

lbz(adr)

lhz(adr)

lwz(adr)

stb(adr,val)

sth(adr,val)

stw(adr,val)

lhbrx(adr)

lwbrx(adr)

sthbrx(adr,val)

stwbrx(adr,val)

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 34

PowerPC 405 Processor API

mtgpr(rn,v)
Move the value v to GPR rn.

iccci

Invalidate the instruction cache congruence class (entire cache).

icbi(adr)
Invalidate the instruction cache block at effective address adr.

icbt(adr)

Touch the instruction cache block at effective address adr.

isync

Execute the isync instruction.

dccci(adr)
Invalidate the data cache congruence class represented by effective address adr.

dcbi(adr)
Invalidate the data cache block at effective address adr.

dcbst(adr)

Store the data cache block at effective address adr.

dcbf(adr)
Flush the data cache block at effective address adr.

dcread(adr)
Read from data cache address adr.

eieio

Execute the eieio instruction.

sync

Execute the sync instruction.

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 35

PowerPC 405 Processor API

lbz(adr)
Execute a load and return the byte value from address adr.

lhz(adr)
Execute a load and return the word half-word value from address adr.

lwz(adr)
Execute a load and return the word value from address adr.

stb(adr,val)
Store the byte value in val into address adr.

sth(adr,val)
Store the half-word value in val into address adr.

stw(adr,val)
Store the word value in val into address adr.

lhbrx(adr)
Execute a Load Halfword Byte-Reversed Indexed instruction on effective address adr and
return the value.

lwbrx(adr)
Execute a Load Word Byte-Reversed Indexed instruction on effective address adr and return
the value.

sthbrx(adr,val)
Execute a Store Halfword Byte-Reversed Indexed instruction on effective address adr, on
value val.

stwbrx(adr,val)
Execute a Store Word Byte-Reversed Indexed instruction on effective address adr, on value
val.

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 36

PowerPC 405 Processor API

PowerPC 405 Macros for APU FCM User-Defined Instructions

Macros are provided for using the user-defined instructions supported by the PowerPC 405
APU Fabric Coprocessor Module (FCM). There are a total of 16 user-defined instruction
mnemonics provided: eight for instructions that modify the Condition Register (CR) and eight
for the instructions that do not modify the CR. Because the meaning of the operands that these
instructions take can be dynamically redefined, macros are provided for all combinations of
operands. The user program must use the macros appropriately, in conjunction with higher
level program flow.

UDI<n>FCM(a, b, c, fmt)

Inserts the mnemonic for user-defined fcm instruction n (that does not modify CR) into the user
program. The user defined instruction, has a, b, c as operands to it in that order. The way the
operands are interpreted by the compiler, is determined by the format specifier given by fmt.
The format specifier is explained further below. n can range from 0 to 7. The mnemonic
inserted is, udi<n>fcm.

UDI<n>FCMCR(a, b, c, fmt)

Inserts the mnemonic for user-defined fcm instruction (that modifies CR) n into the user
program. The user-defined instruction has a, b, c as operands to it in that order. The way the
operands are interpreted by the compiler, is determined by the format specifier fmt. The
following table lists the format specifier identifiers and descriptions. The value for <n> has a
range of 0 to 7. The mnemonic syntax is udi<n>fcm. (note the period at the end).

Table 6: Format Specifier for UDI Instructions

Identifier Meaning

FMT_GPR_GPR_GPR Operands a, b, and c are general purpose registers

FMT_GPR_GPR_IMM Operands a and b are general purpose registers.
Operand c is an immediate value representing an immediate
constant or an FCM register

FMT_GPR_IMM_IMM Operand a is a general purpose register.
Operands b and c are immediate values representing an
immediate constant or an FCM register

FMT_IMM_GPR_GPR Operands b and c are general purpose registers.
Operand a is an immediate value representing an immediate
constant or an FCM register.

FMT_IMM_IMM_GPR Operand c is a general purpose register.
Operands a and b are immediate values representing an
immediate constant or an FCM register.

FMT_IMM_IMM_IMM All three operands are immediate values representing an
immediate constant or an FCM register.

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 37

PowerPC 440 Processor API

PowerPC 440
Processor API

Standalone contains boot code, cache, file and memory management, configuration, exception
handling, time and processor-specific include functions.

The following lists the PowerPC 440 processor API sections. To go to a function section, click
the name.

• “PowerPC 440 Processor Boot Code”

• “PowerPC 440 Processor Cache Functions”

• “PowerPC 440 Processor Exception Handling”

• “PowerPC 440 Processor Errno Function”

• “PowerPC 440 Processor Memory Management”

• “PowerPC 440 Process Functions”

• “PowerPC 440 Processor-Specific Include Files”

• “PowerPC 440 Processor Time Functions”

The following subsections describe the PowerPC 440 processor functions by type.

PowerPC 440 Processor Boot Code

The boot.S file contains a minimal set of code for transferring control from the processor’s
reset location to the start of the application. Code in the boot.S consists of the two sections
boot and boot0.

The boot section contains only one instruction that is labeled with _boot. During the link
process, this instruction is mapped to the reset vector and the _boot label marks the entry
point of the application. The boot instruction is a jump to the _boot0 label, and it is defined in
the boot0 section.

Upon reset of the 440 core, only the 4 kB program memory page, located at the end of the
32-bit effective address space (which starts at 0xFFFFF000), is mapped into the MMU of the
processor.

The .boot0 section contains instructions that initialize the TLBs in the MMU such that the
entire 4 GB address space is mapped transparently for both I and D side:

• The I-side TLB entries have address space identifier set to 0.

• The D-side TLB entries have address space identifier set to 1.

The .boot0 section is located at address 0xFFFFFF00 which is within the initially mapped
region of memory.

Apart from mapping TLBs, the code in boot0 also invalidates the I and D caches. Other core
registers such as CCR01, CCR1, and MSR are initialized. MSR[DS] is set to 1 to partition data
side translations to address space 1. Finally, the code in the boot0 section calculates the 32-
bit address of the _start label and jumps to that address.

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 38

PowerPC 440 Processor API

PowerPC 440 Processor Cache Functions

The xcache_l.c file and the corresponding xcache_l.h include file provide access to the
following cache and cache-related operations.

PowerPC 440 Processor Cache Function Summary

The following are links to the function descriptions. Click on the name to go to that function.

PowerPC 440 Processor Cache Function Descriptions

void XCache_WriteCCR0(unsigned int val)

Writes an integer value to the CCR0 register. Below is a sample code sequence. Before writing
to this register, the instruction cache must be enabled to prevent a lockup of the processor core.
After writing the CCR0, the instruction cache can be disabled, if not needed.

XCache_EnableICache(0x80000000) /* enable instruction cache for first 256
MB memory region */
XCache_WriteCCR0(0x00100000) /* Disable APU instruction broadcast */
XCache_DisableICache() /* disable instruction cache */

void XCache_EnableDCache(unsigned int regions)

Enables the data cache for a specific memory region. Each pair of adjacent bits in the regions
parameter represents 256 MB of memory. Setting either bit in the pair to 1 will enable caching
for a particular 256 MB memory region.

For example:

• A value of 0x80000000 or 0x40000000 or 0xC0000000 enables the data cache for the first
256 MB of memory (0 - 0x07FFFFFF).

• A value of 0x1 or 0x2 or 0x3 enables the data cache for the last 256 MB of memory
(0xF0000000 - 0xFFFFFFFF).

Note: if you are migrating software from a PowerPC 405 processor design, be aware that each bit
enables 128 MB more of memory for caching.

void XCache_DisableDCache(void)

Disables the data cache for all memory regions.

void XCache_WriteCCR0(unsigned int val)
void XCache_EnableDCache(unsigned int regions)
void XCache_DisableDCache(void)
void XCache_FlushDCacheLine(unsigned int adr)
void XCache_InvalidateDCacheLine(unsigned int adr)
void XCache_FlushDCacheRange(unsigned int adr, unsigned len)
void XCache_InvalidateDCacheRange(unsigned int adr, unsigned len)
void XCache_StoreDCacheLine(unsigned int adr)
void XCache_EnableICache(unsigned int regions)
void XCache_DisableICache(void)
void XCache_InvalidateICache(void)
void XCache_InvalidateICacheLine(unsigned int adr)
void XCache_TouchICacheBlock(unsigned int adr)

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 39

PowerPC 440 Processor API

void XCache_FlushDCacheLine(unsigned int adr)

Flushes and invalidates the data cache line that contains the address specified by the adr
parameter. A subsequent data access to this address results in a cache miss and a cache line
refill.

void XCache_InvalidateDCacheLine(unsigned int adr)

Invalidates the data cache line that contains the address specified by the adr parameter. If the
cache line is currently dirty, the modified contents are lost and are not written to system
memory. A subsequent data access to this address results in a cache miss and a cache line
refill.

void XCache_FlushDCacheRange(unsigned int adr, unsigned len)

Flushes and invalidates the data cache lines that are described by the address range starting
from adr and len bytes long. A subsequent data access to any address in this range results in
a cache miss and a cache line refill.

void XCache_InvalidateDCacheRange(unsigned int adr,
unsigned len)

Invalidates the data cache lines that are described by the address range starting from adr and
len bytes long. If a cache line is currently dirty, the modified contents are lost and are not written
to system memory. A subsequent data access to any address in this range results in a cache
miss and a cache line refill.

void XCache_StoreDCacheLine(unsigned int adr)

Stores in memory the data cache line that contains the address specified by the adr
parameter. A subsequent data access to this address results in a cache hit if the address was
already cached; otherwise, it results in a cache miss and cache line refill.

void XCache_EnableICache(unsigned int regions)

Enables the instruction cache for a specific memory region. Each pair of adjacent bits in the
regions parameter represents 256 MB of memory. Setting either bit in the pair to 1 will enable
caching for a particular 256 MB memory region. For example, a value of 0x80000000 or
0x40000000 or 0xC0000000 enables the instruction cache for the first 256 MB of memory
(0 - 0xFFFFFFFF). A value of 0x1 or 0x2 or 0x3 enables the instruction cache for the last 256
MB of memory (0xF0000000 - 0xFFFFFFF).

Note: If you are migrating software from PowerPC 405, be aware that each bit enables 128 MB more of
memory for caching.

void XCache_DisableICache(void)

Disables the instruction cache for all memory regions.

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 40

PowerPC 440 Processor API

void XCache_InvalidateICache(void)

Invalidates the whole instruction cache. Subsequent instructions produce cache misses and
cache line refills.

void XCache_InvalidateICacheLine(unsigned int adr)

Invalidates the instruction cache line that contains the address specified by the adr parameter.
A subsequent instruction to this address produces a cache miss and a cache line refill.

void XCache_TouchICacheBlock(unsigned int adr)

Fetches an instruction cache block(line) into the cache, if the input address points to a
cacheable instruction region.

PowerPC 440 Processor Exception Handling

An exception handling API is provided in Standalone. For an in-depth explanation on how
exceptions and interrupts work on the PowerPC 440 processor, refer to the chapter “Exceptions
and Interrupts” in the PowerPC 440 Processor Reference Guide. A link to this document is
provided in “Additional Resources,” page 1.

Note: Exception handlers do not automatically reset (disable) the wait state enable bit in the MSR when
returning to user code. You can force exception handlers to reset the Wait-Enable bit to zero on return
from all exceptions by compiling Standalone with the preprocessor symbol
PPC440_RESET_WE_ON_RFI defined. You can add this to the compiler flags associated with the
libraries. This pre-processor define turns the behavior on.

The exception handling API consists of a set of the files xvectors.S, xexception_l.c, and
the corresponding header file xexception_l.h.

For additional information on interrupt handing see the XPS Help and the “Interrupt
Management” appendix in the Embedded System Tools Reference Manual (available in the
/doc directory of your EDK installation).

PowerPC 440 Processor Exception Handling Function Summary

The following table provides a summary of the PowerPC 440 exception handling functions.
Click on a function name to go to the description.

void XExc_Init(void)
void XExc_RegisterHandler(Xuint8 ExceptionId, XExceptionHandler Handler, void *DataPtr)
void XExc_RemoveHandler(Xuint8 ExceptionId)
void XExc_mEnableExceptions (EnableMask)
void XExc_mDisableExceptions (DisableMask)

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 41

PowerPC 440 Processor API

PowerPC 440 Processor Exception Handling Function Descriptions

void XExc_Init(void)

Sets up the interrupt vector table and registers a “do nothing” function for each exception. This
function has no parameters and does not return a value.

This function must be called before registering any exception handlers or enabling any
interrupts. When using the exception handler API, this function should be called at the
beginning of your main() routine.

void XExc_RegisterHandler(Xuint8 ExceptionId,
XExceptionHandler Handler, void *DataPtr)

Registers an exception handler for a specific exception; does not return a value. Refer to the
following table for a list of exception types and their values. The parameters are as follows:

• ExceptionId is of parameter type Xuint8, and is the exception to which this handler
should be registered. The type and the values are defined in the xexception_l.h
header file. Table 7 lists the exception types and possible values

• Handler is an XExceptionHandler parameter which is the pointer to the exception
handling function

• DataPtr is of parameter type void * and is the user value to be passed when the
handling function is called

Table 7: Registered Exception Types and Values

Exception Type Value

XEXC_ID_CRITICAL_INT 0

XEXC_ID_MACHINE_CHECK 1

XEXC_ID_DATA_STORAGE_INT 2

XEXC_ID_INSTRUCTION_STORAGE_INT 3

XEXC_ID_NON_CRITICAL_INT 4

XEXC_ID_ALIGNMENT_INT 5

XEXC_ID_PROGRAM_INT 6

XEXC_ID_FPU_UNAVAILABLE_INT 7

XEXC_ID_SYSTEM_CALL 8

XEXC_ID_APU_AVAILABLE 9

XEXC_ID_DEC_INT 10

XEXC_ID_FIT_INT 11

XEXC_ID_WATCHDOG_TIMER_INT 12

XEXC_ID_DATA_TLB_MISS_INT 13

XEXC_ID_INSTRUCTION_TLB_MISS_INT 14

XEXC_ID_DEBUG_INT 15

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 42

PowerPC 440 Processor API

The function provided as the Handler parameter must have the following function prototype:

typedef void (*XExceptionHandler)(void * DataPtr);

This prototype is declared in the xexception_l.h header file.

When this exception handler function is called, the parameter DataPtr contains the same
value as you provided when you registered the handler.

void XExc_RemoveHandler(Xuint8 ExceptionId)

De-register a handler function for a given exception. For possible values of parameter
ExceptionId, refer to Table 7, page 41.

void XExc_mEnableExceptions (EnableMask)

Enable exceptions. This macro must be called after initializing the vector table with the
XExc_Init function and registering exception handlers with the XExc_RegisterHandler
function.

The parameter EnableMask is a bitmask for exceptions to be enabled. The EnableMask
parameter can have the following values: XEXC_CRITICAL, XEXC_NON_CRITICAL,
XEXC_DEBUG, XEXC_MACHINE_CHECK, or XEXC_ALL.

void XExc_mDisableExceptions (DisableMask)

Disable exceptions. The parameter DisableMask is a bitmask for exceptions to be
disabled.The DisableMask parameter can have the following values: XEXC_CRITICAL,
XEXC_NON_CRITICAL, XEXC_DEBUG, XEXC_MACHINE_CHECK, or XEXC_ALL.

PowerPC 440 Processor File Support

File support is limited to the stdin and stdout streams; consequently, the following functions
are not necessary:

• open() (in open.c)

• close() (in close.c)

• fstat() (in fstat.c)

• unlink() (in unlink.c)

• lseek() (in lseek.c)

These files are included for completeness and because they are referenced by the C library.

PowerPC 440 Processor File Support Function Descriptions

int read(int fd, char *buf, int nbytes)

The read() function in read.c reads nbytes bytes from the standard input by calling
inbyte(). It blocks until all characters are available, or the end of line character is read. The
read() function returns the number of characters read. The fd parameter is ignored.

int write(int fd, char *buf, int nbytes)

Writes nbytes bytes to the standard output by calling outbyte(). It blocks until all characters
have been written. The write() function returns the number of characters written. The fd
parameter is ignored.

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 43

PowerPC 440 Processor API

int isatty(int fd)

Reports if a file is connected to a tty. This function always returns 1, Because only the stdin
and stdout streams are supported.

int fcntl (int fd, int cmd, -long arg)

A dummy implementation of fcntl, which always returns 0. fcntl is intended to manipulate
file descriptors according to the command specified by cmd. Because Standalone does not
provide a file system, this function is not used.

PowerPC 440 Processor Errno Function

int errno()

Returns the global value of errno as set by the last C library call.

PowerPC 440 Processor Memory Management

char *sbrk(int nbytes)

Allocates nbytes of heap and returns a pointer to that piece of memory. This function is called
from the memory allocation functions of the C library.

PowerPC 440 Process Functions

The functions getpid() in getpid.c and kill() in kill.c are included for
completeness and because they are referenced by the C library.

PowerPC 440 Processor-Specific Include Files

The xreg440.h include file contains the register numbers and the register bits for the
PowerPC 440 processor.

The xpseudo-asm.h include file contains the definitions for the most often used inline
assembler instructions, available as macros. These can be very useful for tasks such as setting
or getting special purpose registers, synchronization, or cache manipulation.

These inline assembler instructions can be used from drivers and user applications written in C.

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 44

PowerPC 440 Processor API

PowerPC 440 Processor Time Functions

The xtime_l.c file and corresponding xtime_l.h include file provide access to the 64-bit
time base counter as well as the decrementer, FIT and WDT timers inside the PowerPC 440
core. The 64-bit time base counter increases by one at every processor cycle.

The sleep.c file and corresponding sleep.h include file implement sleep functions. Sleep
functions are implemented as busy loops.

PowerPC 440 Processor Time Function Summary

The PowerPC 440 processor time functions are summarized in the following table. Click on the
function name to go to the description.

PowerPC 440 Processor Time Function Descriptions

typedef unsigned long long XTime

The XTime type in xtime_l.h represents the Time Base register. This struct consists of the
Time Base Low (TBL) and Time Base High (TBH) registers, each of which is a 32-bit wide
register.

The definition of XTime is as follows:

typedef unsigned long long XTime;

void XTime_SetTime(XTime xtime)

Sets the time base register to the value in xtime.

typedef unsigned long long XTime

void XTime_SetTime(XTime xtime)

void XTime_GetTime(XTime *xtime)

void XTime_TSRClearStatusBits(unsigned long Bitmask)

void XTime_DECSetInterval(unsigned long interval);

void XTime_DECEnableInterrupt(void);

void XTime_DECDisableInterrupt(void)

void XTime_DECEnableAutoReload(void)

void XTime_DECDisableAutoReload(void)

void XTime_DECClearInterrupt(void)

void XTime_FITEnableInterrupt(void)

void XTime_FITDisableInterrupt(void)

void XTime_FITClearInterrupt(void)

void XTime_FITSetPeriod(unsigned long Period)

void XTime_WDTEnableInterrupt(void)

void XTime_WDTDisableInterrupt(void)

void XTime_WDTClearInterrupt(void)

void XTime_WDTSetPeriod(unsigned long Period)

void XTime_WDTResetControl(unsigned long ControlVal)

void XTime_WDTEnableNextWatchdog(void)

void XTime_WDTClearResetStatus(void)

unsigned int usleep(unsigned int _useconds)

unsigned int sleep(unsigned int _seconds)

int nanosleep(const struct timespec *rqtp, struct timespec *rmtp)

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 45

PowerPC 440 Processor API

void XTime_GetTime(XTime *xtime)

Writes the current value of the time base register to variable xtime.

void XTime_TSRClearStatusBits(unsigned long Bitmask)

Clears bits in the Timer Status Register (TSR). The parameter Bitmask designates the bits to
be cleared. A value of 1 in any position of the Bitmask parameter clears the corresponding bit
in the TSR. This function does not return a value.

Example:

XTime_TSRClearStatusBits(XREG_TSR_CLEAR_ALL);

The following table contains the values for the bitmask parameters that are specified in the
xreg440.h header file.

Table 8: Bitmask Parameter Values

Name Value Description

XREG_TSR_WDT_ENABLE_NEXT_WATCHDOG 0x80000000 Clearing this bit disables the
watchdog timer event.

XREG_TSR_WDT_INTERRUPT_STATUS 0x40000000 Clears the Watchdog Timer
Interrupt Status bit.

This bit is set after a watchdog
interrupt occurs.

XREG_TSR_WDT_RESET_STATUS_00 0x00000000 Clears the Watchdog Timer Reset
Status bits.

The bit combination specifies the
type of reset that occurred as a
result of a watchdog timer event.

XREG_TSR_WDT_RESET_STATUS_01 0x10000000 Clears the Watchdog Timer Reset
Status bits.

The bit combination specifies the
type of reset that occurred as a
result of a watchdog timer event.

XREG_TSR_WDT_RESET_STATUS_10 0x20000000 Clears the Watchdog Timer Reset
Status bits.

The bit combination specifies the
type of reset that occurred as a
result of a watchdog timer event.

XREG_TSR_WDT_RESET_STATUS_11 0x30000000 Clears the Watchdog Timer Reset
Status bits.

The bit combination specifies the
type of reset that occurred as a
result of a watchdog timer event.

XREG_TSR_DEC_INTERRUPT_STATUS 0x08000000 Clears the Decrementer (DEC)
Status bit. This bit is set after a
decrementer interrupt
occurrence.

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 46

PowerPC 440 Processor API

void XTime_DECSetInterval(unsigned long interval);

Loads a new value into the Decrementer Register. This register is a 32-bit decrementing
counter clocked at the same frequency as the time-base register. Depending on the
AutoReload setting the Decrementer is automatically reloaded with the last written value or
must be reloaded manually. This function does not return a value.

Example:

XTime_DECSetInterval(0x00ffffff);

void XTime_DECEnableInterrupt(void);

Enables the generation of Decrementer interrupts. An interrupt occurs when the DEC register
contains a value of 1, and is then decremented. This function does not return a value.
XExc_Init() must be called, the Decrementer interrupt handler must be registered, and
exceptions must be enabled before calling this function.

Example:

XTime_DECEnableInterrupt();

void XTime_DECDisableInterrupt(void)

Disables the generation of Decrementer interrupts. It does not return a value.

Example:

XTime_DECDisableInterrupt();

XREG_TSR_FIT_INTERRUPT_STATUS 0x04000000 Clears the Fixed Interval Timer
Status (FIT) bit. This bit is set after
a FIT interrupt has occurred.

XREG_TSR_CLEAR_ALL 0xFFFFFFFF Clears all bits in the TSR.

After a Reset, the content of the
TSR is not specified.

Use this bitmask to clear all bits in
the TSR.

Table 8: Bitmask Parameter Values (Cont’d)

Name Value Description

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 47

PowerPC 440 Processor API

void XTime_DECEnableAutoReload(void)

Enables the auto-reload function of the Decrementer Register. When auto-reload is enabled
the Decrementer Register is automatically reloaded with the last value loaded by calling the
XTime_DECSetInterval() function when the Decrementer Register contains a value of 1
and is decremented. When auto-reload is enabled, the Decrementer Register never contains a
value of 0. This function does not return a value.

Example:

XTime_DECEnableAutoReload();

void XTime_DECDisableAutoReload(void)

Disables the auto-reload feature of the Decrementer Register. When auto-reload is disabled
the Decrementer decrements from 1 to 0. If it contains a value of 0 it stops decrementing until
it is loaded with a non-zero value. This function does not return a value.

Example:

XTime_DECDisableAutoReload();

void XTime_DECClearInterrupt(void)

Clears Decrementer Interrupt-Status bit in the Timer-Status Register. This bit specifies whether
a Decrementer interrupt occurred. You must call this function in your interrupt-handler to clear
the Status bit, otherwise another Decrementer interrupt occurs immediately after exiting the
interrupt handler function. This function does not return a value. Calling this function is
equivalent to calling
XTime_TSRClearStatusBits(XREG_TSR_DEC_INTERRUPT_STATUS).

Example:

XTime_DECClearInterrupt();

void XTime_FITEnableInterrupt(void)

Enable Fixed Interval Timer (FIT) interrupts.

Example:

XTime_FITEnableInterrupt();

void XTime_FITDisableInterrupt(void)

Disable Fixed Interval Timer (FIT) interrupts.

Example:

XTime_FITDisableInterrupt();

void XTime_FITClearInterrupt(void)

Clear Fixed Interval Timer (FIT) interrupt status bit.This function is equivalent to calling
XTime_TSRClearStatusBits(XREG_TSR_FIT_INTERRUPT_STATUS).

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 48

PowerPC 440 Processor API

Example:

XTime_FITDisableInterrupt();

void XTime_FITSetPeriod(unsigned long Period)

Set the Fixed Interval Timer (FIT) Period value. This value can be one of the following:

• XREG_TCR_FIT_PERIOD_11 (2^21 clocks)

• XREG_TCR_FIT_PERIOD_10 (2^17 clocks)

• XREG_TCR_FIT_PERIOD_01 (2^13 clocks)

• XREG_TCR_FIT_PERIOD_00 (2^9 clocks)

These values are defined in xreg440.h

Example:

XTime_FITSetPeriod(XREG_TCR_FIT_PERIOD_11);

void XTime_WDTEnableInterrupt(void)
Enable Watchdog Timer (WDT) interrupts.

Example:

XTime_WDTEnableInterrupt();

void XTime_WDTDisableInterrupt(void)
Disable Watchdog Timer (WDT) interrupts.

Example:

XTime_WDTDisableInterrupt();

void XTime_WDTClearInterrupt(void)

Clear Watchdog Timer (WDT) interrupt status bit. Calling this function is equivalent to calling
XTime_TSRClearStatusBits(XREG_TSR_WDT_INTERRUPT_STATUS).

Example:

XTime_WDTClearInterrupt();

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 49

PowerPC 440 Processor API

void XTime_WDTSetPeriod(unsigned long Period)

Set the period for a Watchdog Timer (WDT) event.

Example:

XTime_WDTSetPeriod(0x10000);

void XTime_WDTResetControl(unsigned long ControlVal)

Specify the type of reset that occurs as a result of a Watchdog Timer (WDT) event.

The control value may be one of the following:

• XREG_WDT_RESET_CONTROL_11 (System reset)

• XREG_WDT_RESET_CONTROL_10 (Chip reset)

• XREG_WDT_RESET_CONTROL_01 (processor reset)

• XREG_WDT_RESET_CONTROL_00 (no reset)

These values are defined in xreg440.h.

Example:

XTime_WDTResetControl (XREG_WDT_RESET_CONTROL_11);

void XTime_WDTEnableNextWatchdog(void)

Enables Watchdog Timer (WDT) event.

Example:

XTime_WDTEnableNextWatchdog ();

void XTime_WDTClearResetStatus(void)

Clear Watchdog Timer (WDT) reset status bits.

Example:

XTime_WDTClearResetStatus ();

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 50

PowerPC 440 Processor API

unsigned int usleep(unsigned int _useconds)

Delays the execution of a program by __useconds microseconds. It always returns zero. This
function requires that the processor frequency (in Hz) is defined. The default value of this
variable is 400 MHz. This value can be overwritten in the Microprocessor Software
Specification (MSS) file as follows:

BEGIN PROCESSOR
PARAMETER HW_INSTANCE = PPC440_i
PARAMETER DRIVER_NAME = cpu_ppc440
PARAMETER DRIVER_VER = 1.00.a
PARAMETER CORE_CLOCK_FREQ_HZ = 20000000
END

The xparameters.h file can be modified with the correct value also, as follows:

#define XPAR_CPU_PPC440_CORE_CLOCK_FREQ_HZ 20000000

unsigned int sleep(unsigned int _seconds)

Delays the execution of a program by what is specified in _seconds. It always returns zero.This
function requires that the processor frequency (in Hz) is defined. The default value of this
variable is 400 MHz.

This value can be overwritten in the Microprocessor Software Specification (MSS) file as
follows:

BEGIN PROCESSOR
PARAMETER HW_INSTANCE = PPC440_i
PARAMETER DRIVER_NAME = cpu_ppc440
PARAMETER DRIVER_VER = 1.00.a
PARAMETER CORE_CLOCK_FREQ_HZ = 20000000
END

The file xparameters.h can also be modified with the correct value, as follows:

#define XPAR_CPU_PPC440_CORE_CLOCK_FREQ_HZ 20000000

int nanosleep(const struct timespec *rqtp, struct timespec
*rmtp)

The nanosleep() function in sleep.c is not implemented. It is a placeholder for linking
applications against the C library, and returns zero.

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 51

Xilinx Hardware Abstraction Layer

Xilinx Hardware
Abstraction
Layer

The following sections describe the Xilinx® Hardware Abstraction Layer API. It contains the
following sections:

• Types (xil_types)

• Register IO (xil_io)

• Exception (xil_exception)

• Cache (xil_cache)

• Assert (xil_assert)

• Extra Header File

• Test Memory (xil_testmem)

• Test Register IO (xil_testio)

• Test Cache (xil_testcache)

• Hardware Abstraction Layer Migration Tips

Types (xil_types)

Header File
#include "xil_types.h"

Typedef
typedef unsigned char u8
typedef unsigned short u16
typedef unsigned long u32
typedef unsigned long long u64
typedef char s8
typedef short s16
typedef long s32
typedef long long s64

Macros

Macro Value

#define TRUE 1

#define FALSE 0

#define NULL 0

#define XIL_COMPONENT_IS_READY 0x11111111

#define XIL_COMPONENT_IS_STARTED 0x22222222

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 52

Xilinx Hardware Abstraction Layer

Register IO (xil_io)

Header File
#include "xil_io.h"

Common API

The following is a summary of register IO functions. They can run on MicroBlaze, PowerPC
405, and PowerPC 440 processors.

u8 Xil_In8(u32 Addr)

u16 Xil_EndianSwap16 (u16 Data)

u16 Xil_Htons(u16 Data)

u16 Xil_In16(u32 Addr)

u16 Xil_In16BE(u32 Addr)

u16 Xil_In16LE(u32 Addr)

u16 Xil_Ntohs(u16 Data)

u32 Xil_EndianSwap32 (u32 Data)

u32 Xil_Htonl(u32 Data)

u32 Xil_In32(u32 Addr)

u32 Xil_In32BE(u32 Addr)

u32 Xil_In32LE(u32 Addr)

u32 Xil_Ntohl(u32 Data)

void Xil_Out8(u32 Addr, u8 Value)

void Xil_Out16(u32 Addr, u16 Value)

void Xil_Out16BE(u32 Addr, u16 Value)

void Xil_Out16LE(u32 Addr, u16 Value)

void Xil_Out32(u32 Addr, u32 Value)

void Xil_Out32BE(u32 Addr, u32 Value)

void Xil_Out32LE(u32 Addr, u32 Value)

u8 Xil_In8(u32 Addr)

Perform an input operation for an 8-bit memory location by reading from the specified address
and returning the value read from that address.

Parameters:

Addr contains the address at which to perform the input operation.

Returns:

The value read from the specified input address.

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 53

Xilinx Hardware Abstraction Layer

u16 Xil_EndianSwap16 (u16 Data)

Perform a 16-bit endian swapping.

Parameters:

Data contains the value to be swapped.

Returns:

Endian swapped value.

u16 Xil_Htons(u16 Data)

Convert a 16-bit number from host byte order to network byte order.

Parameters:

Data the 16-bit number to be converted.

Returns:

The converted 16-bit number in network byte order.

u16 Xil_In16(u32 Addr)

Perform an input operation for a 16-bit memory location by reading from the specified address
and returning the value read from that address.

Parameters:

Addr contains the address at which to perform the input operation.

Returns:

The value read from the specified input address.

u16 Xil_In16BE(u32 Addr)

Perform an big-endian input operation for a 16-bit memory location by reading from the
specified address and returning the value read from that address.

Parameters:

Addr contains the address at which to perform the input operation.

Returns:

The value read from the specified input address with the proper endianness. The return
value has the same endianness as that of the processor. For example, if the processor
is little-endian, the return value is the byte-swapped value read from the address.

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 54

Xilinx Hardware Abstraction Layer

u16 Xil_In16LE(u32 Addr)

Perform a little-endian input operation for a 16-bit memory location by reading from the
specified address and returning the value read from that address.

Parameters:

Addr contains the address at which to perform the input operation.

Returns:

The value read from the specified input address with the proper endianness. The return
value has the same endianness as that of the processor. For example, if the processor
is big-endian, the return value is the byte-swapped value read from the address.

u16 Xil_Ntohs(u16 Data)

Convert a 16-bit number from network byte order to host byte order.

Parameters:

Data the 16-bit number to be converted.

Returns:

The converted 16-bit number in host byte order.

u32 Xil_EndianSwap32 (u32 Data)

Perform a 32-bit endian swapping.

Parameters:

Data contains the value to be swapped.

Returns:

Endian swapped value.

u32 Xil_Htonl(u32 Data)

Convert a 32-bit number from host byte order to network byte order.

Parameters:

Data the 32-bit number to be converted.

Returns:

The converted 32-bit number in network byte order.

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 55

Xilinx Hardware Abstraction Layer

u32 Xil_In32(u32 Addr)

Perform an input operation for a 32-bit memory location by reading from the specified address
and returning the value read from that address.

Parameters:

Addr contains the address at which to perform the input operation.

Returns:

The value read from the specified input address.

u32 Xil_In32BE(u32 Addr)

Perform a big-endian input operation for a 32-bit memory location by reading from the specified
address and returning the value read from that address.

Parameters:

Addr contains the address at which to perform the input operation.

Returns:

The value read from the specified input address with the proper endianness. The return
value has the same endianness as that of the processor. For example, if the processor
is little-endian, the return value is the byte-swapped value read from the address.

u32 Xil_In32LE(u32 Addr)

Perform a little-endian input operation for a 32-bit memory location by reading from the
specified address and returning the value read from that address.

Parameters:

Addr contains the address at which to perform the input operation.

Returns:

The value read from the specified input address with the proper endianness. The return
value has the same endianness as that of the processor. For example, if the processor
is big-endian, the return value is the byte-swapped value read from the address.

u32 Xil_Ntohl(u32 Data)

Convert a 32-bit number from network byte order to host byte order.

Parameters:

Data the 32-bit number to be converted.

Returns:

The converted 32-bit number in host byte order.

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 56

Xilinx Hardware Abstraction Layer

void Xil_Out8(u32 Addr, u8 Value)

Perform an output operation for an 8-bit memory location by writing the specified value to the
specified address.

Parameters:

Addr contains the address at which to perform the output operation.

Value contains the value to be output at the specified address.

void Xil_Out16(u32 Addr, u16 Value)

Perform an output operation for a 16-bit memory location by writing the specified value to the
specified address.

Parameters:

Addr contains the address at which to perform the output operation.

Value contains the value to be output at the specified address.

void Xil_Out16BE(u32 Addr, u16 Value)

Perform a big-endian output operation for a 16-bit memory location by writing the specified
value to the specified address.

Parameters:

Addr contains the address at which to perform the output operation.

Value contains the value to be output at the specified address. The value has the same
endianness as that of the processor. For example, if the processor is little-endian, the
byte-swapped value is written to the address.

void Xil_Out16LE(u32 Addr, u16 Value)

Perform a little-endian output operation for a 16-bit memory location by writing the specified
value to the specified address.

Parameters:

Addr contains the address at which to perform the output operation.

Value contains the value to be output at the specified address. The value has the same
endianness as that of the processor. For example, if the processor is big-endian, the
byte-swapped value is written to the address.

void Xil_Out32(u32 Addr, u32 Value)

Perform an output operation for a 32-bit memory location by writing the specified value to the
specified address.

Parameters:

Addr contains the address at which to perform the output operation.

Value contains the value to be output at the specified address.

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 57

Xilinx Hardware Abstraction Layer

void Xil_Out32BE(u32 Addr, u32 Value)

Perform a big-endian output operation for a 32-bit memory location by writing the specified
value to the specified address.

Parameters:

Addr contains the address at which to perform the output operation.

Value contains the value to be output at the specified address. The value has the same
endianness as that of the processor. For example, if the processor is little-endian, the
byte-swapped value is written to the address.

void Xil_Out32LE(u32 Addr, u32 Value)

Perform a little-endian output operation for a 32-bit memory location by writing the specified
value to the specified address.

Parameters:

Addr contains the address at which to perform the output operation.

Value contains the value to be output at the specified address. The value has the same
endianness as that of the processor. For example, if the processor is big-endian, the
byte-swapped value is written to the address.

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 58

Xilinx Hardware Abstraction Layer

Exception (xil_exception)

Header File
#include "xil_exception.h"

Typedef
typedef void(* Xil_ExceptionHandler)(void *Data)

This typedef is the exception handler function pointer.

Common API

The following is a summary of exception functions. They can run on MicroBlaze, PowerPC 405,
and PowerPC 440 processors.

void Xil_ExceptionDisable()

void Xil_ExceptionEnable()

void Xil_ExceptionInit()

void Xil_ExceptionRegisterHandler(u32 Id, Xil_ExceptionHandler
Handler, void *Data)

void Xil_ExceptionRemoveHandler(u32 Id)

void Xil_ExceptionDisable()

Disable Exceptions. On PowerPC 405 and PowerPC 440 processors, this function only
disables non-critical exceptions.

void Xil_ExceptionEnable()

Enable Exceptions. On PowerPC 405 and PowerPC 440 processors, this function only enables
non-critical exceptions.

void Xil_ExceptionInit()

Initialize exception handling for the processor. The exception vector table is set up with the stub
handler for all exceptions.

void Xil_ExceptionRegisterHandler(u32 Id, Xil_ExceptionHandler
Handler,void *Data)

Make the connection between the ID of the exception source and the associated handler that
runs when the exception is recognized. Data is used as the argument when the handler is
called.

Parameters:

Id contains the identifier (ID) of the exception source. This should be
XIL_EXCEPTION_INT or be in the range of 0 to XIL_EXCEPTION_LAST. Refer to the
xil_exception.h file for further information.

Handler is the handler for that exception.

Data is a reference to data that will be passed to the handler when it is called.

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 59

Xilinx Hardware Abstraction Layer

void Xil_ExceptionRemoveHandler(u32 Id)

Remove the handler for a specific exception ID. The stub handler is then registered for this
exception ID.

Parameters:

Id contains the ID of the exception source. It should be XIL_EXCEPTION_INT or in the
range of 0 to XIL_EXCEPTION_LAST. Refer to the xil_exception.h file for further
information.

Common Macro

The common macro is:

#define XIL_EXCEPTION_ID_INT

This macro is defined for all processors and is used to set the exception handler that
corresponds to the interrupt controller handler. The value is processor-dependent. For
example:

Xil_ExceptionRegisterHandler(XIL_EXCEPTION_ID_INT,
(XilExceptionHandler)IntcHandler, IntcData)

MicroBlaze Processor-Specific Macros

The following macros are used to register exception handlers.

Macro Value

#define XIL_EXCEPTION_ID_FIRST 0

#define XIL_EXCEPTION_ID_FSL 0

#define XIL_EXCEPTION_ID_UNALIGNED_ACCESS 1

#define XIL_EXCEPTION_ID_ILLEGAL_OPCODE 2

#define XIL_EXCEPTION_ID_IOPB_EXCEPTION 3

#define XIL_EXCEPTION_ID_IPLB_EXCEPTION 3

#define XIL_EXCEPTION_ID_DOPB_EXCEPTION 4

#define XIL_EXCEPTION_ID_DPLB_EXCEPTION 4

#define XIL_EXCEPTION_ID_DIV_BY_ZERO 5

#define XIL_EXCEPTION_ID_FPU 6

#define XIL_EXCEPTION_ID_MMU 7

#define XIL_EXCEPTION_ID_LAST XIL_EXCEPTION_ID_MMU

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 60

Xilinx Hardware Abstraction Layer

PowerPC 405 Processor-Specific Functions and Macros

The following functions and macros are used with PowerPC 405 Processors.

void Xil_ExceptionDisableMask(u32 Mask)

void Xil_ExceptionEnableMask(u32 Mask)

void Xil_ExceptionDisableMask(u32 Mask)

Disable exceptions.

Parameters:

Mask is a bitmask for exceptions to be disabled.

void Xil_ExceptionEnableMask(u32 Mask)

Enable exceptions.

Parameters:

Mask is a bitmask for exceptions to be enabled.

The following macros are used for both enabling and disabling exceptions.

The following macros are used for registering exceptions.

Macro Value

#define XIL_EXCEPTION_CRITICAL 0x00020000

#define XIL_EXCEPTION_NON_CRITICAL 0x00008000

#define XIL_EXCEPTION_ALL 0x00028000

Macro Value

#define XIL_EXCEPTION_ID_FIRST 0

#define XIL_EXCEPTION_ID_JUMP_TO_ZERO 0

#define XIL_EXCEPTION_ID_CRITICAL_INT 1

#define XIL_EXCEPTION_ID_MACHINE_CHECK 2

#define XIL_EXCEPTION_ID_DATA_STORAGE_INT 3

#define XIL_EXCEPTION_ID_INSTRUCTION_STORAGE_INT 4

#define XIL_EXCEPTION_ID_NON_CRITICAL_INT 5

#define XIL_EXCEPTION_ID_ALIGNMENT_INT 6

#define XIL_EXCEPTION_ID_PROGRAM_INT 7

#define XIL_EXCEPTION_ID_FPU_UNAVAILABLE_INT 8

#define XIL_EXCEPTION_ID_SYSTEM_CALL 9

#define XIL_EXCEPTION_ID_APU_AVAILABLE 10

#define XIL_EXCEPTION_ID_PIT_INT 11

#define XIL_EXCEPTION_ID_FIT_INT 12

#define XIL_EXCEPTION_ID_WATCHDOG_TIMER_INT 13

#define XIL_EXCEPTION_ID_DATA_TLB_MISS_INT 14

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 61

Xilinx Hardware Abstraction Layer

PowerPC 440 Processor-Specific Functions and Macros

The following functions and macros are used with PowerPC 440 Processors.

void Xil_ExceptionDisableMask(u32 Mask)

void Xil_ExceptionEnableMask(u32 Mask)

void Xil_ExceptionDisableMask(u32 Mask)

Disable exceptions.

Parameters:

Mask is a bitmask for exceptions to be disabled.

void Xil_ExceptionEnableMask(u32 Mask)

Enable exceptions.

Parameters:

Mask is a bitmask for exceptions to be disabled.

The following macros are used for enabling exceptions.

#define XIL_EXCEPTION_ID_INSTRUCTION_TLB_MISS_INT 15

#define XIL_EXCEPTION_ID_DEBUG_INT 16

#define XIL_EXCEPTION_ID_LAST 16

Macro Value

#define XIL_EXCEPTION_CRITICAL 0x00020000

#define XIL_EXCEPTION_NON_CRITICAL 0x00008000

#define XIL_EXCEPTION_MACHINE_CHECK 0x00001000

#define XIL_EXCEPTION_DEBUG 0x00000200

#define XIL_EXCEPTION_ALL 0x00029200

Macro Value

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 62

Xilinx Hardware Abstraction Layer

The following macros are used for registering exceptions.

Macro Value

#define XIL_EXCEPTION_ID_FIRST 0

#define XIL_EXCEPTION_ID_CRITICAL_INT 0

#define XIL_EXCEPTION_ID_MACHINE_CHECK 1

#define XIL_EXCEPTION_ID_DATA_STORAGE_INT 2

#define XIL_EXCEPTION_ID_INSTRUCTION_STORAGE_INT 3

#define XIL_EXCEPTION_ID_NON_CRITICAL_INT 4

#define XIL_EXCEPTION_ID_ALIGNMENT_INT 5

#define XIL_EXCEPTION_ID_PROGRAM_INT 6

#define XIL_EXCEPTION_ID_FPU_UNAVAILABLE_INT 7

#define XIL_EXCEPTION_ID_SYSTEM_CALL 8

#define XIL_EXCEPTION_ID_APU_AVAILABLE 9

#define XIL_EXCEPTION_ID_DEC_INT 10

#define XIL_EXCEPTION_ID_FIT_INT 11

#define XIL_EXCEPTION_ID_WATCHDOG_TIMER_INT 12

#define XIL_EXCEPTION_ID_DATA_TLB_MISS_INT 13

#define XIL_EXCEPTION_ID_INSTRUCTION_TLB_MISS_INT 14

#define XIL_EXCEPTION_ID_DEBUG_INT 15

#define XIL_EXCEPTION_ID_LAST 15

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 63

Xilinx Hardware Abstraction Layer

Cache (xil_cache)

Header File
#include "xil_cache.h"

Common API

The functions listed in this sub-section can be executed on all processors.

void Xil_DCacheDisable()

void Xil_DCacheEnable()

void Xil_DCacheFlush()

void Xil_DCacheFlushRange(u32 Addr, u32 Len)

void Xil_DCacheInvalidate()

void Xil_DCacheInvalidateRange(u32 Addr, u32 Len)

void Xil_ICacheDisable()

void Xil_ICacheEnable()

void Xil_ICacheInvalidate()

void Xil_ICacheInvalidateRange(u32 Addr, u32 Len)

void Xil_DCacheDisable()

Disable the data cache.

void Xil_DCacheEnable()

On MicroBlaze processors, enable the data cache.

On PowerPC 405 processors, enable the data cache with region mask 0x80000001.

On PowerPC 440 processors, enable the data cache with region mask 0xC0000001.

void Xil_DCacheFlush()

Flush the entire data cache. If any cacheline is dirty (has been modified), it is written to system
memory. The entire data cache will be invalidated.

void Xil_DCacheFlushRange(u32 Addr, u32 Len)

Flush the data cache for the given address range. If any memory in the address range
(identified as Addr) has been modified (and are dirty), the modified cache memory will be
written back to system memory. The cacheline will also be invalidated.

Parameters:

Addr is the starting address of the range to be flushed.

Len is the length, in bytes, to be flushed.

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 64

Xilinx Hardware Abstraction Layer

void Xil_DCacheInvalidate()

Invalidate the entire data cache. If any cacheline is dirty (has been modified), the modified
contents are lost.

void Xil_DCacheInvalidateRange(u32 Addr, u32 Len)

Invalidate the data cache for the given address range. If the bytes specified by the address
(Addr) are cached by the data cache, the cacheline containing that byte is invalidated. If the
cacheline is modified (dirty), the modified contents are lost.

Parameters:

Addr is address of range to be invalidated.

Len is the length in bytes to be invalidated.

void Xil_ICacheDisable()

Disable the instruction cache.

void Xil_ICacheEnable()

On MicroBlaze processors, enable the instruction cache.

On PowerPC 405 processors, enable the instruction cache with region mask 0x80000001.

On PowerPC 440 processors, enable the instruction cache with region mask 0xC0000001.

void Xil_ICacheInvalidate()

Invalidate the entire instruction cache.

void Xil_ICacheInvalidateRange(u32 Addr, u32 Len)

Invalidate the instruction cache for the given address range.

Parameters:

Addr is address of range to be invalidated.

Len is the length in bytes to be invalidated.

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 65

Xilinx Hardware Abstraction Layer

PowerPC 405 Processor-Specific Functions and Macros

The following functions are specific to PowerPC 405 processors.

void Xil_DCacheEnableRegion(u32 Regions)

void Xil_ICacheEnableRegion(u32 Regions)

void Xil_DCacheEnableRegion(u32 Regions)

Enable the data cache region.

Parameters:

void Xil_ICacheEnableRegion(u32 Regions)

Enable the instruction cache.

Parameters:

Regions1

1. Regions to be marked as cacheable. Each bit in the regions variable stands
for 128 MB of memory.

Cached Address Range

0x80000000 [0, 0x7FFFFFF]

0x00000001 [0xF8000000, 0xFFFFFFFF]

0x80000001 [0, 0x7FFFFFF],[0xF8000000, 0xFFFFFFFF]

Regions1

1. Regions to be marked as cacheable. Each bit in the regions variable stands
for 128 MB of memory.

Cached Address Range

0x80000000 [0, 0x7FFFFFF]

0x00000001 [0xF8000000, 0xFFFFFFFF]

0x80000001 [0, 0x7FFFFFF],[0xF8000000, 0xFFFFFFFF]

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 66

Xilinx Hardware Abstraction Layer

PowerPC 440 Processor-Specific Functions and Macros

The following functions are specific to PowerPC 440 processors.

void Xil_DCacheEnableRegion(u32 Regions)

void Xil_ICacheEnableRegion(u32 Regions)

void Xil_DCacheEnableRegion(u32 Regions)

Enable the data cache.

Parameters:

Regions1

1. Regions of memory to be marked as cacheable. Each pair of adjacent bits
in the regions variable stands for 256 MB of memory. Setting either bit in the
pair will enable caching for the corresponding region.

Cached Address Range

0x4000_0000

[0, 0x0FFF_FFFF] 0x8000_0000

0xC000_0000

0x0000_0001

[0xF000_0000, 0xFFFF_FFFF] 0x0000_0002

0x0000_0003

0x4000_0001

[0, 0x0FFF_FFFF],[0xF000_0000, 0xFFFF_FFFF]

0x4000_0002

0x4000_0003

0x8000_0001

0x8000_0002

0x8000_0003

0xC000_0001

0xC000_0002

0xC000_0003

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 67

Xilinx Hardware Abstraction Layer

void Xil_ICacheEnableRegion(u32 Regions)

Enable the instruction cache.

Parameters:

Assert (xil_assert)

Header File
#include "xil_assert.h"

Typedef
typedef void(* Xil_AssertCallback)(char *Filename, int Line)

Common API

The functions listed in this sub-section can be executed on all processors.

void Xil_Assert(char *File, int Line)

void Xil_AssertSetCallback(xil_AssertCallback Routine)

#define Xil_AssertVoid(Expression)

#define Xil_AssertNonvoid(Expression)

#define Xil_AssertVoidAlways()

#define Xil_AssertNonvoidAlways()

Regions1

1. Regions of memory to be marked as cacheable. Each pair of adjacent bits
in the regions variable stands for 256 MB of memory. Setting either bit in the
pair will enable caching for the corresponding region.

Cached Address Range

0x4000_0000

[0, 0x0FFF_FFFF] 0x8000_0000

0xC000_0000

0x0000_0001

[0xF000_0000, 0xFFFF_FFFF] 0x0000_0002

0x0000_0003

0x4000_0001

[0, 0x0FFF_FFFF],[0xF000_0000, 0xFFFF_FFFF]

0x4000_0002

0x4000_0003

0x8000_0001

0x8000_0002

0x8000_0003

0xC000_0001

0xC000_0002

0xC000_0003

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 68

Xilinx Hardware Abstraction Layer

void Xil_Assert(char *File, int Line)

Implement assert. Currently, it calls a user-defined callback function if one has been set.
Then, it potentially enters an infinite loop depending on the value of the Xil_AssertWait
variable.

Parameters:

File is the name of the filename of the source.

Line is the line number within File.

void Xil_AssertSetCallback(xil_AssertCallback Routine)

Set up a callback function to be invoked when an assert occurs. If there was already a callback
installed, then it is replaced.

Parameters:

Routine is the callback to be invoked when an assert is taken.

#define Xil_AssertVoid(Expression)

This assert macro is to be used for functions that do not return anything (void). This can be
used in conjunction with the Xil_AssertWait boolean to accommodate tests so that asserts
that fail still allow execution to continue.

Parameters:

Expression is the expression to evaluate. If it evaluates to false, the assert occurs.

#define Xil_AssertNonvoid(Expression)

This assert macro is to be used for functions that return a value. This can be used in
conjunction with the Xil_AssertWait boolean to accommodate tests so that asserts that fail
still allow execution to continue.

Parameters:

Expression is the expression to evaluate. If it evaluates to false, the assert occurs.

Returns:

Returns 0 unless the Xil_AssertWait variable is true, in which case no return is made
and an infinite loop is entered.

#define Xil_AssertVoidAlways()

Always assert. This assert macro is to be used for functions that do not return anything (void).
Use for instances where an assert should always occur.

Returns:

Returns void unless the Xil_AssertWait variable is true, in which case no return is
made and an infinite loop is entered.

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 69

Xilinx Hardware Abstraction Layer

#define Xil_AssertNonvoidAlways()

Always assert. This assert macro is to be used for functions that return a value. Use for
instances where an assert should always occur.

Returns:

Returns void unless the xil_AssertWait variable is true, in which case no return is
made and an infinite loop is entered.

Extra Header File

The xil_hal.h header file is provided as a convenience. It includes all the header files related
to the Hardware Abstraction Layer. The contents of this header file are as follows:

#ifndef XIL_HAL_H
#define XIL_HAL_H

#include "xil_assert.h"
#include "xil_exception.h"
#include "xil_cache.h"
#include "xil_io.h"
#include "xil_types.h"

#endif

Test Memory (xil_testmem)

Description

A subset of the memory tests can be selected or all of the tests can be run in order. If there is
an error detected by a subtest, the test stops and the failure code is returned. Further tests are
not run even if all of the tests are selected.

Subtest Descriptions

XIL_TESTMEM_ALLMEMTESTS

Runs all of the subtests.

XIL_TESTMEM_INCREMENT

Incrementing Value test.

This test starts at XIL_TESTMEM_MEMTEST_INIT_VALUE and uses the incrementing value as
the test value for memory.

XIL_TESTMEM_WALKONES

Walking Ones test.

This test uses a walking “1“ as the test value for memory.

location 1 = 0x00000001
location 2 = 0x00000002
...

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 70

Xilinx Hardware Abstraction Layer

XIL_TESTMEM_WALKZEROS

Walking Zeros test.

This test uses the inverse value of the walking ones test as the test value for memory.

location 1 = 0xFFFFFFFE
location 2 = 0xFFFFFFFD
...

XIL_TESTMEM_INVERSEADDR:

Inverse Address test.

This test uses the inverse of the address of the location under test as the test value for memory.

XIL_TESTMEM_FIXEDPATTERN

Fixed Pattern test.

This test uses the provided patterns as the test value for memory.

If zero is provided as the pattern, the test uses '0xDEADBEEF’.

Caution! The tests are DESTRUCTIVE. Run them before any initialized memory spaces have been
set up. The address provided to the memory tests is not checked for validity, except for the case
where the value is NULL. It is possible to provide a code-space pointer for this test to start with and
ultimately destroy executable code causing random failures.

Note: This test is used for spaces where the address range of the region is smaller than the data width.
If the memory range is greater than 2 to the power of width, the patterns used in
XIL_TESTMEM_WALKONES and XIL_TESTMEM_WALKZEROS will repeat on a boundary of a power
of two, making it more difficult to detect addressing errors. The XIL_TESTMEM_INCREMENT and
XIL_TESTMEM_INVERSEADDR tests suffer the same problem. If you need to test large blocks of
memory, it is recommended that you break them up into smaller regions of memory to allow the test
patterns used not to repeat over the region tested.

Header File
#include "xil_testmem.h"

Common API

int Xil_Testmem8(u8 *Addr, u32 Words, u8 Pattern, u8 Subtest)

int Xil_Testmem16(u16 *Addr, u32 Words, u16 Pattern, u8 Subtest)

int Xil_Testmem32(u32 *Addr, u32 Words, u32 pattern, u8 Subtest)

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 71

Xilinx Hardware Abstraction Layer

int Xil_Testmem8(u8 *Addr, u32 Words, u8 Pattern, u8 Subtest)

Perform a destructive 8-bit wide memory test.

Parameters:

Addr is a pointer to the region of memory to be tested.

Words is the length of the block.

Pattern is the constant used for the constant pattern test, if 0, 0xDEADBEEF is used.

Subtest is the test selected. See xil_testmem.h for possible values.

Returns:

-1 is returned for a failure

0 is returned for a pass

Note: Used for spaces where the address range of the region is smaller than the data width. If the
memory range is greater than 2 to the power of width, the patterns used in XIL_TESTMEM_WALKONES
and XIL_TESTMEM_WALKZEROS will repeat on a boundary of a power of two making it more difficult to
detect addressing errors. The XIL_TESTMEM_INCREMENT and XIL_TESTMEM_INVERSEADDR tests
suffer the same problem. If you need to test large blocks of memory, it is recommended that you break
them up into smaller regions of memory to allow the test patterns used not to repeat over the region
tested.

int Xil_Testmem16(u16 *Addr, u32 Words, u16 Pattern, u8 Subtest)

Perform a destructive 16-bit wide memory test.

Parameters:

Addr is a pointer to the region of memory to be tested.

Words is the length of the block.

Pattern is the constant used for the constant pattern test, if 0, 0xDEADBEEF is used.

Subtest is the test selected. See xil_testmem.h for possible values.

Returns:

-1 is returned for a failure.

0 is returned for a pass.

Note: Used for spaces where the address range of the region is smaller than the data width. If the
memory range is greater than 2 to the power of width, the patterns used in XIL_TESTMEM_WALKONES
and XIL_TESTMEM_WALKZEROS will repeat on a boundary of a power of two making it more difficult to
detect addressing errors. The XIL_TESTMEM_INCREMENT and XIL_TESTMEM_INVERSEADDR tests
suffer the same problem. If you need to test large blocks of memory, it is recommended that you break
them up into smaller regions of memory to allow the test patterns used not to repeat over the region
tested.

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 72

Xilinx Hardware Abstraction Layer

int Xil_Testmem32(u32 *Addr, u32 Words, u32 pattern, u8 Subtest)

Perform a destructive 32-bit wide memory test.

Parameters:

Addr is a pointer to the region of memory to be tested.

Words is the length of the block.

Pattern is the constant used for the constant pattern test, if 0, 0xDEADBEEF is used.

Subtest is the test selected. See xil_testmem.h for possible values.

Returns:

0 is returned for a pass.

-1 is returned for a failure.

Note: This test is used for spaces where the address range of the region is smaller than the data width.
If the memory range is greater than 2 to the power of width, the patterns used in
XIL_TESTMEM_WALKONES and XIL_TESTMEM_WALKZEROS will repeat on a boundary of a power
of two, making it more difficult to detect addressing errors. The XIL_TESTMEM_INCREMENT and
XIL_TESTMEM_INVERSEADDR tests suffer the same problem. If you need to test large blocks of
memory, it is recommended that you break them up into smaller regions of memory to allow the test
patterns used not to repeat over the region tested.

Test Register IO (xil_testio)

This file contains utility functions to teach endian-related memory IO functions.

Header File
#include "xil_testio.h"

Common API

int Xil_TestIO8(u8 *Addr, int Len, u8 Value)

int Xil_TestIO16(u8 *Addr, int Len, u16 Value, int Kind, int Swap)

int Xil_TestIO32(u8 *Addr, int Len, u32 Value, int Kind, int Swap)

int Xil_TestIO8(u8 *Addr, int Len, u8 Value)

Perform a destructive 8-bit wide register IO test where the register is accessed using
Xil_Out8 and Xil_In8. the Xil_TestIO8 function compares the read and write values.

Parameters:

Addr is a pointer to the region of memory to be tested.

Len is the length of the block.

Value is the constant used for writing the memory.

Returns:

0 is returned for a pass.

-1 is returned for a failure.

int Xil_TestIO16(u8 *Addr, int Len, u16 Value, int Kind, int Swap)

Perform a destructive 16-bit wide register IO test. Each location is tested by sequentially writing
a 16-bit wide register, reading the register, and comparing value. This function tests three kinds

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 73

Xilinx Hardware Abstraction Layer

of register IO functions, normal register IO, little-endian register IO, and big-endian register IO.
When testing little/big-endian IO, the function performs the following sequence:
Xil_Out16LE/Xil_Out16BE, Xil_In16, Compare In-Out values, Xil_Out16,
Xil_In16LE/Xil_In16BE, Compare In-Out values. Whether to swap the read-in value before
comparing is controlled by the 5th argument.

Parameters:

Addr is a pointer to the region of memory to be tested.

Len is the length of the block.

Value is the constant used for writing the memory.

Kind is the test kind. Acceptable values are: XIL_TESTIO_DEFAULT,
XIL_TESTIO_LE, XIL_TESTIO_BE.

Swap indicates whether to byte swap the read-in value.

Returns:

0 is returned for a pass.

-1 is returned for a failure.

int Xil_TestIO32(u8 *Addr, int Len, u32 Value, int Kind, int Swap)

Perform a destructive 32-bit wide register IO test. Each location is tested by sequentially writing
a 32-bit wide register, reading the register, and comparing value. This function tests three kinds
of register IO functions, normal register IO, little-endian register IO, and big-endian register IO.
When testing little/big-endian IO, the function performs the following sequence:
Xil_Out32LE/Xil_Out32BE, Xil_In32, Compare In-Out values, Xil_Out32,
Xil_In32LE/Xil_In32BE, Compare In-Out values. Whether to swap the read-in value before
comparing is controlled by the 5th argument.

Parameters:

Addr is a pointer to the region of memory to be tested.

Len is the length of the block.

Value is the constant used for writing the memory.

Kind is the test kind. Acceptable values are: XIL_TESTIO_DEFAULT,
XIL_TESTIO_LE, XIL_TESTIO_BE.

Swap indicates whether to byte swap the read-in value.

Returns:

0 is returned for a pass.

-1 is returned for a failure.

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 74

Xilinx Hardware Abstraction Layer

Test Cache (xil_testcache)

This file contains utility functions to test the cache.

Header File
#include "xil_testcache.h"

Common API

int Xil_TestDCacheAll()

int Xil_TestDCacheRange()

int Xil_TestICacheAll()

int Xil_TestICacheRange()

int Xil_TestDCacheAll()

Tests the DCache related functions on all related API tests such as Xil_DCacheFlush and
Xil_DCacheInvalidate. This test function writes a constant value to the data array, flushes
the DCache, writes a new value, and then invalidates the DCache.

Returns:

0 is returned for a pass.

-1 is returned for a failure.

int Xil_TestDCacheRange()

Tests the DCache range-related functions on a range of related API tests such as
Xil_DCacheFlushRange and Xil_DCacheInvalidate_range. This test function writes a
constant value to the data array, flushes the range, writes a new value, and then invalidates the
corresponding range.

Returns:

0 is returned for a pass.

-1 is returned for a failure.

int Xil_TestICacheAll()

Perform xil_icache_invalidate().

Returns:

0 is returned for a pass. The function will hang if it fails.

int Xil_TestICacheRange()

Perform Xil_ICacheInvalidateRange() on a few function pointers.

Returns:

0 is returned for a pass. The function will hang if it fails.

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 75

Xilinx Hardware Abstraction Layer

Hardware Abstraction Layer Migration Tips

Mapping Header Files to HAL Header Files

You can map old header files to the new HAL header files as follows.

Mapping Functions to HAL Functions

You can map old functions to the new HAL functions as follows.

Table 9: HAL Header File Mapping

Area Old Header File New Header File

Register IO “xio.h“ “xil_io.h”

Exception “xexception_l.h”
“mb_interface.h” “xil_exception.h”

Cache “xcache.h”
“mb_interface.h” “xil_cache.h”

Interrupt “xexception_l.h”
“mb_interface.h” “xil_exception.h”

Typedef u8 u16 u32 “xbasic_types.h” “xil_types.h”

Typedef of Xuint32 Xfloat32 ... “xbasic_types.h” Deprecated. Do not use.

Assert “xbasic_types.h” “xil_assert.h”

Test Memory “xutil.h” “xil_testmem.h”

Test Register IO None “xil_testio.h”

Test Cache None “xil_testcache.h”

Table 10: I/O Function Mapping

Old xio New xil_io

#include “xio.h” #include “xil_io.h”

XIo_ln8 Xil_In8

XIo_Out8 Xil_Out8

XIo_In16 Xil_In16

XIo_Out16 Xil_Out16

XIo_In32 Xil_In32

XIo_Out32 Xil_Out32

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 76

Xilinx Hardware Abstraction Layer

Table 11: Exception Function Mapping

Old xexception New Xil_exception

#include “xexception_l.h”
#include “mb_interface.h” #include “xil_exception.h”

XExc_Init Xil_ExceptionInit

XExc_mEnableException
microblaze_enable_exceptions

For all processors: Xil_ExceptionEnable(void)
For PowerPC Only: Xil_ExceptionEnableMask(void)

XExc_registerHandler
microblaze_register_exception_handler Xil_ExceptionRegisterHandler

XExc_RemoveHandler Xil_ExceptionRemoveHandler

XExc_mDisableExceptions
microblaze_disable_exceptions Xil_ExceptionDisable

Table 12: Interrupt Function Mapping

Old Interrupt New Xil_interrupt

#include “xexception_l.h” #include “xil_exception.h”

XExc_RegisterHandler(XEXC_ID_NON_CRITI
CAL, handler)
microblaze_register_handler(handler)

Xil_ExceptionRegisterHandler(XIL_EXCEPTIO
N_ID_INT, handler)

Table 13: Cache Function Mapping

Old xcache New xil_cache

#include “Xcache_l.h”
#include “mb_interface.h” #include “xil_cache.h”

XCache_EnableDCache
microblaze_enable_dcache

For all processors: Xil_DCacheEnable(void)
For PowerPC only: Xil_DCacheEnableRegion(regions)

XCache_DisableDCache
microblaze_disable_dcache Xil_DCacheDisable

XCache_InvalidateDCacheRange
microblaze_invalidate_dcache_range Xil_DCacheInvalidateRange

microblaze_invalidate_dcache Xil_DCacheInvalidate

XCache_FlushDCacheRange
microblaze_flush_dcache_range Xil_DCacehFlushRange

microblaze_flush_dcache Xil_DCacheFlush

XCache_EnableICache
microblaze_enable_icache

For all processors: Xil_ICacheEnable(void)
For PowerPC only: Xil_ICacheEnableRegion(regions)

XCache_DisableICache
microblaze_disable_icache Xil_ICacheDisable

XCache_InvalidateICacheRange
microblaze_invalidate_icache_Range Xil_ICacheInvalidateRange

microblaze_invalidate_icache Xil_ICacheIncalidate

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 77

Program Profiling

Program
Profiling

The Standalone OS supports program profiling in conjunction with the GNU compiler tools and
the Xilinx Microprocessor Debugger (XMD). Profiling a program running on a hardware (board)
provides insight into program execution and identifies where execution time is spent. The
interaction of the program with memory and other peripherals can be more accurately
captured.

Program running on hardware target is profiled using software intrusive method. In this method,
the profiling software code is instrumented in the user program. The profiling software code is
a part of the libxil.a library and is generated when software intrusive profiling is enabled in
Standalone. For more details on the Profiling flow, refer to the “Profiling Embedded Designs”
section of the XPS Help.

When the -pg profile option is specified to the compiler (either mb-gcc or powerpc-eabi-
gcc), the profiling functions are linked with the application to profile automatically. The
generated executable file contains code to generate profile information.

Upon program execution, this instrumented profiling function stores information on the
hardware. XMD collects the profile information and generates the output file, which can be read
by the GNU gprof tool. The program functionality remains unchanged but it slows down the
execution.

Note: The profiling functions do not have any explicit application API. The library is linked due to profile
calls (_mcount) introduced by GCC for profiling.

Profiling Requirements
• Software intrusive profiling requires memory for storing profile information. You can use

any memory in the system for profiling.

• A timer is required for sampling instruction address. The xps_timer or opb_timer are
the supported profile timers. For PowerPC processor systems, the Programmable
Interrupt Timer (PIT) can be used as profile timer also.

Table 14: Assert Function Mapping

Old ASSERT New xil_assert

#include “xbasic_types.h” #include “xil_assert.h”

XAssert Xil_Assert

XASSERT_VOID Xil_AssertVoid

XASSERT_NONVOID Xil_AssertNonvoid

XASSERT_VOID_ALWAYS Xil_AssertVoidAlways

XASSERT_NONVOID_ALWAYS Xil_AssertNonvoidAlways

XAssertSetCallback Xil_AssertSetCallback

Table 15: Memory Test Function Mapping

Old XUtil_Memtest New xil_util_testmem

#include “xutil.h” #include “xil_util_testmem.h”

XUtil_MemoryTest32 Xil_Testmem32

XUtil_MemoryTest16 Xil_Testmem16

XUtil_MemoryTest8 Xil_Testmem8

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 78

Configuring the Standalone OS

Profiling Functions

_profile_init

Called before the application main() function. Initializes the profile timer routine and
registers timer handler accordingly, based on the timer used, connects to the processor, and
starts the timer. The Tcl routine of Standalone library determines the timer type and the
connection to processor, then generates the #defines in the profile_config.h file.

Refer to the “Microprocessor Library Definition (MLD)” chapter in the Embedded System Tools
Reference Manual, which is available in the installation directory. A link to this document is also
provided in “Additional Resources,” page 1.

_mcount

Called by the _mcount function, which is inserted at every function start by gcc. Records the
caller and callee information (Instruction address), which is used to generate call graph
information.

_profile_intr_handler

The interrupt handler for the profiling timer. The timer is set to sample the executing application
for PC values at fixed intervals and increment the Bin count. This function is used to generate
the histogram information.

Configuring the
Standalone OS

You can configure the Standalone OS using the Software Platform Settings dialog.

The following table lists the configurable parameters for the Standalone OS.

Table 16: Configuration Parameters

Parameter Type Default
Value Description

enable_sw_intrusive_
profiling

Bool false Enable software intrusive profiling
functionality. Select true to enable.

profile_timer Peripheral
Instance

none Specify the timer to use for profiling.

Select an xps_timer or opb_timer
from the list of displayed instances.

For a PowerPC system, select none
to use the built-in PIT timer.

stdin Peripheral
Instance

none Specify the STDIN peripheral from
the drop down list

stdout Peripheral
Instance

none Specify the STDOUT peripheral from
the drop down list.

predecode_fpu_exception Bool false This parameter is valid only for
MicroBlaze processor when FPU
exceptions are enabled in the
hardware. Setting this to true will
include extra code that decodes and
stores the faulting FP instruction
operands in global variables.

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 79

MicroBlaze MMU Example

MicroBlaze
MMU Example

The tlb_add function adds a single TLB entry. Here are the parameters:

static inline void tlb_add(int tlbindex, unsigned int tlbhi, unsigned int
tlblo)
{
 __asm__ __volatile__ ("mts rtlbx, %2 \n\t"
 "mts rtlbhi, %0 \n\t"
 "mts rtlblo, %1 \n\t"
 :: "r" (tlbhi),
 "r" (tlblo),
 "r" (tlbindex));

 tlbentry[tlbindex].tlbhi = tlbhi;
 tlbentry[tlbindex].tlblo = tlblo;
}

Given a base and high address, the tlb_add_entries function figures the minimum number page
mappings/TLB entries required to cover the area. This function uses recursion to figure the
entire range of mappings.

Parameters:

Returns: 1 on success and 0 on failure

static int tlb_add_entries (unsigned int base, unsigned int high, unsigned
int tlbaccess)
{
int sizeindex, tlbsizemask;
unsigned int tlbhi, tlblo;
unsigned int area_base, area_high, area_size;
static int tlbindex = 0;

// Align base and high to 1KB boundaries
base = base & 0xfffffc00;
high = (high >= 0xfffffc00) ? 0xffffffff : ((high + 0x400) & 0xfffffc00)
 - 1;

// Start trying to allocate pages from 16 MB granularity down to 1 KB
area_size = 0x1000000; // 16 MB
tlbsizemask = 0x380; // TLBHI[SIZE] = 7 (16 MB)

for (sizeindex = 7; sizeindex >= 0; sizeindex--) {
area_base = base & sizemask[sizeindex];
area_high = area_base + (area_size - 1);

tlbindex The index of the TLB entry to be updated.

tlbhi The value of the TLBHI field.

tlblo The value of the TLBLO field.

base The base address of the region of memory

high The high address of the region of memory

tlbaccess The type of access required for this region of memory. It can be a
logical or -ing of the following flags:

0 indicates read-only access
TLB_ACCESS_EXECUTABLE means the region is executable
TLB_ACCESS_WRITABLE means the region is writable

http://www.xilinx.com

UG 647 December 14, 2010 www.xilinx.com 80

MicroBlaze MMU Example

if ((area_base >= base) && (area_high <= high)) {

if (tlbindex < TLBSIZE) {

// TLBHI: TAG, SIZE, V
tlbhi = (base & sizemask[sizeindex]) | tlbsizemask | 0x40;
// TLBLO: RPN, EX, WR, W
tlblo = (base & sizemask[sizeindex]) | tlbaccess | 0x8;
tlb_add (tlbindex, tlbhi, tlblo);

tlbindex++;
} else {
// We only handle the 64 entry UTLB management for now
return 0;

}

// Recursively add entries for lower area
if (area_base > base)
if (!tlb_add_entries (base, area_base - 1, tlbaccess))
return 0;

// Recursively add entries for higher area
if (area_high < high)
if (!tlb_add_entries(area_high + 1, high, tlbaccess))
return 0;

break;

}
// else, we try the next lower page size
area_size = area_size >> 2;
tlbsizemask = tlbsizemask - 0x80;

}
return 1;

}

For a complete example, refer to
$XILINX_EDK/sw/lib/bsp/xilkernel_v5_00_a/src/src/arch/microblaze/mpu.c.

http://www.xilinx.com

UG708 June 23, 2010 www.xilinx.com 1

© 2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries.
All other trademarks are the property of their respective owners.

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development of
designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the Documentation
in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves the right, at its sole discretion,
to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors contained in the Documentation, or to
advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be
provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER WARRANTIES,
WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL
XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF
DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

Summary This document describes Xilkernel, a kernel for the Xilinx® embedded processors. The
document contains the following sections:

• “Overview”

• “Why Use a Kernel?”

• “Key Features”

• “Additional Resources”

• “Xilkernel Organization”

• “Building Xilkernel Applications”

• “Xilkernel Process Model”

• “Xilkernel Scheduling Model”

• “POSIX Interface”

• “Xilkernel Functions”

• “Xilkernel API”

• “Interrupt Handling”

• “Exception Handling”

• “Memory Protection”

• “Other Interfaces”

• “Hardware Requirements”

• “System Initialization”

• “Thread Safety and Re-Entrancy”

• “Restrictions”

• “Kernel Customization”

• “Debugging Xilkernel”

• “Memory Footprint”

• “Xilkernel File Organization”

• “Deprecated Features”

UG708 June 23, 2010

Xilkernel (v5.00.a)

http://www.xilinx.com

2 www.xilinx.com UG708 June 23, 2010

Overview

Overview Xilkernel is a small, robust, and modular kernel. It is highly integrated with the Platform Studio
framework and is a free software library that you receive with the Xilinx Embedded
Development Kit (EDK). Xilkernel:

• Allows a very high degree of customization, letting you tailor the kernel to an optimal level
both in terms of size and functionality.

• Supports the core features required in a lightweight embedded kernel, with a POSIX API.

• Works on MicroBlaze™, PowerPC® 405, and PowerPC 440 processors.

Xilkernel IPC services can be used to implement higher level services (such as networking,
video, and audio) and subsequently run applications using these services.

Why Use a
Kernel?

The following are a few of the deciding factors that can influence your choice of using a kernel
as the software platform for your next application project:

• Typical embedded control applications comprise various tasks that need to be performed
in a particular sequence or schedule. As the number of control tasks involved grows, it
becomes difficult to organize the sub-tasks manually, and to time-share the required work.
The responsiveness and the capability of such an application decreases dramatically
when the complexity is increased.

• Breaking down tasks as individual applications and implementing them on an operating
system (OS) is much more intuitive.

• A kernel enables the you to write code at an abstract level, instead of at a small, micro-
controller-level standalone code.

• Many common and legacy applications rely on OS services such as file systems, time
management, and so forth. Xilkernel is a thin library that provides these essential
services. Porting or using common and open source libraries (such as graphics or network
protocols) might require some form of these OS services also.

Key Features Xilkernel includes the following key features:

• High scalability into a given system through the inclusion or exclusion of functionality as
required.

• Complete kernel configuration and deployment within minutes from inside of Platform
Studio.

• Robustness of the kernel: system calls protected by parameter validity checks and proper
return of POSIX error codes.

• A POSIX API targeting embedded kernels, win core kernel features such as:

♦ Threads with round-robin or strict priority scheduling.

♦ Synchronization services: semaphores and mutex locks.

♦ IPC services: message queues and shared memory.

♦ Dynamic buffer pool memory allocation.

♦ Software timers.

♦ User-level interrupt handling.

• Static thread creation that startup with the kernel.

• System call interface to the kernel.

• Exception handling for the MicroBlaze processor.

• Memory protection using MicroBlaze Memory Management (Protection) Unit (MMU)
features when available.

http://www.xilinx.com

Additional Resources

UG708 June 23, 2010 www.xilinx.com 3

Additional
Resources

• Embedded Systems Tools Reference Manual:
http://www.xilinx.com/ise/embedded/edk_docs.htm

• Xilkernel-based example designs:
http://www.xilinx.com/ise/embedded/edk_examples.htm

Xilkernel
Organization

The kernel is highly modular in design. You can select and customize the kernel modules that
are needed for the application at hand. Customizing the kernel is discussed in detail in “Kernel
Customization,” page 44(1). The following figure shows the various modules of Xilkernel:

Building
Xilkernel
Applications

Xilkernel is organized in the form of a library of kernel functions. This leads to a simple model
of kernel linkage. To build Xilkernel, you must include Xilkernel in your software platform,
configure it appropriately, and run Libgen to generate the Xilkernel library. Your application
sources can be edited and developed separately, or as a software application project from
inside XPS. After you have developed your application, you must link with the Xilkernel library,
thus pulling in all the kernel functionality to build the final kernel image. The Xilkernel library is
generated as libxilkernel.a. Figure 2, page 4 shows this development flow.

Internally, Xilkernel also supports the much more powerful, traditional OS-like method of
linkage and separate executables. Conventional operating systems have the kernel image as a
separate file and each application that executes on the kernel as a separate file. However,
Xilinx recommends that you use the more simple and more elegant library linkage mode. This
mode is fully supported within Platform Studio and provides maximum ease of use. It is also the
preferred mode for debugging, downloading, and bootloading. The separate executable mode
is required only by those who have advanced requirements in the form of separate executables.
The separate executable mode and its caveats are documented in “Deprecated Features,”
page 52.

X-Ref Target - Figure 1

Figure 1: Xilkernel Modules

1. Some of these features might not be fully supported in a given release of Xilkernel.

System Call Handler
Interrupt and Exception

HandlerScheduler

Software
Timers

Message
Queue

Thread
Management

Shared
Memory

Semaphores

User level interrupt
handling

User Application

Dynamic Buffer
Management

Xilkernel

Xilkernel Modules

X10226

http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com/ise/embedded/edk_examples.htm
http://www.xilinx.com

4 www.xilinx.com UG708 June 23, 2010

Building Xilkernel Applications

The following are the steps for the kernel linkage mode of application development:

• Application source C files should include the file xmk.h as the first file among others. For
example, defining the includexmk.h flag makes available certain definitions and
declarations from the GNU include files that are required by Xilkernel and applications.

• Your application software project links with the library libxil.a. This library contains the
actual kernel functions generated. Your application links with this and forms the final
kernel and application image.

• Xilkernel is responsible for all first level interrupt and exception handling on both the
MicroBlaze and PowerPC processors. Therefore, you should not directly attempt to use
any of the methods of handling interrupts documented for standalone programs. Instead
refer to the section on interrupt handling for how to handle user level interrupts and
exceptions.

• You can control the memory map of the kernel by using the linker script feature of the final
software application project that links with the kernel. Automatic linker script generation
helps you here.

• Your application must provide a main() which is the starting point of execution for your
kernel image. Inside your main(), you can do any initialization and setup that you need
to do. The kernel remains unstarted and dormant. At the point where your application
setup is complete and you want the kernel to start, you must invoke
xilkernel_main() that starts off the kernel, enables interrupts, and transfers control
to your application processes, as configured. Some system-level features may need to be
enabled before invoking xilkernel_main(). These are typically machine-state
features such as cache enablement, hardware exception enablement which must be
“always ON” even when context switching from application to application. Make sure that
you setup such system state before invoking xilkernel_main(). Also, you must not
arbitrarily modify such system-state in your application threads. If a context switch occurs
when the system state is modified, it could lead to subsequent threads executing without
that state being enabled; consequently, you must lock out context switches and interrupts
before you modify such a state.

Note: Your linker script must be aware of the kernel’s requirements. For example, on PowerPC 405
systems, there is a.vectors section that contains all first level exception handling code. Your final linker
script must make sure that this section receives proper memory assignment.

X-Ref Target - Figure 2

Figure 2: Xilkernel Development Flow

Proc3Proc2Proc1

User Space

System Call Handler

Pure Separate Executable Mode Scenario

xilkernel.elf

Kernel Image

Proc6Proc5Proc4

User Space

System Call Handler

Kernel Bundled Executable Mode Scenario

libxilkernel.a

S
ys

te
m

 C
al

l
W

ra
pp

er
s

Kernel Image

X10128

Proc1

Proc2

Proc3

http://www.xilinx.com

Xilkernel Process Model

UG708 June 23, 2010 www.xilinx.com 5

Xilkernel
Process Model

The units of execution within Xilkernel are called process contexts. Scheduling is done at the
process context level. There is no concept of thread groups combining to form, what is
conventionally called a process. Instead, all the threads are peers and compete equally for
resources. The POSIX threads API is the primary user-visible interface to these process
contexts. There are a few other useful additional interfaces provided, that are not a part of
POSIX. The interfaces allow creating, destroying, and manipulating created application
threads. The actual interfaces are described in detail in “Xilkernel API,” page 7. Threads are
manipulated with thread identifiers. The underlying process context is identified with a process
identifier pid_t.

Xilkernel
Scheduling
Model

Xilkernel supports either priority-driven, preemptive scheduling with time slicing (SCHED_PRIO)
or simple round-robin scheduling (SCHED_RR). This is a global scheduling policy and cannot be
changed on a per-thread basis. This must be configured statically at kernel generation time.

In SCHED_RR, there is a single ready queue and each process context executes for a
configured time slice before yielding execution to the next process context in the queue.

In SCHED_PRIO there are as many ready queues as there are priority levels. Priority 0 is the
highest priority in the system and higher values mean lower priority.

As shown in the following figure, the process that is at the head of the highest priority ready
queue is always scheduled to execute next. Within the same priority level, scheduling is round-
robin and time-sliced. If a ready queue level is empty, it is skipped and the next ready queue
level examined for schedulable processes. Blocked processes are off their ready queues and in
their appropriate wait queues. The number of priority levels can be configured for
SCHED_PRIO.

For both the scheduling models, the length of the ready queue can also be configured. If there
are wait queues inside the kernel (in semaphores, message queues etc.), they are configured
as priority queues if scheduling mode is SCHED_PRIO. Otherwise, they are configured as
simple first-in-first-out (FIFO) queues.
X-Ref Target - Figure 3

Figure 3: Priority-Driven Scheduling

A0

1

2

13

14

15

B

Active

C D
(Blocked)

E

P
rio

rit
y

F

G
(Blocked)

X10132

http://www.xilinx.com

6 www.xilinx.com UG708 June 23, 2010

Xilkernel Scheduling Model

Each process context is in any of the following six states:

• PROC_NEW - A newly created process.

• PROC_READY - A process ready to execute.

• PROC_RUN - A process that is running.

• PROC_WAIT - A process that is blocked on a resource.

• PROC_DELAY - A process that is waiting for a timeout.

• PROC_TIMED_WAIT - A process that is blocked on a resource and has an associated
timeout.

When a process terminates, it enters a dead state called PROC_DEAD. The process context
state diagram is shown in the following figure.
X-Ref Target - Figure 4

Figure 4: Process Context States

ki
lle

d killed

ki
lle

d

kil
led

E
X

IT

A
C

T
IV

A
T

E
D

SCHEDULED OUT

SCHEDULED IN

TIMEOUT

BLOCKED

B
LO

C
K

E
D

U
N

B
LO

C
K

E
D

B
LO

C
K

E
D

U
N

B
LO

C
K

E
D

/T
IM

E
O

U
T

PROC_READY PROC_WAIT
PROC_TIMED

_WAIT
PROC_DELAY

PROC_RUN

PROC_DEAD

PROC_NEW

X10227

http://www.xilinx.com

POSIX Interface

UG708 June 23, 2010 www.xilinx.com 7

POSIX Interface Xilkernel provides a POSIX interface to the kernel. Not all the concepts and interfaces defined
by POSIX are available. A subset covering the most useful interfaces and concepts are
implemented. Xilkernel programs can run almost equivalently on your desktop OS, like Linux or
SunOS. This makes for easy application development, portability and legacy software support.
The programming model appeals to those who have worked on equivalent POSIX interfaces on
traditional operating systems. For those interfaces that have been provided, POSIX is
rigorously adhered to in almost all cases. For cases that do differ, the differences are clearly
specified. Refer to “Xilkernel API”, for the actual interfaces and their descriptions.

Xilkernel
Functions

Click an item below view function summaries and descriptions for:

• Thread Management

• Semaphores

• Message Queues

• Shared Memory

• Mutex Locks

• Dynamic Buffer Memory Management

• Software Timers

• Memory Protection Overview

Xilkernel API Thread Management

Xilkernel supports the basic POSIX threads API. Thread creation and manipulation is done in
standard POSIX notation. Threads are identified by a unique thread identifier. The thread
identifier is of type pthread_t. This thread identifier uniquely identifies a thread for an
operation. Threads created in the system have a kernel wrapper to which they return control to
when they terminate. Therefore a specific exit function is not required at the end of the thread’s
code.

Thread stack is allocated automatically on behalf of the thread from a pool of Block Starting
Symbol (BSS) memory that is statically allocated based upon the maximum number of system
threads. You can also assign a custom piece of memory as the stack for each thread to create
dynamically.

The entire thread module is optional and can be configured in or out as a part of the software
specification. See “Configuring Thread Management,” page 46 for more details on customizing
this module.

http://www.xilinx.com

8 www.xilinx.com UG708 June 23, 2010

Xilkernel API

Thread Management Function Summary

The following list is a linked summary of the thread management functions in Xilkernel. Click on
a function to view a detailed description.

int pthread_create(pthread_t thread, pthread_attr_t* att, void*(*start_func)(void*),void* param)

void pthread_exit(void *value_ptr)

int pthread_join(pthread_t thread, void **value_ptr)

int pthread_detach(pthread_t target)

int pthread_equal(pthread_t t1, pthread_t t2)

int pthread_getschedparam(pthread_t thread, int *policy, struct sched_param *param)

int pthread_setschedparam(pthread_t thread, int policy, const struct sched_param *param)

int pthread_attr_init(pthread_attr_t* attr)

int pthread_attr_destroy (pthread_attr_t* attr)

int pthread_attr_setdetachstate(pthread_attr_t* attr, int dstate)

int pthread_attr_getdetachstate(pthread_attr_t* attr, int *dstate)

int pthread_attr_setschedparam(pthread_attr_t* attr, struct sched_param *schedpar)

int pthread_attr_getschedparam(pthread_attr_t* attr, struct sched_param* schedpar)

int pthread_attr_setstack(const pthread_attr_t *attr, void *stackaddr, size_t stacksize)

int pthread_attr_getstack(const pthread_attr_t *attr, void **stackaddr, size_t *stacksize)

pid_t get_currentPID(void)

int kill(pid_tpid)

int process_status(pid_t pid, p_stat *ps)

int xmk_add_static_thread(void* (*start_routine)(void *), int sched_priority)

int yield(void)

http://www.xilinx.com

Xilkernel API

UG708 June 23, 2010 www.xilinx.com 9

Thread Management Function Descriptions

The following descriptions are the thread management interface identifiers.

int pthread_create(pthread_t thread, pthread_attr_t* att,
void*(*start_func)(void*),void* param)

void pthread_exit(void *value_ptr)

Parameters thread is the location at which to store the created thread’s identifier.

attr is the pointer to thread creation attributes structure.

start_func is the start address of the function from which the thread needs to
execute.

param is the pointer argument to the thread function.

Returns 0 and thread identifier of the created thread in *thread, on success.

-1 if thread refers to an invalid location.

EINVAL if attr refers to invalid attributes.

EAGAIN if resources unavailable to create the thread.

Description pthread_create() creates a new thread, with attributes specified by attr,
within a process. If attr is NULL, the default attributes are used. If the attributes
specified by attr are modified later, the thread’s attributes are not affected. Upon
successful completion, pthread_create() stores the ID of the created thread
in the location referenced by thread. The thread is created executing
start_routine with arg as its sole argument. If the start_routine
returns, the effect is as if there was an implicit call to pthread_exit() using the
return value of start_routine as the exit status. This is explained in the
pthread_exit description.

You can control various attributes of a thread during its creation. See the
pthread_attr routines for a description of the kinds of thread creation attributes
that you can control.

Includes xmk.h, pthread.h

Parameters value_ptr is a pointer to the return value of the thread.

Returns None.

Description The pthread_exit() function terminates the calling thread and makes the
value value_ptr available to any successful join with the terminating thread.
Thread termination releases process context resources including, but not limited
to, memory and attributes. An implicit call to pthread_exit() is made when
a thread returns from the creating start routine. The return value of the function
serves as the thread’s exit status. Therefore no explicit pthread_exit() is
required at the end of a thread.

Includes xmk.h, pthread.h

http://www.xilinx.com

10 www.xilinx.com UG708 June 23, 2010

Xilkernel API

int pthread_join(pthread_t thread, void **value_ptr)

pthread_t pthread_self(void)

int pthread_detach(pthread_t target)

int pthread_equal(pthread_t t1, pthread_t t2)

Parameters value_ptr is a pointer to the return value of the thread.

Returns 0 on success.
ESRCH if the target thread is not in a joinable state or is an invalid thread.
EINVAL if the target thread already has someone waiting to join with it.

Description The pthread_join() function suspends execution of the calling thread until
the pthread_t (target thread) terminates, unless the target thread has already
terminated.Upon return from a successful pthread_join() call with a non-
NULL value_ptr argument, the value passed to the pthread_exit()
function by the terminating thread is made available in the location referenced by
value_ptr. When a pthread_join() returns successfully, the target
thread has been terminated. The results of multiple simultaneous calls to
pthread_join() specifying the same target thread are that only one thread
succeeds and the others fail with EINVAL.

Note: No deadlock detection is provided.

Includes xmk.h, pthread.h

Parameters None.

Returns On success, returns thread identifier of current thread.
Error behavior not defined.

Description The pthread_self() function returns the thread ID of the calling thread.

Includes xmk.h, pthread.h

Parameters target is the target thread to detach.

Returns 0 on success.
ESRCH if target thread cannot be found.

Description The pthread_detach() function indicates to the implementation that
storage for the thread can be reclaimed when that thread terminates. If thread
has not terminated, pthread_detach() does not cause it to terminate. The
effect of multiple pthread_detach() calls on the same target thread is
unspecified.

Includes xmk.h, pthread.h

Parameters t1 and t2 are the two thread identifiers to compare.

Returns 1 if t1 and t2 refer to threads that are equal.
0 otherwise.

Description The pthread_equal() function returns a non-zero value if t1 and t2 are
equal; otherwise, zero is returned. If either t1 or t2 are not valid thread IDs, zero
is returned.

Includes xmk.h, pthread.h

http://www.xilinx.com

Xilkernel API

UG708 June 23, 2010 www.xilinx.com 11

int pthread_getschedparam(pthread_t thread, int *policy,
struct sched_param *param)

int pthread_setschedparam(pthread_t thread, int policy,
const struct sched_param *param)

Parameters thread is the identifier of the thread on which to perform the operation.
policy is a pointer to the location where the global scheduling policy is stored.
param is a pointer to the scheduling parameters structure.

Returns 0 on success.
ESRCH if the value specified by thread does not refer to an existing thread.
EINVAL if param or policy refer to invalid memory.

Description The pthread_getschedparam() function gets the scheduling policy and
parameters of an individual thread. For SCHED_RR there are no scheduling
parameters; consequently, this routine is not defined for SCHED_RR.
For SCHED_PRIO, the only required member of the sched_param structure is
the priority sched_priority. The returned priority value is the value specified
by the most recent pthread_getschedparam() or
pthread_create() call affecting the target thread.
It does not reflect any temporary adjustments to its priority as a result of any
priority inheritance or ceiling functions.
This routine is defined only if scheduling type is SCHED_PRIO.

Returns xmk.h, pthread.h

Parameters thread is the identifier of the thread on which to perform the operation.
policy is ignored.
param is a pointer to the scheduling parameters structure.

Returns 0 on success.
ESRCH if thread does not refer to a valid thread.
EINVAL if the scheduling parameters are invalid.

Description The pthread_setschedparam() function sets the scheduling policy and
parameters of individual threads to be retrieved. For SCHED_RR there are no
scheduling parameters; consequently this routine is not defined for SCHED_RR.
For SCHED_PRIO, the only required member of the sched_param structure is
the priority sched_priority. The priority value must be a valid value as
configured in the scheduling parameters of the kernel. The policy parameter is
ignored.

Note: This routine is defined only if scheduling type is SCHED_PRIO.

Includes xmk.h, pthread.h

http://www.xilinx.com

12 www.xilinx.com UG708 June 23, 2010

Xilkernel API

int pthread_attr_init(pthread_attr_t* attr)

int pthread_attr_destroy (pthread_attr_t* attr)

int pthread_attr_setdetachstate(pthread_attr_t* attr, int
dstate)

Parameters attr is a pointer to the attribute structure to be initialized.

Returns 0 on success.
1 on failure.
EINVAL on invalid attr parameter.

Description The pthread_attr_init() function initializes a thread attributes object
attr with the default value for all of the individual attributes used by a given
implementation. The function contents are defined in the sys/types.h
header.

Note: This function does not make a call to the kernel.

Includes xmk.h, pthread.h

Parameters attr is a pointer to the thread attributes that must be destroyed.

Returns 0 on success.
EINVAL on errors.

Description The pthread_attr_destroy() function destroys a thread attributes
object and sets attr to an implementation-defined invalid value.
Re-initialize a destroyed attr attributes object with
pthread_attr_init(); the results of otherwise referencing the object
after it is destroyed are undefined.

Note: This function does not make a call to the kernel.

Includes xmk.h, pthread.h

Parameters attr is the attribute structure on which the operation is to be performed.
dstate is the detachstate required.

Returns 0 on success.
EINVAL on invalid parameters.

Description The detachstate attribute controls whether the thread is created in a detached
state. If the thread is created detached, then when the thread exits, the thread’s
resources are detached without requiring a pthread_join() or a call
pthread_detach().The application can set detachstate to either
PTHREAD_CREATE_DETACHED or PTHREAD_CREATE_JOINABLE.

Note: This does not make a call into the kernel.

Includes xmk.h, pthread.h

http://www.xilinx.com

Xilkernel API

UG708 June 23, 2010 www.xilinx.com 13

int pthread_attr_getdetachstate(pthread_attr_t* attr, int
*dstate)

int pthread_attr_setschedparam(pthread_attr_t* attr,
struct sched_param *schedpar)

int pthread_attr_getschedparam(pthread_attr_t* attr,
struct sched_param* schedpar)

Parameters attr is the attribute structure on which the operation is to be performed.
dstate is the location in which to store the detachstate.

Returns 0 on success.
EINVAL on invalid parameters.

Description The implementation stores either PTHREAD_CREATE_DETACHED or
PTHREAD_CREATE_JOINABLE in dstate, if the value of detachstate was valid
in attr.

Note: This does not make a call into the kernel.

Includes xmk.h, pthread.h

Parameters attr is the attribute structure on which the operation is to be performed.
schedpar is the location of the structure that contains the scheduling
parameters.

Returns 0 on success.
EINVAL on invalid parameters.
ENOTSUP for invalid scheduling parameters.

Description The pthread_attr_setschedparam() function sets the scheduling
parameter attributes in the attr argument.
The contents of the sched_param structure are defined in the sched.h
header.

Note: This does not make a call into the kernel.

Includes xmk.h, pthread.h

Parameters attr is the attribute structure on which the operation is to be performed.
schedpar is the location at which to store the sched_param structure.

Returns 0 on success.
EINVAL on invalid parameters.

Description The pthread_attr_getschedparam() gets the scheduling parameter
attributes in the attr argument. The contents of the param structure are
defined in the sched.h header.

Note: This does not make a call to the kernel.

Includes xmk.h, pthread.h

http://www.xilinx.com

14 www.xilinx.com UG708 June 23, 2010

Xilkernel API

int pthread_attr_setstack(const pthread_attr_t *attr, void
*stackaddr, size_t stacksize)

int pthread_attr_getstack(const pthread_attr_t *attr, void
**stackaddr, size_t *stacksize)

pid_t get_currentPID(void)

Parameters attr is the attributes structure on which to perform the operation.
stackaddr is base address of the stack memory.
stacksize is the size of the memory block in bytes.

Returns 0 on success.
EINVAL if the attr param is invalid or if stackaddr is not aligned
appropriately.

Description The pthread_attr_setstack() function shall set the thread creation
stack attributes stackaddr and stacksize in the attr object.
The stack attributes specify the area of storage to be used for the created
thread's stack. The base (lowest addressable byte) of the storage is
stackaddr, and the size of the storage is stacksize bytes.
The stackaddr must be aligned appropriately according to the processor
EABI, to be used as a stack; for example, pthread_attr_setstack()
might fail with EINVAL if (stackaddr and 0x3) is not 0.
For PowerPC 405 processors, the alignment required is 8 bytes.

Note: For the MicroBlaze processor, the alignment required is 4 bytes.

Includes xmk.h, pthread.h

Parameters attr is the attributes structure on which to perform the operation.
stackaddr is the location at which to store the base address of the stack
memory.
stacksize is the location at which to store the size of the memory block in
bytes.

Returns 0 on success.
EINVAL on invalid attr.

Description The pthread_attr_getstack() function retrieves the thread creation
attributes related to stack of the specified attributes structure and stores it in
stackaddr and stacksize.

Includes xmk.h, pthread.h

Parameters None.

Returns The process identifier associated with the current thread or elf process.

Description Gets the underlying process identifier of the process context that is executing
currently. The process identifier is needed to perform certain operations like
kill() on both processes and threads.

Includes xmk.h, sys/process.h

http://www.xilinx.com

Xilkernel API

UG708 June 23, 2010 www.xilinx.com 15

int kill(pid_tpid)

int process_status(pid_t pid, p_stat *ps)

int xmk_add_static_thread(void* (*start_routine)(void *),
int sched_priority)

Parameters pid is the PID of the process.

Returns 0 on success.
-1 on failure.

Description Removes the process context specified by pid from the system. If pid refers to
the current executing process context, then it is equivalent to the current process
context terminating. A kill can be invoked on processes that are suspended on
wait queues or on a timeout. No indication is given to other processes that are
dependant on this process context.

Note: This function is defined only if CONFIG_KILL is true. This can be
configured in with the enhanced features category of the kernel.

Includes xmk.h, sys/process.h

Parameters pid is the PID of process.
ps is the buffer where the process status is returned.

Returns Process status in ps on success.
NULL in ps on failure.

Description Get the status of the process or thread, whose pid is pid. The status is returned
in structure p_stat which has the following fields:
• pid is the process ID.
• state is the current scheduling state of the process.
The contents of p_stat are defined in the sys/ktypes.h header.

Includes xmk.h, sys/process.h

Parameters start_routine is the thread start routine.
sched_priority is the priority of the thread when the kernel is configured for
priority scheduling.

Returns 0 on success and -1 on failure.

Description This function provides the ability to add a thread to the list of startup or static
threads that run on kernel start, via C code. This function must be used prior to
xilkernel_main() being invoked.

Includes xmk.h, sys/init.h

http://www.xilinx.com

16 www.xilinx.com UG708 June 23, 2010

Xilkernel API

int yield(void)

Semaphores

Xilkernel supports kernel-allocated POSIX semaphores that can be used for synchronization.
POSIX semaphores are counting semaphores that also count below zero (a negative value
indicates the number of processes blocked on the semaphore). Xilkernel also supports a few
interfaces for working with named semaphores. The number of semaphores allocated in the
kernel and the length of semaphore wait queues can be configured during system initialization.
Refer to “Configuring Semaphores,” page 47 for more details. The semaphore module is
optional and can be configured in or out during system initialization. The message queue
module, described later on in this document, uses semaphores. This module must be included
if you are to use message queues.

Semaphore Function Summary

The following list provides a linked summary of the semaphore functions in Xilkernel. You can
click on a function to go to the description.

Parameters None.

Returns None.

Description Yields the processor to the next process context that is ready to execute. The
current process is put back in the appropriate ready queue.

Note: This function is optional and included only if CONFIG_YIELD is defined.
This can be configured in with the enhanced features category of the kernel.

Includes xmk.h, sys/process.h

int sem_init(sem_t *sem, int pshared, unsigned value)

int sem_destroy(sem_t* sem)

int sem_getvalue(sem_t* sem, int* value)

int sem_wait(sem_t* sem)

int sem_trywait(sem_t* sem)

int sem_timedwait(sem_t* sem, unsigned_ms)

sem_t* sem_open(const char* name, int oflag,...)

int sem_close(sem_t* sem)

int sem_post(sem_t* sem)

int sem_unlink(const char* name)

http://www.xilinx.com

Xilkernel API

UG708 June 23, 2010 www.xilinx.com 17

Semaphore Function Descriptions

The following are descriptions of the Xilkernel semaphore functions:

int sem_init(sem_t *sem, int pshared, unsigned value)

int sem_destroy(sem_t* sem)

Parameters sem is the location at which to store the created semaphore’s identifier.
pshared indicates sharing status of the semaphore, between processes.
value is the initial count of the semaphore.

Note: pshared is unused currently.

Returns 0 on success.
-1 on failure and sets errno appropriately. The errno is set to ENOSPC if no
more semaphore resources are available in the system.

Description The sem_init() function initializes the unnamed semaphore referred to by
sem. The value of the initialized semaphore is value. Following a successful
call to sem_init(), the semaphore can be used in subsequent calls to
sem_wait(), sem_trywait(), sem_post(), and
sem_destroy(). This semaphore remains usable until the semaphore is
destroyed. Only sem itself can be used for performing synchronization. The
result of referring to copies of sem in calls to sem_wait(),
sem_trywait(), sem_post(), and sem_destroy() is undefined.
Attempting to initialize an already initialized semaphore results in undefined
behavior.

Includes xmk.h, semaphore.h

Parameters sem is the semaphore to be destroyed.

Returns 0 on success.
-1 on failure and sets errno appropriately. The errno can be set to:
• EINVAL if the semaphore identifier does not refer to a valid semaphore.
• EBUSY if the semaphore is currently locked, and processes are blocked on it.

Description The sem_destroy() function destroys the unnamed semaphore indicated
by sem. Only a semaphore that was created using sem_init() can be destroyed
using sem_destroy(); the effect of calling sem_destroy() with a
named semaphore is undefined. The effect of subsequent use of the semaphore
sem is undefined until sem is re-initialized by another call to sem_init().

Includes xmk.h, semaphore.h

http://www.xilinx.com

18 www.xilinx.com UG708 June 23, 2010

Xilkernel API

int sem_getvalue(sem_t* sem, int* value)

int sem_wait(sem_t* sem)

int sem_trywait(sem_t* sem)

Parameters sem is the semaphore identifier.
value is the location where the semaphore value is stored.

Returns 0 on success and value appropriately filled in.
-1 on failure and sets errno appropriately.The errno can be set to EINVAL if
the semaphore identifier refers to an invalid semaphore.

Description The sem_getvalue() function updates the location referenced by the sval
argument to have the value of the semaphore referenced by sem without
affecting the state of the semaphore. The updated value represents an actual
semaphore value that occurred at some unspecified time during the call, but it
need not be the actual value of the semaphore when it is returned to the calling
process.
If sem is locked, then the object to which sval points is set to a negative number
whose absolute value represents the number of processes waiting for the
semaphore at some unspecified time during the call.

Includes xmk.h, semaphore.h

Parameters sem is the semaphore identifier.

Returns 0 on success and the semaphore in a locked state.
-1 on failure and errno is set appropriately. The errno can be set to:
• EINVAL if the semaphore identifier is invalid.
• EIDRM if the semaphore was forcibly removed.

Description The sem_wait() function locks the semaphore referenced by sem by
performing a semaphore lock operation on that semaphore. If the semaphore
value is currently zero, then the calling thread does not return from the call to
sem_wait() until it either locks the semaphore or the semaphore is forcibly
destroyed.
Upon successful return, the state of the semaphore is locked and remains locked
until the sem_post() function is executed and returns successfully.

Note: When a process is unblocked within the sem_wait call, where it blocked
due to unavailability of the semaphore, the semaphore might have been destroyed
forcibly. In such a case, -1 is returned. Semaphores might be forcibly destroyed due
to destroying message queues that use semaphores internally. No deadlock
detection is provided.

Includes xmk.h, semaphore.h

Parameters sem is the semaphore identifier.

Returns 0 on success.
-1 on failure and errno is set appropriately. The errno can be set to:
• EINVAL if the semaphore identifier is invalid.
• EAGAIN if the semaphore could not be locked immediately.

Description The sem_trywait() function locks the semaphore referenced by sem only
if the semaphore is currently not locked; that is, if the semaphore value is
currently positive. Otherwise, it does not lock the semaphore and returns -1.

Includes xmk.h, semaphore.h

http://www.xilinx.com

Xilkernel API

UG708 June 23, 2010 www.xilinx.com 19

int sem_timedwait(sem_t* sem, unsigned_ms)
Parameters sem is the semaphore identifier.

Returns 0 on success and the semaphore in a locked state.
-1 on failure and errno is set appropriately. The errno can be set to:
• EINVAL - If the semaphore identifier does not refer to a valid semaphore.
• ETIMEDOUT - The semaphore could not be locked before the specified

timeout expired.
• EIDRM - If the semaphore was forcibly removed from the system.

Description The sem_timedwait() function locks the semaphore referenced by sem by
performing a semaphore lock operation on that semaphore. If the semaphore
value is currently zero, then the calling thread does not return from the call to
sem_timedwait() until one of the following conditions occurs:
• It locks the semaphore.
• The semaphore is forcibly destroyed.
• The timeout specified has elapsed.
Upon successful return, the state of the semaphore is locked and remains locked
until the sem_post() function is executed and returns successfully.

Note: When a process is unblocked within the sem_wait call, where it blocked
due to unavailability of the semaphore, the semaphore might have been destroyed
forcibly. In such a case, -1 is returned. Semaphores maybe forcibly destroyed due to
destroying message queues which internally use semaphores. No deadlock
detection is provided.

Note: This routine depends on software timers support being present in the kernel
and is defined only if CONFIG_TIME is true.

Note: This routine is slightly different from the POSIX equivalent. The POSIX
version specifies the timeout as absolute wall-clock time. Because there is no
concept of absolute time in Xilkernel, we use relative time specified in milliseconds.

Includes xmk.h, semaphore.h

http://www.xilinx.com

20 www.xilinx.com UG708 June 23, 2010

Xilkernel API

sem_t* sem_open(const char* name, int oflag,...)
Parameters name points to a string naming a semaphore object.

oflag is the flag that controls the semaphore creation.

Returns A pointer to the created/existing semaphore identifier.
SEM_FAILED on failures and when errno is set appropriately. The errno can
be set to:
• ENOSPC - If the system is out of resources to create a new semaphore (or

mapping).
• EEXIST - if O_EXCL has been requested and the named semaphore already

exists.
• EINVAL - if the parameters are invalid.

Description The sem_open() function establishes a connection between a named
semaphore and a process. Following a call to sem_open() with semaphore
name, the process can reference the semaphore associated with name using the
address returned from the call. This semaphore can be used in subsequent calls
to sem_wait(), sem_trywait(), sem_post(), and sem_close().
The semaphore remains usable by this process until the semaphore is closed by
a successful call to sem_close(). The oflag argument controls whether the
semaphore is created or merely accessed by the call to sem_open(). The bits
that can be set in oflag are:

♦ O_CREAT
Used to create a semaphore if it does not already exist. If O_CREAT is set
and the semaphore already exists, then O_CREAT has no effect, except as
noted under O_EXCL. Otherwise, sem_open() creates a named
semaphore. O_CREAT requires a third and a fourth argument: mode, which
is of type mode_t, and value, which is of type unsigned.

♦ O_EXCL
If O_EXCL and O_CREAT are set, sem_open() fails if the semaphore
name exists. The check for the existence of the semaphore and the
creation of the semaphore if it does not exist are atomic with respect to
other processes executing sem_open() with O_EXCL and O_CREAT
set. If O_EXCL is set and O_CREAT is not set, the effect is undefined.

Note: The mode argument is unused currently. This interface is optional and is
defined only if CONFIG_NAMED_SEMA is set to TRUE.

Note: If flags other than O_CREAT and O_EXCL are specified in the oflag
parameter, an error is signalled.

The semaphore is created with an initial value of value.
After the name semaphore has been created by sem_open() with the
O_CREAT flag, other processes can connect to the semaphore by calling
sem_open() with the same value of name.
If a process makes multiple successful calls to sem_open() with the same
value for name, the same semaphore address is returned for each such
successful call, assuming that there have been no calls to sem_unlink() for
this semaphore.

Includes xmk.h, semaphore.h

http://www.xilinx.com

Xilkernel API

UG708 June 23, 2010 www.xilinx.com 21

int sem_close(sem_t* sem)

int sem_post(sem_t* sem)

Parameters sem is the semaphore identifier.

Returns 0 on success.
-1 on failure and sets errno appropriately. The errno can be set to:
• EINVAL - If the semaphore identifier is invalid.
• ENOTSUP - If the semaphore is currently locked and/or processes are blocked

on the semaphore.

Description The sem_close() function indicates that the calling process is finished using
the named semaphore sem. The sem_close() function deallocates (that is,
make available for reuse by a subsequent sem_open() by this process) any
system resources allocated by the system for use by this process for this
semaphore. The effect of subsequent use of the semaphore indicated by sem by
this process is undefined. The name mapping for this named semaphore is also
destroyed. The call fails if the semaphore is currently locked.

Note: This interface is optional and is defined only if CONFIG_NAMED_SEMA is
true.

Includes xmk.h, semaphore.h

Parameters sem is the semaphore identifier.

Returns 0 on success.
-1 on failure and sets errno appropriately. The errno can be set to EINVAL if
the semaphore identifier is invalid.

Description The sem_post() function performs an unlock operation on the semaphore
referenced by the sem identifier.
If the semaphore value resulting from this operation is positive, then no threads
were blocked waiting for the semaphore to become unlocked and the semaphore
value is incremented.
If the value of the semaphore resulting from this operation is zero or negative,
then one of the threads blocked waiting for the semaphore is allowed to return
successfully from its call to sem_wait(). This is either the first thread on the
queue, if scheduling mode is SCHED_RR or, it is the highest priority thread in the
queue, if scheduling mode is SCHED_PRIO.

Note: If an unlink operation was requested on the semaphore, the post operation
performs an unlink when no more processes are waiting on the semaphore.

Includes xmk.h, semaphore.h

http://www.xilinx.com

22 www.xilinx.com UG708 June 23, 2010

Xilkernel API

int sem_unlink(const char* name)

Message Queues

Xilkernel supports kernel allocated X/Open System Interface (XSI) message queues. XSI is a
set of optional interfaces under POSIX. Message queues can be used as an IPC mechanism.
The message queues can take in arbitrary sized messages. However, buffer memory allocation
must be configured appropriately for the memory blocks required for the messages, as a part of
system buffer memory allocation initialization.The number of message queue structures
allocated in the kernel and the length of the message queues can be also be configured during
system initialization. The message queue module is optional and can be configured in/out.
Refer to “Configuring Message Queues,” page 47 for more details. This module depends on the
semaphore module and the dynamic buffer memory allocation module being present in the
system. There is also a larger, but more powerful message queue functionality that can be
configured if required. When the enhanced message queue interface is chosen, then malloc
and free are used to allocate and free space for the messages. Therefore, arbitrary sized
messages can be passed around without having to make sure that buffer memory allocation
APIs can handle requests for arbitrary size.

Note: When using the enhanced message queue feature, you must choose your global heap size
carefully, such that requests for heap memory from the message queue interfaces are satisfied without
errors. You must also be aware of thread-safety issues when using malloc(), free () in your own
code. You must disable interrupts and context switches before invoking the dynamic memory allocation
routines. You must follow the same rules when using any other library routines that may internally use
dynamic memory allocation.

Message Queue Function Summary

The following list provides a linked summary of the message queues in Xilkernel. You can click
on a function to go to the description.

Parameters name is the name that refers to the semaphore.

Returns 0 on success.
-1 on failure and errno is set appropriately. errno can be set to ENOENT - If an
entry for name cannot be located.

Description The sem_unlink() function removes the semaphore named by the string
name. If the semaphore named by name has processes blocked on it, then
sem_unlink() has no immediate effect on the state of the semaphore. The
destruction of the semaphore is postponed until all blocked and locking
processes relinquish the semaphore. Calls to sem_open() to recreate or
reconnect to the semaphore refer to a new semaphore after sem_unlink()
is called. The sem_unlink() call does not block until all references relinquish
the semaphore; it returns immediately.

Note: If an unlink operation had been requested on the semaphore, the unlink is
performed on a post operation that sees that no more processes waiting on the
semaphore. This interface is optional and is defined only if CONFIG_NAMED_SEMA
is true.

Includes xmk.h, semaphore.h

int msgget(key_t key, int msgflg)

int msgctl(int msqid, int cmd, struct msqid_ds* buf)

int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg)

ssize_t msgrcv(int msqid, void *msgp, size_t nbytes, long msgtyp, int msgflg)

http://www.xilinx.com

Xilkernel API

UG708 June 23, 2010 www.xilinx.com 23

Message Queue Function Descriptions

The Xilkernel message queue function descriptions are as follows:

int msgget(key_t key, int msgflg)
Parameters key is a unique identifier for referring to the message queue.

msgflg specifies the message queue creation options.

Returns A unique non-negative integer message queue identifier.
-1 on failure and sets errno appropriately; errno can be set to:

♦ EEXIST - If a message queue identifier exists for the argument key but
((msgflg and IPC_CREAT) and msgflg & IPC_EXCL) is non-zero.

♦ ENOENT - A message queue identifier does not exist for the argument key
and (msgflg & IPC_CREAT) is 0.

♦ ENOSPC - If the message queue resources are exhausted.

Description The msgget() function returns the message queue identifier associated with
the argument key. A message queue identifier, associated message queue, and
data structure (see sys/kmsg.h), are created for the argument key if the
argument key does not already have a message queue identifier associated with
it, and (msgflg and IPC_CREAT) is non-zero.
Upon creation, the data structure associated with the new message queue
identifier is initialized as follows:

♦ msg_qnum, msg_lspid, msg_lrpid are set equal to 0.
♦ msg_qbytes is set equal to the system limit (MSGQ_MAX_BYTES).

The msgget() function fails if a message queue identifier exists for the
argument key but ((msgflg and IPC_CREAT) and (msgflg & IPC_EXCL))
is non-zero.
IPC_PRIVATE is not supported. Also, messages in the message queue are not
required to be of the form shown below. There is no support for message type
based message receives and sends in this implementation.
The following is an example code snippet:

struct mymsg {

..long mtype; /* Message type. */

..char mtext[some_size]; /* Message text. */

..}

Includes xmk.h, sys/msg.h, sys/ipc.h

http://www.xilinx.com

24 www.xilinx.com UG708 June 23, 2010

Xilkernel API

int msgctl(int msqid, int cmd, struct msqid_ds* buf)
Parameters msqid is the message queue identifier.

cmd is the command.
buf is the data buffer

Returns 0 on success. Status is returned in buf for IPC_STAT.
-1 on failure and sets errno appropriately. The errno can be set to
EINVAL if any of the following conditions occur:
• msgid parameter refers to an invalid message queue.
• cmd is invalid.
• buf contains invalid parameters.

Description The msgctl() function provides message control operations as
specified by cmd. The values for cmd, and the message control
operations they specify, are:
• IPC_STAT - Places the current value of each member of the

msqid_ds data structure associated with msqid into the structure
pointed to by buf. The contents of this structure are defined in
sys/msg.h.

• IPC_SET - Unsupported.
• IPC_RMID - Removes the message queue identifier specified by

msqid from the system and destroys the message queue and
associated msqid_ds data structure. The remove operation
forcibly destroys the semaphores used internally and unblocks
processes that are blocked on the semaphore. It also deallocates
memory allocated for the messages in the queue.

Includes xmk.h, sys/msg.h, sys/ipc.h

http://www.xilinx.com

Xilkernel API

UG708 June 23, 2010 www.xilinx.com 25

int msgsnd(int msqid, const void *msgp, size_t msgsz, int
msgflg)

Parameters msqid is the message queue identifier.
msgp is a pointer to the message buffer.
msgsz is the size of the message.
msgflg is used to specify message send options.

Returns 0 on success.
-1 on failure and sets errno appropriately. The errno can be set to:
• EINVAL - The value of msgid is not a valid message queue

identifier.
• ENOSPC - The system could not allocate space for the message.
• EIDRM - The message queue was removed from the system

during the send operation.

Description The msgsnd() function sends a message to the queue associated
with the message queue identifier specified by msqid.
The argument msgflg specifies the action to be taken if the message
queue is full:
If (msgflg and IPC_NOWAIT) is non-zero, the message is not sent
and the calling thread returns immediately.
If (msgflg and IPC_NOWAIT) is 0, the calling thread suspends
execution until one of the following occurs:
• The condition responsible for the suspension no longer exists, in

which case the message is sent.
• The message queue identifier msqid is removed from the system;

when this occurs a -1 is returned.
The send fails if it is unable to allocate memory to store the message
inside the kernel. On a successful send operation, the msg_lspid
and msg_qnum members of the message queues are appropriately
set.

Includes xmk.h, sys/msg.h, sys/ipc.h

http://www.xilinx.com

26 www.xilinx.com UG708 June 23, 2010

Xilkernel API

ssize_t msgrcv(int msqid, void *msgp, size_t nbytes, long
msgtyp, int msgflg)

Parameters msqid is the message queue identifier.
msgp is the buffer where the received message is to be copied.
nbytes specifies the size of the message that the buffer can hold.
msgtyp is currently unsupported.
msgflg is used to control the message receive operation.

Returns On success, stores received message in user buffer and returns
number of bytes of data received.
-1 on failure and sets errno appropriately. The errno can be set to:
• EINVAL - If msgid is not a valid message queue identifier.
• EIDRM - If the message queue was removed from the system.
• ENOMSG - msgsz is smaller than the size of the message in the

queue.

Description The msgrcv() function reads a message from the queue
associated with the message queue identifier specified by msqid
and places it in the user-defined buffer pointed to by msgp.
The argument msgsz specifies the size in bytes of the message. The
received message is truncated to msgsz bytes if it is larger than
msgsz and (msgflg and MSG_NOERROR) is non-zero. The truncated
part of the message is lost and no indication of the truncation is given
to the calling process. If MSG_NOERROR is not specified and the
received message is larger than nbytes, then a -1 is returned
signalling error.
The argument msgflg specifies the action to be taken if a message
is not on the queue. These are as follows:
• If (msgflg and IPC_NOWAIT) is non-zero, the calling thread

returns immediately with a return value of -1.
• If (msgflg and IPC_NOWAIT) is 0, the calling thread suspends

execution until one of the following occurs:
♦ A message is placed on the queue
♦ The message queue identifier msqid is removed from the

system; when this occurs -1 is returned
Upon successful completion, the following actions are taken with
respect to the data structure associated with msqid:
• msg_qnum is decremented by 1.
• msg_lrpid is set equal to the process ID of the calling process.

Includes xmk.h, sys/msg.h, sys/ipc.h

http://www.xilinx.com

Xilkernel API

UG708 June 23, 2010 www.xilinx.com 27

Shared Memory

Xilkernel supports kernel-allocated XSI shared memory. XSI is the X/Open System Interface
which is a set of optional interfaces under POSIX. Shared memory is a common, low-latency
IPC mechanism. Shared memory blocks required during run-time must be identified and
specified during the system configuration. From this specification, buffer memory is allocated to
each shared memory region. Shared memory is currently not allocated dynamically at run-time.
This module is optional and can be configured in or out during system specification. Refer to
“Configuring Shared Memory,” page 48 for more details.

Shared Memory Function Summary

The following list provides a linked summary of the shared memory functions in Xilkernel. You
can click on a function to go to the description.

Shared Memory Function Descriptions

The Xilkernel shared memory interface is described below.

Caution! The memory buffers allocated by the shared memory API might not be aligned at word
boundaries. Therefore, structures should not be arbitrarily mapped to shared memory segments,
without checking if alignment requirements are met.

int shmget(key_t key, size_t size, int shmflg)

int shmctl(int shmid, int cmd, struct shmid_ds *buf)

void* shmat(int shmid, const void *shmaddr, int flag)

int shm_dt(void *shmaddr)

http://www.xilinx.com

28 www.xilinx.com UG708 June 23, 2010

Xilkernel API

int shmget(key_t key, size_t size, int shmflg)

int shmctl(int shmid, int cmd, struct shmid_ds *buf)

Parameters key is used to uniquely identify the shared memory region.
size is the requested size of the shared memory segment.
shmflg specifies segment creation options.

Returns Unique non-negative shared memory identifier on success.
-1 on failure and sets errno appropriately: errno can be set to:

♦ EEXIST - A shared memory identifier exists for the argument key but
(shmflg and IPC_CREAT) and (shmflg and IPC_EXCL) is non-
zero.

♦ ENOTSUP - Unsupported shmflg.
♦ ENOENT - A shared memory identifier does not exist for the argument

key and (shmflg and IPC_CREAT) is 0.

Description The shmget() function returns the shared memory identifier associated
with key. A shared memory identifier, associated data structure, and
shared memory segment of at least size bytes (see sys/shm.h) are
created for key if one of the following is true:

♦ key is equal to IPC_PRIVATE.
♦ key does not already have a shared memory identifier associated

with it and (shmflg and IPC_CREAT) is non-zero.
Upon creation, the data structure associated with the new shared memory
identifier shall be initialized.The value of shm_segsz is set equal to the
value of size. The values of shm_lpid, shm_nattch, shm_cpid are
all initialized appropriately. When the shared memory segment is created,
it is initialized with all zero values. At least one of the shared memory
segments available in the system must match exactly the requested size
for the call to succeed. Key IPC_PRIVATE is not supported.

Includes xmk.h, sys/shm.h, sys/ipc.h

Parameters shmid is the shared memory segment identifier.
cmd is the command to the control function.
buf is the buffer where the status is returned.

Returns 0 on success. Status is returned in buffer for IPC_STAT.
-1 on failure and sets errno appropriately: errno can be set to EINVAL
on the following conditions:
• if shmid refers to an invalid shared memory segment.
• if cmd or other params are invalid.

Description The shmctl() function provides a variety of shared memory control
operations as specified by cmd. The following values for cmd are available:
• IPC_STAT: places the current value of each member of the shmid_ds

data structure associated with shmid into the structure pointed to by buf.
The contents of the structure are defined in sys/shm.h.

• IPC_SET is not supported.
• IPC_RMID: removes the shared memory identifier specified by shmid

from the system and destroys the shared memory segment and
shmid_ds data structure associated with it. No notification is sent to
processes still attached to the segment.

Includes xmk.h, sys/shm.h, sys/ipc.h

http://www.xilinx.com

Xilkernel API

UG708 June 23, 2010 www.xilinx.com 29

void* shmat(int shmid, const void *shmaddr, int flag)

int shm_dt(void *shmaddr)

Mutex Locks

Xilkernel provides support for kernel allocated POSIX thread mutex locks. This synchronization
mechanism can be used alongside of the pthread_ API. The number of mutex locks and the
length of the mutex lock wait queue can be configured during system specification.
PTHREAD_MUTEX_DEFAULT and PTHREAD_MUTEX_RECURSIVE type mutex locks are
supported. This module is also optional and can be configured in or out during system
specification. Refer to “Configuring Shared Memory,” page 48 for more details.

Mutex Lock Function Summary

The following list provides a linked summary of the Mutex locks in Xilkernel. You can click on a
function to go to the description.

Parameters shmid is the shared memory segment identifier.
shmaddr is used to specify the location, to attach shared memory
segment. This is currently unused.
flag is used to specify shared memory (SHM) attach options.

Returns The start address of the shared memory segment on success.
NULL on failure and sets errno appropriately. errno can be set to
EINVAL if shmid refers to an invalid shared memory segment

Description shmat() increments the value of shm_nattch in the data structure
associated with the shared memory ID of the attached shared memory
segment and returns the start address of the segment. shm_lpid is also
appropriately set.

Note: shmaddr and flag arguments are not used.

Includes xmk.h, sys/shm.h, sys/ipc.h

Parameters shmaddr is the shared memory segment address that is to be detached.

Returns 0 on success.
-1 on failure and sets errno appropriately. The errno can be set to
EINVAL if shmaddr is not within any of the available shared memory
segments.

Description The shmdt() function detaches the shared memory segment located at
the address specified by shmaddr from the address space of the calling
process. The value of shm_nattch is also decremented. The memory
segment is not removed from the system and can be attached to again.

Includes xmk.h, sys/shm.h, sys/ipc.h

int pthread_mutex_init(pthread_mutex_t* mutex, const pthread_mutexattr_t* attr)

int pthread_mutex_destroy(pthread_mutex_t* mutex)

int pthread_mutex_lock(pthread_mutex_t* mutex)

int pthread_mutex_trylock(pthread_mutex_t* mutex)

int pthread_mutex_unlock(pthread_mutex_t* mutex)

int pthread_mutexattr_init(pthread_mutexattr_t* attr)

int pthread_mutexattr_destroy(pthread_mutexattr_t* attr)

int pthread_mutexattr_settype(pthread_mutexattr_t* attr, int type)

int pthread_mutexattr_gettype(pthread_mutexattr_t* attr, int *type)

http://www.xilinx.com

30 www.xilinx.com UG708 June 23, 2010

Xilkernel API

Mutex Lock Function Descriptions

The Mutex lock function descriptions are as follows:

int pthread_mutex_init(pthread_mutex_t* mutex, const
pthread_mutexattr_t* attr)

Note: The mutex locks allocated by Xilkernel follow the semantics of PTHREAD_MUTEX_DEFAULT
mutex locks by default. The following actions will result in undefined behavior:

♦ Attempting to recursively lock the mutex.

♦ Attempting to unlock the mutex if it was not locked by the calling thread.

♦ Attempting to unlock the mutex if it is not locked.

Parameters mutex is the location where the newly created mutex lock’s identifier is
to be stored.
attr is the mutex creation attributes structure.

Returns 0 on success and mutex identifier in *mutex.
EAGAIN if system is out of resources.

Description The pthread_mutex_init() function initializes the mutex
referenced by mutex with attributes specified by attr. If attr is NULL,
the default mutex attributes are used; the effect is the same as passing the
address of a default mutex attributes object.
Refer to the pthread_mutexattr_ routines, which are documented
starting on page 33 to determine what kind of mutex creation attributes can
be changed. Upon successful initialization, the state of the mutex becomes
initialized and unlocked. Only the mutex itself can be used for performing
synchronization. The result of referring to copies of mutex in calls to
pthread_mutex_lock(), pthread_mutex_trylock(),
pthread_mutex_unlock(), and pthread_mutex_destroy()
is undefined.
Attempting to initialize an already initialized mutex results in undefined
behavior. In cases where default mutex attributes are appropriate, the
macro PTHREAD_MUTEX_INITIALIZER can be used to initialize
mutexes that are statically allocated. The effect is equivalent to dynamic
initialization by a call to pthread_mutex_init() with parameter
attr specified as NULL, with the exception that no error checks are
performed.
For example:

static pthread_mutex_t foo_mutex =
PTHREAD_MUTEX_INITIALIZER;

Includes xmk.h, pthread.h

http://www.xilinx.com

Xilkernel API

UG708 June 23, 2010 www.xilinx.com 31

int pthread_mutex_destroy(pthread_mutex_t* mutex)

int pthread_mutex_lock(pthread_mutex_t* mutex)

Parameters mutex is the mutex identifier.

Returns 0 on success.
EINVAL if mutex refers to an invalid identifier.

Description The pthread_mutex_destroy() function destroys the mutex
object referenced by mutex; the mutex object becomes, in effect,
uninitialized. A destroyed mutex object can be reinitialized using
pthread_mutex_init(); the results of otherwise referencing
the object after it has been destroyed are undefined.

Note: Mutex lock/unlock state disregarded during destroy. No
consideration is given for waiting processes.

Includes xmk.h, pthread.h

Parameters mutex is the mutex identifier.

Returns 0 on success and mutex in a locked state.
EINVAL on invalid mutex reference.
-1 on unhandled errors.

Description The mutex object referenced by mutex is locked by the thread calling
pthread_mutex_lock(). If the mutex is already locked, the
calling thread blocks until the mutex becomes available.
If the mutex type is PTHREAD_MUTEX_RECURSIVE, then the mutex
maintains the concept of a lock count. When a thread successfully
acquires a mutex for the first time, the lock count is set to one. Every
time a thread relocks this mutex, the lock count is incremented by one.
Each time the thread unlocks the mutex, the lock count is
decremented by one.
If the mutex type is PTHREAD_MUTEX_DEFAULT, attempting to
recursively lock the mutex results in undefined behavior. If successful,
this operation returns with the mutex object referenced by mutex in the
locked state.

Includes xmk.h, pthread.h

http://www.xilinx.com

32 www.xilinx.com UG708 June 23, 2010

Xilkernel API

int pthread_mutex_trylock(pthread_mutex_t* mutex)

int pthread_mutex_unlock(pthread_mutex_t* mutex)

Parameters mutex is the mutex identifier.

Returns 0 on success.
mutex in a locked state.
EINVAL on invalid mutex reference,
EBUSY if mutex is already locked.
-1 on unhandled errors.

Description The mutex object referenced by mutex is locked by the thread calling
pthread_mutex_trlock(). If the mutex is already locked, the calling
thread returns immediately with EBUSY.
If the mutex type is PTHREAD_MUTEX_RECURSIVE, then the mutex maintains
the concept of a lock count.
When a thread successfully acquires a mutex for the first time, the lock count is
set to one.
Every time a thread relocks this mutex, the lock count is incremented by one.
Each time the thread unlocks the mutex, the lock count is decremented by one.
If the mutex type is PTHREAD_MUTEX_DEFAULT, attempting to recursively lock
the mutex results in undefined behavior. If successful, this operation returns with
the mutex object referenced by mutex in the locked state.

Includes xmk.h, pthread.h

Parameters mutex is the mutex identifier.

Returns 0 on success, EINVAL on invalid mutex reference.
-1 on undefined errors.

Description The pthread_mutex_unlock() function releases the mutex object
referenced by mutex. If there are threads blocked on the mutex object
referenced by mutex when pthread_mutex_unlock() is called,
resulting in the mutex becoming available, the scheduling policy
determines which thread will acquire the mutex. If it is SCHED_RR, then
the thread that is at the head of the mutex wait queue is unblocked and
allowed to lock the mutex.

If the mutex type is PTHREAD_MUTEX_RECURSIVE, the mutex
maintains the concept of a lock count. When the lock count reaches
zero, the mutex becomes available for other threads to acquire. If a
thread attempts to unlock a mutex that it has not locked or a mutex
which is unlocked, an error is returned.

If the mutex type is PTHREAD_MUTEX_DEFAULT the following actions
result in undefined behavior:

• Attempting to unlock the mutex if it was not locked by the calling
thread.

• Attempting to unlock the mutex if it is not locked.

If successful, this operation returns with the mutex object referenced by
mutex in the unlocked state.

Includes xmk.h, pthread.h

http://www.xilinx.com

Xilkernel API

UG708 June 23, 2010 www.xilinx.com 33

int pthread_mutexattr_init(pthread_mutexattr_t* attr)

int pthread_mutexattr_destroy(pthread_mutexattr_t* attr)

int pthread_mutexattr_settype(pthread_mutexattr_t* attr,
int type)

Parameters attr is the location of the attributes structure.

Returns 0 on success.
EINVAL if attr refers to an invalid location.

Description The pthread_mutexattr_init() function initializes a mutex
attributes object attr with the default value for all of the attributes defined
by the implementation.
Refer to sys/types.h for the contents of the pthread_mutexattr
structure.

Note: This routine does not involve a call into the kernel.

Includes xmk.h, pthread.h

Parameters attr is the location of the attributes structure.

Returns 0 on success.
EINVAL if attr refers to an invalid location.

Description The pthread_mutexattr_destroy() function destroys a mutex
attributes object; the object becomes, in effect, uninitialized.

Note: This routine does not involve a call into the kernel.

Includes xmk.h, pthread.h

Parameters attr is the location of the attributes structure.
type is the type to which to set the mutex.

Returns 0 on success.
EINVAL if attr refers to an invalid location or if type is an unsupported
type.

Description The pthread_mutexattr_settype() function sets the type of a
mutex in a mutex attributes structure to the specified type. Only
PTHREAD_MUTEX_DEFAULT and PTHREAD_MUTEX_RECURSIVE are
supported.

Note: This routine does not involve a call into the kernel.

Includes xmk.h, pthread.h

http://www.xilinx.com

34 www.xilinx.com UG708 June 23, 2010

Xilkernel API

int pthread_mutexattr_gettype(pthread_mutexattr_t* attr,
int *type)

Dynamic Buffer Memory Management

The kernel provides a buffer memory allocation scheme, which can be used by applications
that need dynamic memory allocation. These interfaces are alternatives to the standard C
memory allocation routines - malloc(), free() which are much slower and bigger,
though more powerful. The allocation routines hand off pieces of memory from a pool of
memory that the user passes to the buffer memory manager.

The buffer memory manager manages the pool of memory. You can dynamically create new
pools of memory. You can also statically specify the different memory blocks sizes and number
of such memory blocks required for your applications. Refer to “Configuring Buffer Memory
Allocation,” page 48 for more details. This method of buffer management is relatively simple,
small and a fast way of allocating memory. The following are the buffer memory allocation
interfaces. This module is optional and can be included during system initialization.

Dynamic Buffer Memory Management Function Summary

The following list provides a linked summary of the dynamic buffer memory management
functions in Xilkernel. You can click on a function to go to the description.

Caution! The buffer memory allocation API internally uses the memory pool handed down the by
the user to store a free-list in-place within the memory pool. As a result, only memory sizes greater
than or equal to 4 bytes long are supported by the buffer memory allocation APIs. Also, because there
is a free-list being built in-place within the memory pool, requests in which memory block sizes are not
multiples of 4 bytes cause unalignment at run time. If your software platform can handle unalignment
natively or through exceptions then this does not present an issue. The memory buffers allocated and
returned by the buffer memory allocation API might also not be aligned at word boundaries.
Therefore, your application should not arbitrarily map structures to memory allocated in this way
without first checking if alignment and padding requirements are met.

Parameters attr is the location of the attributes structure.
type is a pointer to the location at which to store the mutex.

Returns 0 on success.
EINVAL if attr refers to an invalid location.

Description The pthread_mutexattr_gettype() function gets the type of a
mutex in a mutex attributes structure and stores it in the location pointed to
by type.

Includes xmk.h, pthread.h

int bufcreate(membuf_t *mbuf, void *memptr, int nblks, size_t blksiz)

int bufdestroy(membuf_t mbuf)

void* bufmalloc(membuf_t mbuf, size_t siz)

void buffree(membuf_t mbuf, void* mem)

http://www.xilinx.com

Xilkernel API

UG708 June 23, 2010 www.xilinx.com 35

Dynamic Buffer Memory Management Function Descriptions

The dynamic buffer memory management function descriptions are as follows:

int bufcreate(membuf_t *mbuf, void *memptr, int nblks,
size_t blksiz)

int bufdestroy(membuf_t mbuf)

void* bufmalloc(membuf_t mbuf, size_t siz)

Parameters mbuf is location at which to store the identifier of the memory pool created.
memptr is the pool of memory to use.
nblks is the number of memory blocks that this pool should support.
blksiz is the size of each memory block in bytes.

Returns 0 on success and stores the identifier of the created memory pool in the
location pointed to by mbuf.
-1 on errors.

Description Creates a memory pool out of the memory block specified in memptr.
nblks number of chunks of memory are defined within the pool, each of
size blksiz. Therefore, memptr must point to at least (nblks *
blksiz) bytes of memory. blksiz must be greater than or equal to 4.

Includes xmk.h, sys/bufmalloc.h

Parameters mbuf is the identifier of the memory pool to destroy.

Returns 0 on success.
-1 on errors.

Description This routine destroys the memory pool identified by mbuf.

Includes xmk.h, sys/bufmalloc.h

Parameters mbuf is the identifier of the memory pool from which to allocate memory.
size is the size of memory block requested.

Returns The start address of the memory block on success.
NULL on failure and sets errno appropriately: errno is set to:
• EINVAL if mbuf refers to an invalid memory buffer.
• EAGAIN if the request cannot be satisfied.

Description Allocate a chunk of memory from the memory pool specified by mbuf. If
mbuf is MEMBUF_ANY, then all available memory pools are searched for
the request and the first pool that has a free block of size siz, is used and
allocated from.

Includes xmk.h, sys/bufmalloc.h

http://www.xilinx.com

36 www.xilinx.com UG708 June 23, 2010

Xilkernel API

void buffree(membuf_t mbuf, void* mem)

Software Timers

Xilkernel provides software timer functionality, for time relating processing. This module is
optional and can be configured in or out. Refer to “Configuring Software Timers,” page 49 for
more information on customizing this module.

The following list provides a linked summary of the interfaces are available with the software
timers module. You can click on a function to go to the description.

unsigned int xget_clock_ticks()

time_t time(time_t *timer)

Parameters mbuf is the identifier of the memory pool.
mem is the address of the memory block.

Returns None.

Description Frees the memory allocated by a corresponding call to bufmalloc.
If mbuf is MEMBUF_ANY, returns the memory to the pool that satisfied this
request.
If not, returns the memory to specified pool.
Behavior is undefined if arbitrary values are specified for mem.

Includes xmk.h, sys/bufmalloc.h

unsigned int xget_clock_ticks()

Parameters None.

Returns Number of kernel ticks elapsed since the kernel was started.

Description A single tick is counted, every time the kernel timer delivers an interrupt.
This is stored in a 32-bit integer and eventually overflows. The call to
xget_clock_ticks() returns this tick information, without conveying
the overflows that have occurred.

Includes xmk.h, sys/timer.h

Parameters timer points to the memory location in which to store the requested time
information.

Returns Number of seconds elapsed since the kernel was started.

Description The routine time elapsed since kernel start in units of seconds. This is also
subject to overflow.

Includes xmk.h, sys/timer.h

http://www.xilinx.com

Interrupt Handling

UG708 June 23, 2010 www.xilinx.com 37

unsigned sleep(unsigned int ms)

Interrupt
Handling

Xilkernel abstracts away primary interrupt handling requirements from the user application.
Even though the kernel is functional without any interrupts, the system only makes sense when
it is driven by at least one timer interrupt for scheduling. The kernel handles the main timer
interrupt, using it as the kernel tick to perform scheduling. The timer interrupt is initialized and
tied to the vectoring code during system initialization. This kernel pulse provides software timer
facilities and time-related routines also. Additionally, Xilkernel can handle multiple interrupts
when connected through an interrupt controller, and works with the xps_intc interrupt
controller core. The following figure shows a basic interrupt service in Xilkernel.

The interrupt handling scenario is illustrated in this diagram. Upon an interrupt:

• The context of the currently executing process is saved into the context save area.

• Interrupts are disabled from this point in time onwards, until they are enabled at the end of
interrupt handling.

• This alleviates the stack burden of the process, as the execution within interrupt, does not
use the user application stack.

• This interrupt context can be thought of as a special kernel thread that executes interrupt
handlers in order. This thread starts to use its own separate execution stack space.

• The separate kernel execution stack is at-least 1 KB in size to enable it to handle deep
levels of nesting within interrupt handlers. This kernel stack is also automatically
configured to use the pthread stack size chosen by the user, if it is larger than 1 KB. If you
foresee a large stack usage within your interrupt handlers, you will need to specify a large
value for pthread_stack_size.

Parameters ms is the number of milliseconds to sleep.

Returns Number of seconds between sleeps.
0 on complete success.

Description This routine causes the invoking process to enter a sleep state for the
specified number of milliseconds.

Includes xmk.h, sys/timer.h

X-Ref Target - Figure 5

Figure 5: Basic Interrupt Service in Xilkernel

IE = 1

IE = 1

IE = 0 -Save complete context;
-Switch to kernel IRQ stack;
-Execute next level of
 interrupt handling.
-If rescheduling is required,
 invoke the scheduler.
-Restore context of the
 currently selected process.

Executing process
gets interrupted

X10229

IE = 1

Resumed process
proceeds

Execute user level
interrupts if any

http://www.xilinx.com

38 www.xilinx.com UG708 June 23, 2010

Interrupt Handling

This ends the first level of interrupt handling by the kernel. At this point, the kernel transfers
control to the second level interrupt handler. This is the main interrupt handler routine of the
interrupt controller. From this point, the handler for the interrupt controller invokes the user-
specified interrupt handlers for the various interrupting peripherals.

In MicroBlaze processor kernels, if the system timer is connected through the interrupt
controller, then the kernel invisibly handles the main timer interrupt (kernel tick), by registering
itself as the handler for that interrupt.

Interrupt handlers can perform any kind of required interrupt handling action, including making
system calls. However, the handlers must never invoke blocking system calls, or the entire
kernel is blocked and the system comes to a suspended state. Use handlers wisely to do
minimum processing upon interrupts.

Caution! User level interrupt handlers must not make blocking system calls. System calls made, if
any, should be non-blocking.

After the user-level interrupt handlers are serviced, the first-level interrupt handler in the kernel
gets control again. It determines if the preceding interrupt handling caused a rescheduling
requirement in the kernel.

If there is such a requirement, it invokes the kernel scheduler and performs the appropriate
rescheduling. After the scheduler has determined the next process to execute, the context of
the new process is restored and interrupts are enabled again.

Note: Currently, Xilkernel only supports an interrupt controller tied to the external interrupt pin of the
PowerPC 405 processor. It does not support interrupt controllers tied to the critical input pin of the
processor.

When Xilkernel is used with multiple-interrupts in the system, the Xilkernel user-level interrupt
handling API becomes available. The following subsection lists user-level interrupt handling
APIs.

User-Level Interrupt Handling APIs

User-Level Interrupt Handling APIs Function Summary

The following list provides a linked summary of the user-level interrupt handling APIs in
Xilkernel. You can click on a function to go to the description.

unsigned int register_int_handler(int_id_t id, void *handler)(void*), void *callback)

void unregister_int_handler(int_id_t id)

void enable_interrupt(int_id_t id)

void disable_interrupt(int_id_t id)

void acknowledge_interrupt(int_id_t id)

http://www.xilinx.com

Interrupt Handling

UG708 June 23, 2010 www.xilinx.com 39

User-Level Interrupt Handling APIs Function Descriptions

The interrupt handlings API descriptions are as follows:

unsigned int register_int_handler(int_id_t id, void
handler)(void), void *callback)

void unregister_int_handler(int_id_t id)

void enable_interrupt(int_id_t id)

Parameters id is the zero-based numeric id of the interrupt.
handler is the user-level handler.
callback is a callback value that can be delivered to the user-level
handler.

Returns XST_SUCCESS on success.
error codes defined in xstatus.h.

Description The register_int_handler() function registers the specified user
level interrupt handler as the handler for a specified interrupt. The user
level routine is invoked asynchronously upon being serviced by an interrupt
controller in the system. The routine returns an error on MicroBlaze
processor systems if id is the identifier for the system timer interrupt.
PowerPC processor systems have a dedicated hardware timer interrupt
that exists separately from the other interrupts in the system. Therefore,
this check is not performed for a PowerPC processor system.

Includes xmk.h, sys/intr.h

Parameters id is the zero-based numeric id of the interrupt.

Returns None.

Description The unregister_int_handler() function unregisters the
registered user-level interrupt handler as the handler for the specified
interrupt. The routine does nothing and fails silently on MicroBlaze
processor systems if id is the identifier for the system timer interrupt.

Includes xmk.h, sys/intr.h

Parameters id is the zero-based numeric id of the interrupt.

Returns None.

Description The enable_interrupt() function enables the specified interrupt in
the interrupt controller. The routine does nothing and fails silently on
MicroBlaze processor systems, if id is the identifier for the system timer
interrupt.

Includes xmk.h, sys/intr.h

http://www.xilinx.com

40 www.xilinx.com UG708 June 23, 2010

Exception Handling

void disable_interrupt(int_id_t id)

void acknowledge_interrupt(int_id_t id)

Exception
Handling

Xilkernel handles exceptions for the MicroBlaze processor, treating them as faulting conditions
by the executing processes/threads. Xilkernel kills the faulting process and reports using a
message to the console (if verbose mode is on) as to the nature of the exception. You cannot
register your own handlers for these exceptions and Xilkernel handles them all natively.

Xilkernel does not handle exceptions for the PowerPC processor. The exception handling API
and model that is available for the Standalone platform is available for Xilkernel. You might want
to register handlers or set breakpoints (during debug) for exceptions that are of interest to you.

Memory
Protection

Memory protection is an extremely useful feature that can increase the robustness, reliability,
and fault tolerance of your Xilkernel-based application. Memory protection requires support
from the hardware. Xilkernel is designed to make use of the MicroBlaze Memory Management
(Protection) Unit (MMU) features when available. This allows you to build fail-safe applications
that each run within the valid sandbox of the system, as determined by the executable file and
available I/O devices.

Note: Full virtual memory management is not supported by Xilkernel. Even when a full MMU is available
on a MicroBlaze processor, only transparent memory translations are used, and there is no concept of
demand paging.

Note: Xilkernel does not support the Memory Protection feature on PowerPC processors.

Parameters id is the zero-based numeric id of the interrupt.

Returns None.

Description The disable_interrupt() function disables the specified interrupt
in the interrupt controller. The routine does nothing and fails silently on
MicroBlaze processor systems if id is the identifier for the system timer
interrupt.

Includes xmk.h, sys/intr.h

Parameters id is the zero-based numeric identifier of the interrupt.

Returns None.

Description The acknowledge_interrupt() function acknowledges handling
the specified interrupt to the interrupt controller. The routine does nothing
and fails silently on MicroBlaze processor systems if id is the identifier for
the system timer interrupt.

Includes xmk.h, sys/intr.h

http://www.xilinx.com

Memory Protection

UG708 June 23, 2010 www.xilinx.com 41

Memory Protection Overview

When the MicroBlaze parameter C_USE_MMU is set to >=2, the kernel configures in memory
protection during startup automatically.

Note: To disable the memory protection in the kernel, add the compiler flag
-D XILKERNEL_MB_MPU_DISABLE, to your library and application build.

The kernel identifies three types of protection violations:

1. Code violation — occurs when a thread tries to execute from memory that is not defined
to contain program instructions.

Note: Because Xilkernel is a single executable, all threads have access to all program instructions
and the kernel cannot trap violations where a thread starts executing the kernel code directly.

2. Data access violation — Occurs when a thread tries to read or write data to or from
memory that is not defined to be a part of the program data space. Similarly, read-only data
segments can be protected by write access by all threads.

Note: Because Xilkernel is a single executable, all threads have equal access to all data as well as
the kernel data structures. The kernel cannot trap violations where a thread accesses data that it is
not designated to handle.

3. I / O violation — occurs when a thread tries to read or write from memory-mapped
peripheral I / O space that is not present in the system.

Xilkernel attempts to determine these three conceptual protection areas in your program and
system during system build and kernel boot time automatically. The kernel attempts to identify
code and data labels that demarcate code and data sections in your executable ELF file. These
labels are typically provided by linker scripts.

For example, MicroBlaze linker scripts use the labels _ftext and _etext to indicate the
beginning and the end of the .text section respectively.

The following table summarizes the logical sections that must be present in the linker script, the
requirements on the alignment of each section, and the demarcating labels.

Each section must be aligned at 1 KB boundary and clearly demarcated by the specified labels.
Otherwise, Xilkernel will ignore the missing logical sections with no error or warning message.

Caution! This behavior could manifest itself in your software not working as expected, because
MPU translation entries will be missing for important ELF sections and the processor will treat valid
requests as invalid.

Table 1: Linker Script Logical Sections

Section Start Label End Label Description

.text _ftext _etext Executable instruction
sections

.data _fdata _edata Read-write data
sections including
small data sections

.rodata _frodata _erodata Read only data
sections including
small data sections

.stack _stack_end _stack Kernel stack with 1 KB
guard page above and
below

stack guard
page (top)

_fstack_guard_top _estack_guard_top Top kernel stack guard
page (1 KB)

stack guard
page (bottom)

_fstack_guard_bottom _estack_guard_bottom Bottom kernel stack
guard page (1 KB)

http://www.xilinx.com

42 www.xilinx.com UG708 June 23, 2010

Memory Protection

Note: Each section typically has a specific type of data that is expected to be present. If the logic of the
data inserted into the sections by your linker script is inappropriate, then the protection offered by the
kernel could be incorrect or the level of protection could be diluted.

I/O ranges are automatically enumerated by the library generation tools and provided as a data
structure to the kernel. These peripheral I/O ranges will not include read/write memory areas
because the access controls for memory are determined automatically from the ELF file.
During kernel boot, the enumerated I/O ranges are marked as readable and writable by the
threads. Accesses outside of the defined I/O ranges causes a protection fault.

User-specified Protection

In addition to the automatic inference and protection region setup done by the kernel, you can
provide your own protection regions by providing the data structures as shown in the following
example. If this feature is not required, these data structures can be removed from the
application code.

#include <mpu.h>

int user_io_nranges = 2;
xilkernel_io_range_t user_io_range[1] = {{0x25004000, 0x25004fff,
MPU_PROT_READWRITE},

 {0x44000000, 0x44001fff, MPU_PROT_NONE}};

The xilkernel_io_ranges_t type is defined as follows:

typedef struct xilkernel_io_range_s {
 unsigned int baseaddr;
 unsigned int highaddr;
 unsigned int flags;
} xilkernel_io_range_t;

The following table lists the valid field flags that identify the user-specified access protection
options:

Fixed Unified Translation Look-aside Buffer (TLB) Support on the
MicroBlaze Processor

The MicroBlaze processor has a fixed 64-entry Unified Translation Look-aside Buffer (TLB).
Xilkernel can support up to this maximum number of TLBs only. If the maximum TLBs to enable
protection for a given region are exceeded, Xilkernel will report an error during Microprocessor
Unit (MPU) initialization and proceed to boot the kernel without memory protection. There is no
support for dynamically swapping TLB management to provide an arbitrary number of
protection regions.

Table 2: Access Protection Field Flags

Field Flag Description

MPU_PROT_EXEC Executable program instructions
(no read or write permissions)

MPU_PROT_READWRITE Readable and writable data sections
(no execute permissions)

MPU_PROT_READ Read-only data sections
(no write/execute permissions)

MPU_PROT_NONE (Currently no page can be protected from all three accesses
at the same time. This field flag is equivalent to
MPU_PROT_READ)

http://www.xilinx.com

Other Interfaces

UG708 June 23, 2010 www.xilinx.com 43

Other Interfaces Internally, Xilkernel, depends on the Standalone platform; consequently, the interfaces that the
Standalone presents are inherited by Xilkernel. Refer to the “Standalone” document for
information on available interfaces. For example, to add your own custom handlers for the
various exceptions that PowerPC 405 processor supports, you would use the exception
handling interface provided by the Standalone for the PowerPC 405 processor.

Hardware
Requirements

Xilkernel has been designed to work with the EDK hardware and software flow. It is completely
integrated with the software platform configuration and automatic library generation
mechanism. As a result, a software platform based on Xilkernel can be configured and built in
a matter of minutes. However, some services in the kernel require support from the hardware.
Scheduling and all the dependent features require a periodic kernel tick and typically some kind
of timer is used. Xilkernel has been designed to work with either the Xilinx fit_timer IP core
or the xps_timer IP core. By specifying the instance name of the timer device in the software
platform configuration, Xilkernel is able to initialize and use the timer cores and timer related
services automatically. Refer to “Configuring System Timer,” page 49 for more information on
how to specify the timer device. On PowerPC 405 and PowerPC 440 processors, Xilkernel uses
the internal programmable timer of the processor and consequently does not need external
timer cores for kernel functionality; you must, however, specify values for the system timer
frequency and system timer interval.

Xilkernel has also been designed to work in scenarios involving multiple-interrupting
peripherals. The xps_intc IP core handles the hardware interrupts and feeds a single IRQ
line from the controller to the processor. By specifying the name of the interrupt controller
peripheral in the software platform configuration, you would be getting kernel awareness of
multiple interrupts. Xilkernel would automatically initialize the hardware cores, interrupt system,
and the second level of software handlers as a part of its startup. You do not have to do this
manually. Xilkernel handles non-cascaded interrupt controllers; cascaded interrupt controllers
are not supported.

System
Initialization

The entry point for the kernel is the xilkernel_main() routine defined in main.c. Any
user initialization that must be performed can be done before the call to
xilkernel_main(). This includes any system-wide features that might need to be enabled
before invoking xilkernel_main(). These are typically machine-state features such as
cache enablement or hardware exception enablement that must be "always ON" even when
context switching between applications. Make sure to set up such system states before
invoking xilkernel_main(). Conceptually, the xilkernel_main() routine does two
things: it initializes the kernel via xilkernel_init() and then starts the kernel with
xilkernel_start(). The first action performed within xilkernel_init() is kernel-
specific hardware initialization. This includes registering the interrupt handlers and configuring
the system timer, as well as memory protection initialization. Interrupts/exceptions are not
enabled after completing hw_init(). The sys_init() routine is entered next.

http://www.xilinx.com

44 www.xilinx.com UG708 June 23, 2010

Thread Safety and Re-Entrancy

The sys_init() routine performs initialization of each module, such as processes and
threads, initializing in the following order:

1. Internal process context structures

2. Ready queues

3. pthread module

4. Semaphore module

5. Message queue module

6. Shared memory module

7. Memory allocation module

8. Software timers module

9. Idle task creation

10. Static pthread creation

After these steps, xilkernel_start() is invoked where interrupts and exceptions are
enabled. The kernel loops infinitely in the idle task, enabling the scheduler to start scheduling
processes.

Thread Safety
and Re-
Entrancy

Xilkernel, by definition, creates a multi-threaded environment. Many library and driver routines
might not be written in a thread-safe or re-entrant manner. Examples include the C library
routines such as printf(), sprintf(), malloc(), free(). When using any library
or driver API that is not a part of Xilkernel, you must make sure to review thread-safety and re-
entrancy features of the routine. One common way to prevent incorrect behavior with unsafe
routines is to protect entry into the routine with locks or semaphores.

Restrictions • Floating point applications cannot be used with Xilkernel on the PowerPC 440 and
PowerPC 405 processors. This limitation is because Xilkernel does not context switch the
floating point registers and floating point control/status registers on these processors. A
future release will aim to add this support to Xilkernel.

Floating point applications can be used safely with MicroBlaze processors because the
MicroBlaze processor does not have a different register set for floating point values.

• The MicroBlaze processor compiler supports a -mxl-stack-check switch, which can
be used to catch stack overflows. However, this switch is meant to work only with single-
threaded applications, so it cannot be used in Xilkernel.

Kernel
Customization

Xilkernel is highly customizable. As described in previous sections, you can change the
modules and individual parameters to suit your application. The Xilinx Platform Studio (XPS)
Software Platform Settings dialog box provides an easy configuration method for Xilkernel
parameters. Refer to the “Embedded System and Tools Architecture Overview” chapter in the
“Embedded Systems Tools Reference Manual” for more details (a link to the document is
available in “Additional Resources,” page 3). To customize a module in the kernel, a parameter
with the name of the category set to TRUE must be defined in the Microprocessor Software
Specification (MSS) file. An example for customizing the pthread is shown as follows:

parameter config_pthread_support = true

If you do not define a configurable config_ parameter for the module, that module is not
implemented. You do not have to manually key in these parameters and values. When you input
information in the Software Platform Settings dialog box, XPS generates the corresponding
Microprocessor Software Specification (MSS) file entries automatically.

http://www.xilinx.com

Kernel Customization

UG708 June 23, 2010 www.xilinx.com 45

The following is an MSS file snippet for configuring OS Xilkernel for a PowerPC processor
system. The values in the snippet are sample values that target a hypothetical board:

BEGIN OS
PARAMETER OS_NAME = xilkernel
PARAMETER OS_VER = 3.00.a
PARAMETER STDIN = RS232
PARAMETER STDOUT = RS232
PARAMETER proc_instance = ppc405_0
PARAMETER config_debug_support = true
PARAMETER verbose = true
PARAMETER systmr_spec = true
PARAMETER systmr_freq = 100000000
PARAMETER systmr_interval = 80
PARAMETER sysintc_spec = system_intc
PARAMETER config_sched = true
PARAMETER sched_type = SCHED_PRIO
PARAMETER n_prio = 6
PARAMETER max_readyq = 10
PARAMETER config_pthread_support = true
PARAMETER max_pthreads = 10
PARAMETER config_sema = true
PARAMETER max_sem = 4
PARAMETER max_sem_waitq = 10
PARAMETER config_msgq = true
PARAMETER num_msgqs = 1
PARAMETER msgq_capacity = 10
PARAMETER config_bufmalloc = true
PARAMETER config_pthread_mutex = true
PARAMETER config_time = true
PARAMETER max_tmrs = 10
PARAMETER enhanced_features = true
PARAMETER config_kill = true
PARAMETER mem_table = ((4,30),(8,20))
PARAMETER static_pthread_table = ((shell_main,1))
END

The configuration parameters in the MSS specification impact the memory and code size of the
Xilkernel image. Kernel-allocated structures whose count can be configured through the MSS
must be reviewed to ensure that your memory and code size is appropriate to your design.

For example, the maximum number of process context structures allocated in the kernel is
determined by the sum of two parameters; max_procs and max_pthreads. If a process
context structures occupies x bytes of bss memory, then the total bss memory requirement for
process contexts is (max_pthreads*x) bytes. Consequently, such parameters must be
tuned carefully, and you need to examine the final kernel image with the GNU size utility to
ensure that your memory requirements are met. To get an idea the contribution each kernel-
allocated structure makes to memory requirements, review the corresponding header file. The
specification in the MSS is translated by Libgen and Xilkernel Tcl files into C-language
configuration directives in two header files: os_config.h and config_init.h. Review
these two files, which are generated in the main processor include directory, to understand how
the specification gets translated.

http://www.xilinx.com

46 www.xilinx.com UG708 June 23, 2010

Kernel Customization

Configuring STDIN and STDOUT

The standard input and output peripherals can be configured for Xilkernel. Xilkernel can work
without a standard input and output also. These peripherals are the targets of input-output APIs
like print, outbyte, and inbyte. The following table provides the attribute descriptions,
data types, and defaults.

Configuring Scheduling

You can configure the kernel scheduling policy by configuring the parameters shown in the
following table.

Configuring Thread Management

Threads are the primary mechanism for creating process contexts. The configurable
parameters of the thread module are listed in the following table.

Table 3: STDIN/STDOUT Configuration Parameters

Attribute Description Type Defaults

stdin Instance name of stdin peripheral. string none

stdout Instance name of stdout peripheral. string none

Table 4: Scheduling Parameters

Attribute Description Type Defaults

config_sched Configure scheduler module. boolean true

sched_type Type of Scheduler to be used.
Allowed values:
2 - SCHED_RR
3 - SCHED_PRIO

enum SCHED_RR

n_prio Number of priority levels if scheduling
is SCHED_PRIO.

numeric 32

max_readyq Length of each ready queue. This is
the maximum number of processes
that can be active in a ready queue at
any instant in time.

numeric 10

Table 5: Thread Module Parameters

Attribute Description Type Defaults

config_pthread_support Need pthread module. boolean true

max_pthreads Maximum number of threads that
can be allocated at any point in
time.

numeric 10

pthread_stack_size Stack size for dynamically created
threads (in bytes).

numeric 1000

http://www.xilinx.com

Kernel Customization

UG708 June 23, 2010 www.xilinx.com 47

Configuring Semaphores

You can configure the semaphores module, the maximum number of semaphores, and
semaphore queue length. The following table shows the parameters used for configuration.

Configuring Message Queues

Optionally, you can configure the message queue module, number of message queues, and
the size of each message queue. The message queue module depends on both the
semaphore module and the buffer memory allocation module. The following table shows the
parameter definitions used for configuration. Memory for messages must be explicitly specified
in the malloc customization or created at run-time.

static_pthread_table Statically configure the threads
that startup when the kernel is
started. This is defined to be an
array with each element
containing the parameters
pthread_start_addr and
pthread_prio.

Note: If you are specifying
function names for
pthread_start_addr, they
must be functions in your source
code that are compiled with the C
dialect. They cannot be functions
compiled with the C++ dialect.

array of 2-
tuples

none

pthread_start_addr Thread start address. Function
name (string)

none

pthread_prio Thread priority. numeric none

Table 6: Semaphore Module Parameters

Attribute Description Type Defaults

config_sema Need Semaphore module. boolean false

max_sem Maximum number of
Semaphores.

numeric 10

max_sem_waitq Semaphore Wait Queue Length. numeric 10

config_named_sema Configure named semaphore
support in the kernel.

boolean false

Table 7: Message Queue Module Parameters

Attribute Description Type Defaults

config_msgq Need Message Queue module. boolean false

num_msgqs Number of message queues in the system. numeric 10

msgq_capacity Maximum number of messages in the queue. numeric 10

use_malloc Provide for more powerful message queues
which use malloc and free to allocate
memory for messages.

boolean false

Table 5: Thread Module Parameters (Cont’d)

Attribute Description Type Defaults

http://www.xilinx.com

48 www.xilinx.com UG708 June 23, 2010

Kernel Customization

Configuring Shared Memory

Optionally, you can configure the shared memory module and the size of each shared memory
segment. All the shared memory segments that are needed must be specified in these
parameters.The following table shows the parameters used for configuration.

Configuring Pthread Mutex Locks

Optionally, you can choose to include the pthread mutex module, number of mutex locks, and
the size of the wait queue for the mutex locks. The following table shows the parameters used
for configuration.

Configuring Buffer Memory Allocation

Optionally, you can configure the dynamic buffer memory management module, size of
memory blocks, and number of memory blocks. The following table shows the parameters used
for configuration.

Table 8: Shared Memory Module Parameters

Attribute Description Type Defaults

config_shm Need shared memory module. boolean false

shm_table Shared memory table. Defined as an array
with each element having shm_size
parameter.

array of 1-tuples none

shm_size Shared memory size. numeric none

num_shm Number of shared memories expressed as
the shm_table array size.

numeric none

Table 9: Pthread Mutex Module Parameters

Attribute Description Type Defaults

config_pthread_mutex Need pthread mutex module. boolean false

max_pthread_mutex Maximum number of pthread
mutex locks available in the
system.

numeric 10

max_pthread_mutex_ waitq Length of each the mutex lock wait
queue.

numeric 10

Table 10: Memory Management Module Parameters

Attribute Description Type Defaults

config_bufmalloc Need buffer memory management. boolean false

max_bufs Maximum number of buffer pools that
can be managed at any time by the
kernel.

numeric 10

mem_table Memory block table. This is defined as
an array with each element having
mem_bsize, mem_nblks
parameters.

array of 2-tuples none

mem_bsize Memory block size in bytes. numeric none

mem_nblks Number of memory blocks of a size. numeric none

http://www.xilinx.com

Kernel Customization

UG708 June 23, 2010 www.xilinx.com 49

Configuring Software Timers

Optionally, you can configure the software timers module and the maximum number of timers
supported. The following table shows the parameters used for configuration.

Configuring Enhanced Interfaces

Optionally, you can configure some enhanced features/interfaces using the following
parameters shown in the following table.

Configuring System Timer

You can configure the timer device in the system for MicroBlaze processor kernels. Additionally,
you can configure the timer interval for PowerPC and PIT timer based MicroBlaze processor
systems. The following table shows the available parameters .

Table 11: Software Timers Module Parameters

Attribute Description Type Defaults

config_time Need software timers and time management
module.

boolean false

max_tmrs Maximum number of software timers in the kernel. numeric 10

Table 12: Enhanced Features

Attribute Description Type Defaults

config_kill Include the ability to kill a process
with the kill() function.

boolean false

config_yield Include the yield() interface. boolean false

Table 13: Attributes for Copying Kernel Source Files

Attribute Description Type Defaults

systmr_dev1

1. MicroBlaze only.

Instance name of the system timer
peripheral.

string none

systmr_freq Specify the clock frequency of the
system timer device:
• For the xps_timer, it is the OPB

clock frequency.
• For the fit_timer, it is the clock

given to the fit_timer.
• For PowerPC 405 processor, it is the

frequency of the PowerPC 405.

numeric 100000000

systmr_interval Time interval per system timer interrupt.
This is automatically determined (and
cannot be changed) for the
fit_timer.

numeric
(milliseconds)

10

http://www.xilinx.com

50 www.xilinx.com UG708 June 23, 2010

Debugging Xilkernel

Configuring Interrupt Handling

You can configure the interrupt controller device in the system kernels. Adding this parameter
automatically configures multiple interrupt support and the user-level interrupt handling API in
the kernel. This also causes the kernel to automatically initialize the interrupt controller. The
following table shows the implemented parameters.

Configuring Debug Messages

You can configure that the kernel outputs debug/diagnostic messages through its execution
flow. Enabling the parameter in the following table makes the DBG_PRINT macro available,
and subsequently its output to the standard output device:

Coping Kernel Source Files

You can copy the configured kernel source files to your repository for further editing and use
them for building the kernel. The following table shows the implemented parameters:

Debugging
Xilkernel

The entire kernel image is a single file that can serve as the target for debugging with the EDK
GNU Debugger (GDB) mechanism. User applications and the library must be compiled with a
-g. Refer to the Embedded System Tools Reference Manual for documentation on how to
debug applications with GDB. A link to this document is available in the “Additional Resources,”
page 3.

Note: This method of debugging involves great visibility into the kernel and is intrusive. Also, this
debugging scheme is not kernel-user application aware.

Table 14: Attributes for Copying Kernel Source Files

Attribute Description Type Defaults

sysintc_spec Specify the instance name of the interrupt
controller device connected to the external
interrupt port.

string null

Table 15: Attribute for Debug Messages

Attribute Description Type Defaults

debug_mode Turn on kernel debug messages. boolean false

Table 16: Attributes for Copying Kernel Source Files

Attribute Description Type Defaults

copyoutfiles Need to copy source files. boolean false

copytodir User repository directory. The path is
relative to project_directory
/system_name/libsrc/
xilkernel_v5_00_a/
src_dir.

path string "../copyoflib”

http://www.xilinx.com

Memory Footprint

UG708 June 23, 2010 www.xilinx.com 51

Memory
Footprint

The size of Xilkernel depends on the user configuration. It is small in size and can fit in different
configurations. The following table shows the memory size output from GNU size utility for the
kernel. Xilkernel has been tested with the GNU Compiler Collection (GCC) optimization flag of
-O2; the numbers in the table are from the same optimization level.

Xilkernel File
Organization

Xilkernel sources are organized as shown in the table below:

Modifying Xilkernel

You can further customize Xilkernel by changing the actual code base. To work with a custom
copy of Xilkernel, you must first copy the Xilkernel source folder xilkernel_v5_00_a from
the EDK installation and place it in a software repository; for example,
<..../mylibraries/bsp/xilkernel_v5_00_a>. If the repository path is added to the
tools, Libgen picks up the source folder of Xilkernel for compilation.

Refer to “Xilkernel File Organization,” page 51 for more information on the organization of the
Xilkernel sources. Xilkernel sources have been written in an elementary and intuitive style and
include comment blocks above each significant function. Each source file also carries a
comment block indicating its role.

Table 17: User Configuration and Xilkernel Size

Configuration MicroBlaze (in
kb)

PowerPC
(in kb)

Basic kernel functionality with multi-threading only. 7 16

Full kernel functionality with round-robin scheduling (no
multiple interrupt support and no enhanced features).

16 26

Full kernel functionality with priority scheduling (no multiple
interrupt support and no enhanced features).

16.5 26.5

Full kernel functionality with all modules (threads, support for
both ELF processes, priority scheduling, IPC, synchronization
constructs, buffer malloc, multiple and user level interrupt
handling, drivers for interrupt controller and timer, enhanced
features).

22 32

Table 18: Organization of Xilkernel Sources

root/ Contains the /data and the /src folders.

data/ Contains Microprocessor Library Definition (MLD)
and Tcl files that determine XilKernel
configuration.

src/ Contains all the source.

include/ Contains header files organized similar to /src.

src/ Non-header source files.

arch/ Architecture-specific sources.

sys/ System-level sources.

ipc/ Sources that implement the IPC functionality.

http://www.xilinx.com

52 www.xilinx.com UG708 June 23, 2010

Deprecated Features

Deprecated
Features

ELF Process Management (Deprecated)

A deprecated feature of Xilkernel is the support for creating execution contexts out of separate
Executable Linked Files (ELFs).

You might want to do this if you need to create processes out of executable files that lay on a file
system (for example XilFATFS or XilMFS). Typically, a loader is required, which Xilkernel does
not provide. Assuming that your application does involve a loader, then given a entry point in
memory to the executable, Xilkernel can then create a process. The kernel does not allocate a
separate stack for such processes; the stack is set up as a part of the CRT of the separate
executable.

Note: Such separate executable ELF files, that are designed to run on top of Xilkernel, must be compiled
with the compiler flag -xl-mode-xilkernel for MicroBlaze processors. For PowerPC processors,
you must use a custom linker script, that does not include the .boot and the .vectors sections in the
final ELF image. The reason that these modifications are required is that, by default, any program
compiled with the EDK GNU tool flow, could potentially contain sections that overwrite the critical interrupt,
exception, and reset vectors section in memory. Xilkernel requires that its own ELF image initialize these
sections and that they stay intact. Using these special compile flags and linker scripts, removes these
sections from the output image for applications.

The separate executable mode has the following caveats:

• Global pointer optimization is not supported.

Note: This is supported in the default kernel linkage mode. It is not supported only in this separate
executable mode.

• Xilkernel does not feature a loader when creating new processes and threads. It creates
process and thread contexts to start of from memory images assumed to be initialized.
Therefore, if any ELF file depends on initialized data sections, then the next time the same
memory image is used to create a process, the initialized sections are invalid, unless
some external mechanism is used to reload the ELF image before creating the process.

Note: This feature is deprecated and Xilinx encourages use of the standard, single executable file
application model.

Refer to the “Configuring ELF Process Management (Deprecated),” page 53 section for more
details. An ELF process is created and handled using the following interfaces.

int elf_process_create(void* start_addr, int prio)
Parameters start_addr is the start address of the process.

prio is the starting priority of the process in the system.

Returns • The PID of the new process on success.
• -1 on failure.

Description Creates a new process. Allocates a new PID and Process Control Block
(PCB) for the process.The process is placed in the appropriate ready
queue.

Includes xmk.h, sys/process.h

http://www.xilinx.com

Deprecated Features

UG708 June 23, 2010 www.xilinx.com 53

int elf_process_exit(void)

Configuring ELF Process Management (Deprecated)

You can select the maximum number of processes in the system and the different functions
needed to handle processes. The processes and threads that are present in the system on
system startup can be configured statically. The following table provides a list of available
parameters:

Parameters None.

Returns None.

Description Removes the process from the system.

Caution! Do not use this function to terminate a thread.

Includes xmk.h, sys/process.h

Table 19: Process Management Parameters

Attribute Description Type Defaults

config_elf_process Need ELF process management.

Note: Using config_elf_process
requires enhanced_features=true in the kernel
configuration.

boolean true

max_procs Maximum number of processes in the system. numeric 10

static_elf_process
_table

Configure startup processes that are
separate executable files. This is defined to be
an array with each element containing the
parameters process_start and
process_prio.

Array of
2-tuples

none

process_start_addr Process start address. Address none

process_prio Process priority. Numeric none

http://www.xilinx.com

54 www.xilinx.com UG708 June 23, 2010

Deprecated Features

http://www.xilinx.com

UG 648 June 23, 2010 www.xilinx.com 1

© 2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries.
All other trademarks are the property of their respective owners.

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development of
designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the Documentation
in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves the right, at its sole discretion,
to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors contained in the Documentation, or to
advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be
provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER WARRANTIES,
WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL
XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF
DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

Summary This document describes the XilFatfs FATFile System access library. This library provides
read/write access to files stored on a Xilinx® System ACE™ compact flash or microdrive
device.

The document contains the following sections:

• “Overview”

• “Additional Resources”

• “XilFATFS Function Summary”

• “XilFATFS Function Descriptions”

• “Libgen Customization”

Overview The XilFATFS filesystem access library provides read/write access to files stored on a Xilinx
System ACE compact flash or IBM microdrive device. This library requires the underlying
hardware platform to contain the following:

• XPS System ACE Interface Controller - Logicore module

• System ACE controller and CompactFlash connector

• CompactFlash card or IBM Microdrive formatted with a FAT12, FAT16, or FAT32 file
system

Caution! FAT16 is required for the System ACE to directly configure the FPGA but the XilFATFS
library can work with the System ACE hardware to support FAT12 and FAT32 also.

See the documentation on XPS System ACE Interface Controller in the Processor IP
Reference Guide for more details on the hardware.

You can copy files easily to the flash device from your PC by plugging the flash or microdrive
into a suitable USB adapter or similar device.

If the compact flash or microdrive has multiple partitions, each formatted as a FAT12, FAT16, or
FAT32 filesystem, XilFATFS allows the partitions to be accessed with partition names. The first
partition is always called A:, the second partition is always called B:, and so on. As noted
earlier, the first partition must be FAT16 for the System ACE to directly configure the FPGA.

UG 648 June 23, 2010

LibXil FATFile System (FATFS) (v1.00.a)

http://www.xilinx.com

UG 648 June 23, 2010 www.xilinx.com 2

Additional Resources

Additional
Resources

• Processor IP Reference Guide:
http://www.xilinx.com/support/documentation/dt_edk.htm

• XilFATFS Functions

The following sections provide a summary of the XilFATFS functions and the function
descriptions.

XilFATFS
Function
Summary

This section provides a list of functions provided by the XilFATFS. The following is a linked list
where you can click on the function name to go to the description.

XilFATFS
Function
Descriptions

void *sysace_fopen(const char *file, const char *mode)

void *sysace_fopen(const char *file, const char *mode)

int sysace_fread (void *buffer, int_size, int count, void *file)

int sysace_fwrite(void *buffer, int size, int count, void *file)

int sysace_fclose(void *file)

int sysace_mkdir(const char *path)

int sysace_chdir(const char *path)

int sysace_remove_dir(const char *path)

int sysace_remove_file(const char *path)

Parameters file is the name of the file on the flash device.
mode is “r” or “w”.

Returns A non-zero file handle on success.
0 for failure.

Description The file name must follow the Microsoft 8.3 naming convention of an
eight character file name followed by a ‘.’ and a three character
extension. For example: test.txt.
This function returns a file handle that has to be used for subsequent
calls to read, write, or close the file.
If mode is “r” and the named file does not exist on the device, a 0 is
returned.

Includes sysace_stdio.h

http://www.xilinx.com/support/documentation/dt_edk.htm
http://www.xilinx.com

UG 648 June 23, 2010 www.xilinx.com 3

XilFATFS Function Descriptions

int sysace_fread (void *buffer, int_size, int count, void *file)

int sysace_fwrite(void *buffer, int size, int count, void *file)

int sysace_fclose(void *file)

Parameters buffer is a pre allocated buffer that is passed in to this procedure,
and is used to return the characters read from the device.
size is restricted to 1.
count is the number of characters to be read.
file is the file handle returned by sysace_fopen.

Returns Non-zero number of characters actually read for success.
0 for failure.

Description The preallocated buffer is filled with the characters that are read from
the device. The return value indicates the actual number of characters
read, while count specifies the maximum number of characters to
read. The buffer size must be at least count. stream should be a
valid file handle returned by a call to sysace_fopen.

Includes sysace_stdio.h

Parameters buffer is a pre allocated buffer that is passed in to this procedure,
and contains the characters to be written to the device.
size is restricted to 1.
count is the number of characters to be written.
file is the file handle returned by sysace_fopen.

Returns Non-zero number of characters actually written for success.
0 or -1 for failure.

Description The pre-allocated buffer is filled (by the caller) with the characters that
are to be written to the device. The return value indicates the actual
number of characters written, while count specifies the maximum
number of characters to write. The buffer size must be at least count.
stream should be a valid file handle returned by a call to
sysace_fopen. This function might simply return after updating the
buffer cache (see CONFIG_BUFCACHE_SIZE). To ensure that the
data is written to the device, perform a sysace_fclose call.

Includes sysace_stdio.h

Parameters file: File handle returned by sysace_fopen.

Returns 0 on success.
-1 on failure.

Description Closes an open file. This function also synchronizes the buffer cache
to memory. If any files were written to using sysace_fwrite, then
it is necessary to synchronize the data to the disk by performing
sysace_fclose. If this is not performed, then the disk could
possibly become corrupted.

Includes sysace_stdio.h

http://www.xilinx.com

UG 648 June 23, 2010 www.xilinx.com 4

XilFATFS Function Descriptions

int sysace_mkdir(const char *path)

int sysace_chdir(const char *path)

int sysace_remove_dir(const char *path)

Parameters path is the path name of new directory.

Returns 0 on success.
-1 on failure.

Description Create a new directory specified by path. The directory name can be
either absolute or relative, and must follow the 8.3 file naming
convention.
Examples: a:\\dirname, a:\\dirname.dir,
a:\\dir1\\dirnew, dirname, dirname.dir

If a relative path is specified, and the current working directory is not
already set, the current working directory defaults to the root directory.

Includes sysace_stdio.h

Parameters path is the path name of new directory

Returns 0 on success
-1 on failure

Description Create a new directory specified by path. The directory name can be
either absolute or relative, and must follow the 8.3 file naming
convention.
Examples: a:\\dirname, a:\\dirname.dir,
a:\\dir1\\dirnew, dirname, dirname.dir

If a relative path is specified, and the current working directory is not
already set, the current working directory defaults to the root directory.

Includes sysace_stdio.h

Parameters path is the full path to the directory that must be deleted.

Returns 0 on success
Negative integer on failure.

Description Remove the file or directory specified by the path. These functions are
available only when the CONFIG_WRITE parameter to XilFATFS is
set.

Includes sysace_stdio.h

http://www.xilinx.com

UG 648 June 23, 2010 www.xilinx.com 5

Libgen Customization

int sysace_remove_file(const char *path)

Libgen
Customization

XilFATFS file system can be integrated with a system using the following snippet in the
Microprocessor Software Specification (MSS) file:

BEGIN LIBRARY
parameter LIBRARY_NAME = xilfatfs
parameter LIBRARY_VER = 1.00.a
parameter CONFIG_WRITE = true
parameter CONFIG_DIR_SUPPORT = false
parameter CONFIG_FAT12 = false
parameter CONFIG_MAXFILES = 5
parameter CONFIG_BUFCACHE_SIZE = 10240
parameter PROC_INSTANCE = powerpc_0

END LIBRARY

Parameter description:

• When CONFIG_WRITE is set to true, write capabilities are added to the library.

• When CONFIG_DIR_SUPPORT is set to true, the mkdir and chdir functions are added to
the library. For mkdir() function to work, CONFIG_WRITE needs to be enabled.

• When CONFIG_FAT12 is set to true, the library is configured to work with FAT12 file
systems. Otherwise, the library works with both FAT16 and FAT32 file systems.

• CONFIG_MAXFILES limits the maximum number of files that can be open. This influences
the amount of memory allocated statically by XilFATFS.

• CONFIG_BUFCACHE_SIZE: defines the amount of memory (in bytes) used by the library
for buffering reads and write calls to the System ACE. This improves the performance of
both sysace_fread and sysace_fwrite by buffering the data in memory and avoiding
unnecessary calls to read the CF device. The buffers are synced up to the device only on
a sysace_fclose call; consequently, is essential to perform a sysace_fclose if any
file was modified.

• The parameter PROC_INST is not necessary for uniprocessor systems. In a
multiprocessor system, set PROC_INST to the processor name for which the library must
be compiled. The System ACE peripheral must be reachable from this processor.

Parameters path is the full path to the file that must be deleted.

Returns 0 on success.
Negative integer on failure.

Description Remove the file or directory specified by the path. These functions are
available only when the CONFIG_WRITE parameter to XilFATFS is
set.

Includes sysace_stdio.h

http://www.xilinx.com

UG 648 June 23, 2010 www.xilinx.com 6

Libgen Customization

http://www.xilinx.com

UG 649 June 23, 2010 www.xilinx.com 1

© 2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries.
All other trademarks are the property of their respective owners.

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development of
designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the Documentation
in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves the right, at its sole discretion,
to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors contained in the Documentation, or to
advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be
provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER WARRANTIES,
WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL
XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF
DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

Summary This document describes the Xilinx® Memory File System (MFS). This file system resides in
RAM/ROM/Flash memory and can be accessed directly or through MFS calls. The MFS is
integrated with a system using the Library Generator, Libgen. The document contains the
following sections:

• “Overview”

• “MFS Functions”

• “Utility Functions”

• “Additional Utilities”

• “Libgen Customization”

Overview The LibXil MFS provides the capability to manage program memory in the form of file handles.
You can create directories and have files within each directory. The file system can be
accessed from the high-level C language through function calls specific to the file system.

MFS Functions This section provides a linked summary and descriptions of MFS functions.

UG 649 June 23, 2010

LibXil Memory File System (MFS) (v1.00.a)

http://www.xilinx.com

UG 649 June 23, 2010 www.xilinx.com 2

MFS Functions

MFS Function Summary

The following list is a linked summary of the supported MFS functions. Descriptions of the
functions are provided after the summary table. You can click on a function in the summary list
to go to the description.

MFS Function Descriptions

void mfs_init_fs(int_numbytes,_char_*address,_int
init_type)

void mfs_init_fs(int_numbytes,_char_*address,_int init_type)
void mfs_init_genimage(int numbytes, char *address, int init_type)
int mfs_change_dir(char_*newdir)
int mfs_create_dir(char *newdir)
int mfs_delete_dir(char *dirname)
int mfs_get_current_dir_name(char *dirname)
int mfs_delete_file(char *filename)
int mfs_rename_file(char *from_file, char *to_file)
int mfs_exists_file(char *filename)
int mfs_get_usage(int *num_blocks_used, int *num_blocks_free)
int mfs_dir_open(char *dirname)
int mfs_dir_close(int fd)
int mfs_dir_read(int fd, char_**filename, int *filesize,int *filetype)
int mfs_file_open(char *filename, int mode)
int mfs_file_read(int fd, char *buf, int buflen)
int mfs_file_write(int fd, char *buf, int buflen)
int mfs_file_close(int fd)
long mfs_file_lseek(int fd, long offset, int whence)

Parameters numbytes is the number of bytes of memory available for the file system.
address is the starting(base) address of the file system memory.
init_type is MFSINIT_NEW, MFSINIT_IMAGE, or MFSINIT_ROM_IMAGE.

Description Initialize the memory file system. This function must be called before any file
system operation. Use mfs_init_genimage instead of this function if the
filesystem is being initialized with an image generated by mfsgen. The
status/mode parameter determines certain filesystem properties:
• MFSINIT_NEW creates a new, empty file system for read/write.
• MFSINIT_IMAGE initializes a filesystem whose data has been previously

loaded into memory at the base address.
• MFSINIT_ROM_IMAGE initializes a Read-Only filesystem whose data has

been previously loaded into memory at the base address.

Includes xilmfs.h

http://www.xilinx.com

UG 649 June 23, 2010 www.xilinx.com 3

MFS Functions

void mfs_init_genimage(int numbytes, char *address, int
init_type)

int mfs_change_dir(char_*newdir)

int mfs_create_dir(char *newdir)

int mfs_delete_dir(char *dirname)

Parameters numbytes is the number of bytes of memory in the image generated
by the mfsgen tool. This is equal to the size of the memory available
for the file system, plus 4.
address is the starting(base) address of the image.
init_type is either MFSINIT_IMAGE or MFSINIT_ROM_IMAGE

Description Initialize the memory file system with an image generated by mfsgen.
This function must be called before any file system operation. The
status/mode parameter determines certain filesystem properties:
• MFSINIT_IMAGE initializes a filesystem whose data has been

previously loaded into memory at the base address.
• MFSINIT_ROM_IMAGE initializes a Read-Only filesystem whose

data has been previously loaded into memory at the base address.

Includes xilmfs.h

Parameters newdir is the chdir destination.

Returns 1 on success.
0 on failure.

Description If newdir exists, make it the current directory of MFS. Current
directory is not modified in case of failure.

Includes xilmfs.h

Parameters newdir is the directory name to be created.

Returns Index of new directory in the file system on success.
0 on failure.

Description Create a new empty directory called newdir inside the current
directory.

Includes xilmfs.h

Parameters dirname is the directory to be deleted.

Returns Index of new directory in the file system on success.
0 on failure.

Description Delete the directory dirname, if it exists and is empty.

Includes xilmfs.h

http://www.xilinx.com

UG 649 June 23, 2010 www.xilinx.com 4

MFS Functions

int mfs_get_current_dir_name(char *dirname)

int mfs_delete_file(char *filename)

int mfs_rename_file(char *from_file, char *to_file)

int mfs_exists_file(char *filename)

Parameters dirname is the current directory name.

Returns 1 on success.
0 on failure.

Description Return the name of the current directory in a preallocated buffer,
dirname, of at least 16 chars. It does not return the absolute path
name of the current directory, but just the name of the current
directory.

Includes xilmfs.h

Parameters filename is the file to be deleted.

Returns 1 on success.
0 on failure.

Description Delete filename from the directory.

Includes xilmfs.h

Caution! This function does not completely free up the directory
space used by the file. Repeated calls to create and delete files can
cause the filesystem to run out of space.

Parameters from_file is the original filename.
to_file is the new file name.

Returns 1 on success.
0 on failure.

Description Rename from_file to to_file. Rename works for directories as
well as files. Function fails if to_file already exists.

Includes xilmfs.h

Parameters filename is the file or directory to be checked for existence.

Returns 0 if filename does not exist.
1 if filename is a file.
2 if filename is a directory.

Description Check if the file/directory is present in current directory.

Includes xilmfs.h

http://www.xilinx.com

UG 649 June 23, 2010 www.xilinx.com 5

MFS Functions

int mfs_get_usage(int *num_blocks_used, int
*num_blocks_free)

int mfs_dir_open(char *dirname)

int mfs_dir_close(int fd)

Parameters num_blocks_used is the number of blocks used.
num_blocks_free is the number of free blocks.

Returns 1 on success.
0 on failure.

Description Get the number of used blocks and the number of free blocks in the
file system through pointers.

Includes xilmfs.h

Parameters dirname is the directory to be opened for reading.

Returns The index of dirname in the array of open files on success.
-1 on failure.

Description Open directory dirname for reading. Reading a directory is done using
mfs_dir_read().

Includes xilmfs.h

Parameters fd is file descriptor return by open.

Returns 1 on success.
0 on failure.

Description Close the dir pointed by fd. The file system regains the fd and uses it
for new files.

Includes xilmfs.h

http://www.xilinx.com

UG 649 June 23, 2010 www.xilinx.com 6

MFS Functions

int mfs_dir_read(int fd, char_**filename,
int *filesize,int *filetype)

int mfs_file_open(char *filename, int mode)

int mfs_file_read(int fd, char *buf, int buflen)

Parameters fd is the file descriptor return by open; passed to this function by
caller.
filename is the pointer to file name at the current position in the
directory in MFS; this value is filled in by this function.
filesize is the pointer to a value filled in by this function: Size in
bytes of filename, if it is a regular file; Number of directory entries if
filename is a directory.
filetype is the pointer to a value filled in by this function:
MFS_BLOCK_TYPE_FILE if filename is a regular file.
MFS_BLOCK_TYPE_DIR if filename is a directory.

Returns 1 on success.
0 on failure.

Description Read the current directory entry and advance the internal pointer to
the next directory entry. filename, filetype, and filesize are
pointers to values stored in the current directory entry.

Includes xilmfs.h

Parameters filename is the file to be opened.
mode is Read/Write or Create.

Returns The index of filename in the array of open files on success.
-1 on failure.

Description Open file filename with given mode. The function should be used for
files and not directories:
• MODE_READ, no error checking is done (if file or directory).
• MODE_CREATE creates a file and not a directory.
• MODE_WRITE fails if the specified file is a DIR.

Includes xilmfs.h

Parameters fd is the file descriptor return by open.
buf is the destination buffer for the read.
buflen is the length of the buffer.

Returns Number of bytes read on success.
0 on failure.

Description Read buflen number bytes and place it in buf.fd should be a
valid index in “open files” array, pointing to a file, not a directory. buf
should be a pre-allocated buffer of size buflen or more. If fewer than
buflen chars are available then only that many chars are read.

Includes xilmfs.h

http://www.xilinx.com

UG 649 June 23, 2010 www.xilinx.com 7

MFS Functions

int mfs_file_write(int fd, char *buf, int buflen)

int mfs_file_close(int fd)

long mfs_file_lseek(int fd, long offset, int whence)

Parameters fd is the file descriptor return by open.
buf is the source buffer from where data is read.
buflen is the length of the buffer.

Returns 1 on success.
0 on failure.

Description Write buflen number of bytes from buf to the file. fd should be a
valid index in open_files array. buf should be a pre-allocated buffer of
size buflen or more.

Caution! Writing to locations other than the end of the file is not
supported.
Using mfs_file_lseek() go to some other location in the file
then calling mfs_file_write() is not supported

Includes xilmfs.h

Parameters fd is the file descriptor return by open.

Returns 1 on success.
0 on failure.

Description Close the file pointed by fd. The file system regains the fd and uses
it for new files.

Includes xilmfs.h

Parameters fd is the file descriptor return by open.
offset is the number of bytes to seek.
whence is the file system dependent mode:
• MFS_SEEK_END, then offset can be either 0 or negative, otherwise

offset is non-negative.
• MFS_SEEK_CURR, then offset is calculated from the current location.
• MFS_SEEK_SET, then offset is calculated from the start of the file.

Returns Returns offset from the beginning of the file to the current location on
success.
-1 on failure: the current location is not modified.

Description Seek to a given offset within the file at location fd in open_files array.

Caution! It is an error to seek before beginning of file or after the end of
file.

Caution! Writing to locations other than the end of the file is not
supported. Using the mfs_file_lseek() function or going to some
other location in the file then calling mfs_file_write() is not
supported.

Includes xilmfs.h

http://www.xilinx.com

UG 649 June 23, 2010 www.xilinx.com 8

Utility Functions

Utility
Functions

The following subsections provide a summary and the descriptions of the utility functions that
can be used along with the MFS. These functions are defined in mfs_filesys_util.c and
are declared in xilmfs.h.

Utility Function Summary

The following list is a linked summary of the supported MFS Utility functions. Descriptions of the
functions are provided after the summary table. You can click on a function in the summary list
to go to the description.

Utility Function Descriptions

int mfs_ls(void)

int mfs_ls_r(int recurse)

int mfs_ls(void)
int mfs_ls_r(int recurse)
int mfs_cat(char* filename)
int mfs_copy_stdin_to_file(char *filename)
int mfs_file_copy(char *from_file, char *to_file)

Parameters None.

Returns 1 on success.
0 on failure.

Description List contents of current directory on STDOUT.

Includes xilmfs.h

Parameters recurse controls the amount of recursion:
• 0 lists the contents of the current directory and stop.
• > 0 lists the contents of the current directory and any subdirectories up to a

depth of recurse.
• = -1 completes recursive directory listing with no limit on recursion depth.

Returns 1 on success.
0 on failure.

Description List contents of current directory on STDOUT.

Includes xilmfs.h

http://www.xilinx.com

UG 649 June 23, 2010 www.xilinx.com 9

Utility Functions

int mfs_cat(char* filename)

int mfs_copy_stdin_to_file(char *filename)

int mfs_file_copy(char *from_file, char *to_file)

Parameters filename is the file to be displayed.

Returns 1 on success.
0 on failure.

Description Print the file to STDOUT.

Includes xilmfs.h

Parameters filename is the destination file.

Returns 1 on success.
0 on failure.

Description Copy from STDIN to named file. An end-of-file (EOF) character should be sent
from STDIN to allow the function to return 1.

Includes xilmfs.h

Parameters from_file is the source file.
to_file is the destination file.

Returns 1 on success.
0 on failure.

Description Copy from_file to to_file. Copy fails if to_file already exists or either
from or to location cannot be opened.

Includes xilmfs.h

http://www.xilinx.com

UG 649 June 23, 2010 www.xilinx.com 10

Additional Utilities

Additional
Utilities

The mfsgen program is provided along with the MFS library. You can use mfsgen to create an
MFS memory image on a host system that can be subsequently downloaded to the embedded
system memory. The mfsgen links to LibXil MFS and is compiled to run on the host machine
rather than the target MicroBlaze™ or PowerPC® processor system. Conceptually, this is
similar to the familiar zip or tar programs.

An entire directory hierarchy on the host system can be copied to a local MFS file image using
mfsgen. This file image can then be downloaded on to the memory of the embedded system for
creating a pre-loaded file system.

Test programs are included to illustrate this process. For more information, see the
readme.txt file in the utils sub-directory.

Usage: mfsgen -{c filelist| t | x} vsb num_blocks f mfs_filename

Specify exactly one of c, t, or x modes

c: creates an mfs file system image using the list of files specified on the command line
(directories specified in this list are traversed recursively).

t: lists the files in the mfs file system image

x: extracts the mfs file system from image to host file system

v: is verbose mode

s: switches endianness

b: lists the number of blocks (num_blocks) which should be more than 2

- If the b option is specified, the num_blocks value should be specified

- If the b option is omitted, the default value of num_blocks is 5000

- The b option is meaningful only when used in conjunction with the c option

f: specify the host file name (mfs_filename) where the mfs file system image is stored

- If the f option is specified, the mfs filename should be specified

- If the f option is omitted, the default file name is filesystem.mfs

http://www.xilinx.com

UG 649 June 23, 2010 www.xilinx.com 11

Libgen Customization

Libgen
Customization

A memory file system can be integrated with a system using the following snippet in the
Microprocessor Software Specification (MSS) file.

BEGIN LIBRARY
parameter LIBRARY_NAME = xilmfs
parameter LIBRARY_VER = 1.00.a
parameter numbytes= 50000
parameter base_address = 0xffe00000
parameter init_type = MFSINIT_NEW
parameter need_utils = false

END

The memory file system must be instantiated with the name xilmfs. The following table lists the
attributes used by Libgen.

Table 1: Attributes for Including Memory File System

Attributes Description

numbytes Number of bytes allocated for file system.

base_address Starting address for file system memory.

init_type Options are:
• MFSINIT_NEW (default) creates a new, empty file system.
• MFSINIT_ROM_IMAGE creates a file system based on a pre-loaded

memory image loaded in memory of size numbytes at starting
address base_address.
This memory is considered read-only and modification of the file system
is not allowed.

• MFS_INIT_IMAGE is similar to the previous option except that the file
system can be modified, and the memory is readable and writable.

need_utils true or false (default = false)
If true, this causes stdio.h to be included from mfs_config.h.
The functions described in “Utility Functions,” page 8 require that you have
defined stdin or stdout.
Setting the need_utils to true causes stdio.h to be included.

Caution! The underlying software and hardware platforms must
support stdin and stdout peripherals for these utility functions to
compile and link correctly.

http://www.xilinx.com

UG 649 June 23, 2010 www.xilinx.com 12

Libgen Customization

http://www.xilinx.com

UG650 October 5, 2010 www.xilinx.com 1

© 2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries.
All other trademarks are the property of their respective owners.

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development of
designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the Documentation
in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves the right, at its sole discretion,
to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors contained in the Documentation, or to
advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be
provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER WARRANTIES,
WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL
XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF
DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

ls

Summary This document describes the Embedded Development Kit (EDK) port of the open source
lightweight IP (lwIP) TCP/IP stack. The lwIP provides an easy way to add TCP/IP-based
networking capability to an embedded system.

The lwip130_v3_00_a provides adapters for the xps_ethernetlite, xps_ll_temac,
axi_ethernetlite, and axi_ethernet Xilinx® Ethernet MAC cores, and is based on the lwIP stack
version 1.3.0. This document describes how to use lwip130_v3_00_a to add networking
capability to embedded software. It contains the following sections:

• “Overview”

• “Features”

• “Additional Resources”

• “Using lwIP”

• “Setting up the Hardware System”

• “Setting up the Software System”

• “lwIP Performance”

• “Known Issues and Restrictions”

• “Migrating from lwip_v3_00_a to lwip130_v3_00_a”

• “API Examples”

Overview The lwIP is an open source TCP/IP protocol suite available under the BSD license. The lwIP is
a standalone stack; there are no operating systems dependencies, although it can be used
along with operating systems. The lwIP provides two APIs for use by applications:

• RAW API: Provides access to the core lwIP stack.

• Socket API: Provides a BSD sockets style interface to the stack.

The lwip130_v3_00_a is an EDK library that is built on the open source lwIP library version
1.3.0. The lwip130_v3_00_a library provides adapters for the Ethernetlite (xps_ethernetlite,
axi_ethernetlite) and the TEMAC (xps_ll_temac, axi_ethernet) Xilinx EMAC cores. The library
can run on MicroBlaze™, PowerPC® 405, or PowerPC 440 processors.

UG650 October 5, 2010

lwIP 1.3.0 Library (v3.00.a)

http://www.xilinx.com

Features

UG650 October 5, 2010 www.xilinx.com 2

R

Features The lwIP provides support for the following protocols:

• Internet Protocol (IP)

• Internet Control Message Protocol (ICMP)

• User Datagram Protocol (UDP)

• TCP (Transmission Control Protocol (TCP)

• Address Resolution Protocol (ARP)

• Dynamic Host Configuration Protocol (DHCP)

Additional
Resources

• lwIP wiki: http://lwip.scribblewiki.com

• Xilinx lwIP designs and application examples:
http://www.xilinx.com/support/documentation/application_notes/xapp1026.pdf

• lwIP examples using RAW and Socket APIs: http://savannah.nongnu.org/projects/lwip/

• Multi-Port Memory Controller (MPMC) Data Sheet: available in the following directory of
your software installation:
EDK\hw\XilinxProcessorIPLib\pcores\mpmc_v*_00_a

Using lwIP The following sections detail the hardware and software steps for using lwIP for networking in
an EDK system. The key steps are:

1. Creating a hardware system containing the processor, ethernet core, and a timer. The
timer and ethernet interrupts must be connected to the processor using an interrupt
controller.

2. Configuring lwip130_v3_00_a to be a part of the software platform. For lwIP socket API,
the Xilkernel library is a pre-requisite.

Setting up the
Hardware
System

This section describes the hardware configurations supported by lwIP. The key components of
the hardware system include:

• Processor: either a PowerPC (405 or 440 processor) or a MicroBlaze processor.

• EMAC: lwIP supports xps_ethernetlite, axi_ethernetlite, xps_ll_temac, and axi_ethernet
EMAC cores

• Timer: to maintain TCP timers, lwIP requires that certain functions are called at periodic
intervals by the application. An application can do this by registering an interrupt handler
with a timer.

• DMA: The xps_ll_temac and the axi_ethernet cores can be configured with an optional
soft Direct Memory Access (DMA) engine.

The following figure shows a system architecture in which the system is using an
xps_ethernetlite core.

http://lwip.scribblewiki.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=application+notes&sub=xapp1026.pdf
http://savannah.nongnu.org/projects/lwip/
http://www.xilinx.com

Setting up the Hardware System

UG650 October 5, 2010 www.xilinx.com 3

R

The system has a processor connected to a Multi-Port Memory Controller (MPMC) with the
other required peripherals (timer and ethernetlite) on the PLB v4.6 bus. Interrupts from both the
timer and the ethernetlite are required, so interrupts are connected to the interrupt controller.

When using TEMAC, the system architecture changes depending on whether DMA is required.
If DMA is required, a fourth port (of type SDMA), which provides direct connection between the
TEMAC (xps_ll_temac) and the memory controller (MPMC), is added to the memory
controller. The following figure shows this system architecture

Note: There are four interrupts that are necessary in this case: a timer interrupt, a TEMAC interrupt, and
the SDMA RX and TX interrupts. The SDMA interrupts are from the Multi-Port Memory Controller (MPMC)
SDMA Personality Interface Module (PIM). Refer to the Multi-Port Memory Controller (MPMC) Data Sheet
for more information.

Figure 1: System Architecture using xps_ethernetlite Core

Figure 2: System Architecture using xps_ll_temac Core (with DMA)

CPU:
MicroBlaze or

PowerPC
xps_intc

IRQ

MPMC xps_ethernetlite

PLBv46

Timer Interrupt

EMAC Interrupt

xps_timer

X11003

CPU:
MicroBlaze or

PowerPC
xps_intc

IRQ

PLBv46

TEMAC Interrupt

SDMA Rx and

Tx Interrupt

Timer Interrupt

X11004

xps_ll_temac xps_timer MPMC

S
D
M
A

http://www.xilinx.com

Setting up the Hardware System

UG650 October 5, 2010 www.xilinx.com 4

R

If the TEMAC is used without DMA, a FIFO (xps_ll_fifo) is used to interface to the TEMAC.
The system architecture in this case is shown in the following figure.

The following figure shows a sample system architecture with Spartan 6 utilizing the
axi_ethernet core with DMA.

Figure 3: System Architecture using TEMAC with xps_II_fifo (without DMA)

X-Ref Target - Figure 4

Figure 4: System Architecture using axi_ethernet core with DMA

CPU:
MicroBlaze or

PowerPC
xps_intc

IRQ

PLBv46

TEMAC Interrupt

Fifo Interrupt

Timer Interrupt

X11002

xps_timer xps_ll_fifo xps_ll_temac MPMC

http://www.xilinx.com

Setting up the Software System

UG650 October 5, 2010 www.xilinx.com 5

R

Setting up the
Software
System

To use lwIP in a software application, you must first compile the library as part of your
application software platform. To set up the lwIP library in XPS:

1. Open the Software Platform Settings dialog box.

2. Enable lwIP in the Library/OS Settings tab. (For Socket API, Xilkernel must be the OS,
configured with semaphores, mutexes, and yield functionality available).

3. Select Generate Libraries and BSPs to regenerate the library.

4. Link the application with the -l lwip4 linker flag. (For socket API, add -l xilkernel.)

Configuring lwIP Options

The lwIP provides configurable parameters. The values for these parameters can be changed
using the Software Platform Settings dialog box. There are two major categories of
configurable options:

• Xilinx Adapter to lwIP options: These control the settings used by Xilinx adapters for the
ethernet cores.

• Base lwIP options: These options are part of lwIP library itself, and include parameters for
TCP, UDP, IP and other protocols supported by lwIP.

The following sections describe the available lwIP configurable options.

Customizing lwIP API Mode

The lwip130_v3_00_a supports both raw API and socket API:

• The raw API is customized for high performance and lower memory overhead. The
limitation of raw API is that it is callback-based, and consequently does not provide
portability to other TCP stacks.

• The socket API provides a BSD socket-style interface and is very portable; however, this
mode is inefficient both in performance and memory requirements.

The lwip130_v3_00_a also provides the ability to set the priority on TCP/IP and other lwIP
application threads. The following table provides lwIP library API modes.

Configuring Xilinx Adapter Options

The Xilinx adapters for EMAC cores are configurable.

Table 1: API Mode Options and Descriptions

Attribute/Options Description Type Default

api_mode
{RAW_API | SOCKET_API}

The lwIP library mode of operation enum RAW_API

socket_mode_thread_prio
integer

Priority of lwIP TCP/IP thread and all
lwIP application threads.
This setting applies only when Xilkernel
is used in priority mode.
It is recommended that all threads using
lwIP run at the same priority level.

integer 1

http://www.xilinx.com

Setting up the Software System

UG650 October 5, 2010 www.xilinx.com 6

R

Ethernetlite Adapter Options

The following table provides the configuration parameters for the xps_ethernetlite
adapter.

TEMAC Adapter Options

The following table provides the configuration parameters for the xps_ll_temac and
axi_ethernet adapters.

Table 2: xps_ethernetlite Adapter Options

Attribute Description Type Default

sw_rx_fifo_size Software Buffer Size in bytes of the
receive data between EMAC and
processor

integer 8192

sw_tx_fifo_size Software Buffer Size in bytes of the
transmit data between processor and
EMAC

integer 8192

Table 3: xps_II_temac Adapter

Attribute Description Type Default

phy_link_speed

{CONFIG_LINKSPEED10|

CONFIG_LINKSPEED100|

CONFIG_LINKSPEED1000|

CONFIG_LINKSPEED_AUTODETECT}

Link speed as auto-negotiated
by the PHY. lwIP configures the
TEMAC for this speed setting.
This setting must be correct for
the TEMAC to transmit or
receive packets.

Note: The setting,
CONFIG_LINKSPEED_AUT
ODETECT, attempts to detect
the correct linkspeed by reading
the PHY registers; however, this
is PHY dependent, and has
been tested with the Marvell
PHYs present on Xilinx
development boards. For other
PHYs, the correct speed should
be chosen.

int CONFIG_
LINKSPEED_
AUTODETECT

n_tx_descriptors Number of TX buffer descriptors
used in SDMA mode

int 32

n_rx_descriptors Number of RX buffer
descriptors used in SDMA
mode

int 32

n_tx_coalesce TX interrupt coalescing setting
for the TEMAC

int 1

n_rx_coalesce RX interrupt coalescing setting
for the TEMAC

int 1

tcp_tx_csum_offload TX enable checksum offload int 1

tcp_rx_csum_offload RX enable checksum offload int 1

http://www.xilinx.com

Setting up the Software System

UG650 October 5, 2010 www.xilinx.com 7

R

Configuring Memory Options

lwIP stack provides different kinds of memories. The configurable memory options are provided
as a separate category. Default values work well unless application tuning is required. The
various memory parameter options are provided in the following table:

Configuring Socket Memory Options

Sockets API mode has memory options. The configurable socket memory options are provided
as a separate category. Default values work well unless application tuning is required. The
following table provides the parameters for the socket memory options.

Note: Because Sockets Mode support uses Xilkernel services, the number of semaphores chosen in the
Xilkernel configuration must take the value set for the memp_num_netbuf parameter into account.

Table 4: Memory Configuration Parameter Options

Attribute Description Type Default

mem_size Size of the heap memory in bytes. Set this
value high if application sends out large
data.

int 8192

mem_num_pbuf Number of memp struct pbufs. Set this
value high if application sends lot of data
out of ROM or static memory.

int 16

mem_num_udp_pcb Number of active UDP protocol control
blocks. One per active UDP connection.

int 5

mem_num_tcp_pcb Number of active TCP protocol control
blocks. One per active TCP connections.

int 5

mem_num_tcp_pcb_listen Number of listening TCP connections. int 5

mem_num_tcp_seg Number of simultaneously queued TCP
segments.

int 255

mem_num_sys_timeout Number of simultaneously active time-
outs.

int 3

Table 5: Socket Memory Options Configuration Parameters

Attribute Description Type Default

memp_num_netbuf Number of struct netbufs. This
translates to one per socket.

int 5

memp_num_netconn Number of struct netconns.
This translates to one per socket.

int 5

memp_num_api_msg Number of struct api_msg.
Used for communication
between TCP/IP stack and
application.

int 8

memp_num_tcpip_msg Number of struct tcpip_msg.
Used for sequential API
communication and incoming
packets.

int 8

http://www.xilinx.com

Setting up the Software System

UG650 October 5, 2010 www.xilinx.com 8

R

Configuring Packet Buffer (Pbuf) Memory Options

Packet buffers (Pbufs) carry packets across various layers of the TCP/IP stack. The following
are the pbuf memory options provided by the lwIP stack. Default values work well unless
application tuning is required. The following table provides the parameters for the Pbuf memory
option:

Configuring ARP Options

The following table provides the parameters for the ARP options. Default values work well
unless application tuning is required.

Configuring IP Options

The following table provides the IP parameter options. Default values work well unless
application tuning is required.

Table 6: Pbuf Memory Options Configuration Parameters

Attribute Description Type Defaults

pbuf_pool_size Number of buffers in pbuf pool. int 512

pbuf_pool_bufsize Size in bytes of each pbuf in pbuf pool. int 1536

Table 7: ARP Options Configuration Parameters

Attribute Description Type Default

arp_table_size Number of active hardware addresses,
IP address pairs cached.

int 10

arp_queueing When enabled, (default (1)), outgoing
packets are queued during hardware
address resolution.

int 1

arp_queue_first When enabled, first packet queued is not
overwritten by later packets. The default
(0), disabled, is recommended.

int 0

etharp_always_insert When set to 1, cache entries are updated
or added for every ARP traffic. This
option is recommended for routers.
When set to 0, only existing cache
entries are updated. Entries are added
when lwIP is sending to them.
Recommended for embedded devices.

int 0

Table 8: IP Configuration Parameter Options

Attribute Description Type Default

ip_forward Set to 1 for enabling ability to forward IP
packets across network interfaces. If
running lwIP on a single network
interface, set o 0.

int 0

ip_reassembly Reassemble incoming fragmented IP
packets.

int 1

ip_frag Fragment outgoing IP packets if their size
exceeds MTU.

int 1

ip_options When set to 1, IP options are allowed (but
not parsed). When set to 0, all packets
with IP options are dropped.

int 0

http://www.xilinx.com

Setting up the Software System

UG650 October 5, 2010 www.xilinx.com 9

R

Configuring ICMP Options

The following table provides the parameter for ICMP protocol option. Default values work well
unless application tuning is required.

Configuring UDP Options

The following table provides UDP protocol options. Default values work well unless application
tuning is required.

Configuring TCP Options

The following table provides the TCP protocol options. Default values work well unless
application tuning is required.

Configuring Debug Options

lwIP stack has debug information. The debug mode can be turned on to dump the debug
messages onto STDOUT. The following option, when set to true, prints the debug messages.

Table 9: ICMP Configuration Parameter Option

Attribute Description Type Default

icmp_ttl ICMP TTL value. int 255

Table 10: UDP Configuration Parameter Options

Attribute Description Type Defaults

lwip_udp Specify if UDP is required. bool true

udp_ttl UDP TTL value. int 255

Table 11: TCP Options Configuration Parameters

Attribute Description Type Defaults

lwip_tcp Require TCP. bool true

tcp_ttl TCP TTL value. int 255

tcp_wnd TCP Window size in bytes. int 16384

tcp_maxrtx TCP Maximum retransmission
value.

int 12

tcp_synmaxrtx TCP Maximum SYN
retransmission value.

int 4

tcp_queue_ooseq Accept TCP queue segments
out of order. Set to 0 if your
device is low on memory.

int 1

tcp_mss TCP Maximum segment size. int 1476

tcp_snd_buf TCP sender buffer space in
bytes.

int 32768

Table 12: Debug Options Configuration Parameters

Attribute Description Type Default

lwip_debug Turn on lwIP Debug bool false

http://www.xilinx.com

Setting up the Software System

UG650 October 5, 2010 www.xilinx.com 10

R

Configuring the Stats Option

lwIP stack has been written to collect statistics, such as the number of connections used;
amount of memory used; and number of semaphores used, for the application. The library
provides the stats_display() API to dump out the statistics relevant to the context in which
the call is used. The stats option can be turned on to enable the statistics information to be
collected and displayed when the stats_display API is called from user code. Use the
following option to enable collecting the stats information for the application.

Software APIs

lwIP provides two different APIs: RAW mode and Socket mode.

Raw API

The Raw API is callback based. Applications obtain access directly into the TCP stack and
vice-versa. As a result, there is no unnecessary copying of data, and using the Raw API
provides excellent performance at the price of compatibility with other TCP stacks.

Xilinx Adapter Requirements when using RAW API

In addition to the lwIP RAW API, the Xilinx adapters provide the xemacif_input utility
function for receiving packets. This function must be called at frequent intervals to move the
received packets from the interrupt handlers to the lwIP stack. Depending on the type of packet
received, lwIP then calls registered application callbacks.

Raw API File

The $XILINX_EDK/sw/ThirdParty/sw_services/lwip130_v3_00_a/src/lwip-
1.3.0/doc/rawapi.txt file describes the lwIP Raw API.

Socket API

The lwIP socket API provides a BSD socket-style API to programs. This API provides an
execution model that is a blocking, open-read-write-close paradigm.

Xilinx Adapter Requirements when using Socket API

Applications using the Socket API with Xilinx adapters need to spawn a separate thread called
xemacif_input_thread. This thread takes care of moving received packets from the
interrupt handlers to the tcpip_thread of the lwIP. Application threads that use lwIP must be
created using the lwIP sys_thread_new API. Internally, this function makes use of the
pthread_create() function in Xilkernel to create a new thread. It also initializes specific per-
thread timeout structures necessary for lwIP operation.

Xilkernel scheduling policy when using Socket API

lwIP in socket mode requires the use of the Xilkernel, which provides two policies for thread
scheduling: round-robin and priority based:

There are no special requirements when round-robin scheduling policy is used because all
threads receive the same time quanta.

With priority scheduling, care must be taken to ensure that lwIP threads are not starved. lwIP
internally launches all threads at the priority level specified in socket_mode_thread_prio.
In addition, application threads must launch xemacif_input_thread. The priorities of both
xemacif_input_thread, and the lwIP internal threads (socket_mode_thread_prio)
must be high enough in relation to the other application threads so that they are not starved.

Table 13: Statistics Options Configuration Parameters

Attribute Description Type Default

lwip_stats Turn on lwIP Statistics int 0

http://www.xilinx.com

Setting up the Software System

UG650 October 5, 2010 www.xilinx.com 11

R

Using Xilinx Adapter Helper Functions

The Xilinx adapters provide the following helper functions to simplify the use of the lwIP APIs.

void lwip_init()

This function provides a single initialization function for the lwIP data structures. This replaces
specific calls to initialize stats, system, memory, pbufs, ARP, IP, UDP, and TCP layers.

struct netif *xemac_add (struct netif *netif, struct
ip_addr *ipaddr, struct ip_addr *netmask, struct
ip_addr *gw, unsigned char *mac_ethernet_address
unsigned mac_baseaddr)

The xemac_add function provides a unified interface to add any Xilinx EMAC IP. This function
is a wrapper around the lwIP netif_add function that initializes the network interface ‘netif’
given its IP address ipaddr, netmask, the IP address of the gateway, gw, the 6 byte ethernet
address mac_ethernet_address, and the base address, mac_baseaddr, of the
xps_ethernetlite or xps_ll_temac MAC core.

void xemacif_input(struct netif *netif)

(RAW mode only)

The Xilinx lwIP adapters work in interrupt mode. The receive interrupt handlers move the
packet data from the EMAC and store them in a queue. The xemacif_input function takes
those received packets from the queue, and passes them to lwIP; consequently, this function is
required for lwIP operation in RAW mode. An lwIP application in RAW mode should have a
structure like:

while (1) {
 /* receive packets */
 xemacif_input(netif);

 /* do application specific processing */
 }

The program is notified of the received data through callbacks.

void xemacif_input_thread(struct netif *netif)

(Socket mode only)

In the socket mode, the application thread must launch a separate thread to receive the input
packets. This performs the same work as the RAW mode function, xemacif_input, except
that it resides in its own separate thread; consequently, any lwIP socket mode application is
required to have code similar to the following in its main thread:

sys_thread_new(“xemacif_input_thread”,
xemacif_input_thread, netif, THREAD_STACK_SIZE, DEFAULT_THREAD_PRIO);

The application can then continue launching separate threads for doing application specific
tasks. The xemacif_input_thread receives data processed by the interrupt handlers, and
passes them to the lwIP tcpip_thread.

http://www.xilinx.com

lwIP Performance

UG650 October 5, 2010 www.xilinx.com 12

R

lwIP
Performance

This section provides a brief overview of the expected performance when using lwIP with Xilinx
Ethernet MACs.

The following table provides the maximum TCP throughput achievable by FPGA, CPU, EMAC,
and system frequency in RAW and Socket modes. Applications requiring high performance
should use the RAW API.

Known Issues
and
Restrictions

The lwip130_v3_00_a does not support more than one TEMAC within a single xps_ll_temac
instance. For example, lwip130_v3_00_a does not support the TEMAC enabled by setting
C_TEMAC1_ENABLED = 1 in xps_ll_temac.

Migrating from
lwip_v3_00_a to
lwip130_v3_00_a

You must make the following changes to applications written to work with lwip_v3_00_a in order
for them to work with lwip130_v3_00_a:

• The API for function sys_thread_new has changed from lwIP 1.2.0 to lwIP 1.3.0. Use
the new API as follows:

sys_thread_t sys_thread_new(char *name, void (*thread)(void *arg), void
*arg, int stacksize, int prio);

• Configure Xilkernel to include yield functionality.

• UDP RAW mode callback functions receive a pointer to the IP address of the sender as
one of the parameters. Do not pass this parameter back to any other UDP function as an
argument. Instead, make a copy and pass a pointer to the copy.

Table 14: Library Performance

FPGA CPU EMAC System
Frequenc

y

Max TCP Throughput

RAW Mode Socket Mode

Virtex® PowerPC 405 xps_ll_temac 100 MHz 140 Mbps 40 Mbps

Virtex MicroBlaze xps_ll_temac 125 MHz 100 Mpbs 30 Mbps

Spartan® MicroBlaze xps_ll_temac 66 MHz 35 Mpbs 10 Mbps

Spartan MicroBlaze xps_ethernetlite 66 MHz 15 Mbps 7 Mbps

http://www.xilinx.com

API Examples

UG650 October 5, 2010 www.xilinx.com 13

R

API Examples Sample applications using the RAW API and Socket API are available on the Xilinx website.
This section provides pseudo code that illustrates the typical code structure.

RAW API

Applications using the RAW API are single threaded, and have the following broad structure:

int main()
{

struct netif *netif, server_netif;
struct ip_addr ipaddr, netmask, gw;

/* the MAC address of the board.
* This should be unique per board/PHY */
unsigned char mac_ethernet_address[] =

{0x00, 0x0a, 0x35, 0x00, 0x01, 0x02};

lwip_init();

/* Add network interface to the netif_list,
 * and set it as default */
if (!xemac_add(netif, &ipaddr, &netmask,

&gw, mac_ethernet_address,
EMAC_BASEADDR)) {
printf(“Error adding N/W interface\n\r”);
return -1;

 }
netif_set_default(netif);

/* now enable interrupts */
platform_enable_interrupts();

/* specify that the network if is up */
netif_set_up(netif);

/* start the application, setup callbacks */
start_application();

/* receive and process packets */
while (1) {

xemacif_input(netif);
/* application specific functionality */
transfer_data();

 }
}

RAW API works primarily using asynchronously called Send and Receive callbacks.

http://www.xilinx.com

API Examples

UG650 October 5, 2010 www.xilinx.com 14

R

Socket API

In socket mode, applications specify a static list of threads that Xilkernel spawns on startup in
the Xilkernel software platform settings. Assuming that main_thread() is a thread specified
to be launched by Xilkernel, then the following pseudo-code illustrates a typical socket mode
program structure

void network_thread(void *p)
{

struct netif *netif;
struct ip_addr ipaddr, netmask, gw;

/* the MAC address of the board.
 * This should be unique per board/PHY */
unsigned char mac_ethernet_address[] =

{0x00, 0x0a, 0x35, 0x00, 0x01, 0x02};

netif = &server_netif;

/* initialize IP addresses to be used */
IP4_ADDR(&ipaddr,192,168,1,10);
IP4_ADDR(&netmask,255,255,255,0);
IP4_ADDR(&gw,192,168,1,1);

/* Add network interface to the netif_list,
 * and set it as default */
if (!xemac_add(netif, &ipaddr, &netmask,

&gw, mac_ethernet_address,
EMAC_BASEADDR)) {

printf(“Error adding N/W interface\n\r”);
return;

 }
netif_set_default(netif);

/* specify that the network if is up */
netif_set_up(netif);

/* start packet receive thread
 - required for lwIP operation */
sys_thread_new(“xemacif_input_thread”, xemacif_input_thread,

netif,
THREAD_STACKSIZE, DEFAULT_THREAD_PRIO);

/* now we can start application threads */
/* start webserver thread (e.g.) */
sys_thread_new(“httpd” web_application_thread, 0,

THREAD_STACKSIZE DEFAULT_THREAD_PRIO);
}

int main_thread()
{

/* initialize lwIP before calling sys_thread_new */
lwip_init();

/* any thread using lwIP should be created using
 * sys_thread_new() */
sys_thread_new(“network_thread” network_thread, NULL,

THREAD_STACKSIZE DEFAULT_THREAD_PRIO);

 return 0;
}

http://www.xilinx.com

UG651 June 23, 2010 www.xilinx.com 1

© 2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries.
All other trademarks are the property of their respective owners.

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development of
designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the Documentation
in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves the right, at its sole discretion,
to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors contained in the Documentation, or to
advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be
provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER WARRANTIES,
WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL
XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF
DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

Summary This document describes the XilFlash library for CFI compliant parallel flash devices. This
library provides read/write/erase/lock/unlock and device-specific functionality to the flash
device.

The document contains the following sections:

• “Overview”

• “XilFlash Library APIs”

• “Libgen Customization”

Overview The XilFlash library provides read/write/erase/lock/unlock features to access a parallel flash
device. Flash device family specific functionality are also supported by the library. This library
requires the underlying hardware platform to contain the following:

• xps_mch_emc or similar core for accessing the flash.

This library implements the functionality for flash memory devices that conform to the
"Common Flash Interface" (CFI) standard. CFI allows a single flash library to be used for an
entire family of parts.This library supports Intel and AMD CFI compliant flash memory devices.

All the calls in the library are blocking in nature in that the control is returned back to user only
after the current operation is completed successfully or an error is reported.

The following common APIs are supported for all flash devices:

• Initialize

• Read

• Write

• Erase

• Lock

• UnLock

• IsReady

• Reset

• Device specific control

The user has to call the “int XFlash_Initialize (XFlash *InstancePtr)” API before calling any
other API.

UG651 June 23, 2010

LibXil Flash (v2.02.a)

http://www.xilinx.com

XilFlash Library APIs

UG651 June 23, 2010 www.xilinx.com 2

XilFlash Library
APIs

This section provides a linked summary and detailed descriptions of the LibXil Flash library
APIs.

API Summary

The following is a summary list of APIs provided by the LibXil Flash library. The list is linked to
the API description. Click on the API name to go to the description.

XilFlash Library API Descriptions

int XFlash_Initialize (XFlash *InstancePtr)

int XFlash_Initialize (XFlash *InstancePtr)
int XFlash_Reset (XFlash *InstancePtr)
int XFlash_Read (XFlash *InstancePtr, u32 Offset, u32 Bytes, void *DestPtr)
int XFlash_Write (XFlash *InstancePtr, u32 Offset, u32 Bytes, void *SrcPtr)
int XFlash_Erase (XFlash *InstancePtr, u32 Offset, u32 Bytes)
int XFlash_Lock (XFlash *InstancePtr, u32 Offset, u32 Bytes)
int XFlash_UnLock (XFlash *InstancePtr, u32 Offset, u32 Bytes)
int XFlash_DeviceControl (XFlash *InstancePtr, u32 Command, DeviceControl *Parameters)
int XFlash_IsReady (XFlash *InstancePtr)

Parameters InstancePtr is a pointer to XFlash Instance.

Returns XST_SUCCESS if successful.

XFLASH_PART_NOT_SUPPORTED if the command set algorithm
or the layout is not supported by any flash family compiled into the
system.

XFLASH_CFI_QUERY_ERROR if the device would not enter the
CFI query mode. Either device doesn’t support CFI or
unsupported part layout exists or a hardware problem exists.

Description Initializes a specific XFlash Instance.

The initialization entails:

• Check the Device Family type

• Issuing the CFI query command

• Set the default options for the instance

• Setup the VTable

• Initialize the Xilinx® Platform Flash XL to Async mode if the
user selects to use the Platform Flash XL in the MLD. The
Platform Flash XL is an Intel CFI complaint device.

Includes xilflash.h

xilflash_cfi.h

xilflash_intel.h

xilflash_amd.h

http://www.xilinx.com

XilFlash Library APIs

UG651 June 23, 2010 www.xilinx.com 3

int XFlash_Reset (XFlash *InstancePtr)

int XFlash_Read (XFlash *InstancePtr, u32 Offset, u32
Bytes, void *DestPtr)

Parameters InstancePtr is a pointer to XFlash Instance.

Returns XST_SUCCESS if Successful.

XFLASH_BUSY if the flash devices were in the middle of an
operation and could not be reset.

XFLASH_ERROR if the device has experienced an internal error
during the operation. XFlash_DeviceControl() must be used to
access the cause of the device specific error condition.

Description This API resets the flash device and places it in read mode.

Includes xilflash.h

xilflash_cfi.h

xilflash_intel.h

xilflash_amd.h

Parameters InstancePtr is a pointer to XFlash Instance.

Offset is the offset into the devices address space from which to
read.

Bytes is the number of bytes to read.

DestPtr is the destination Address to copy data to.

Returns XST_SUCCESS if successful.

XFLASH_ADDRESS_ERROR if the source address did not start
within the addressable areas of the device.

Description This API reads the data from the flash device and copies it into the
specified user buffer. The source and destination addresses can
be on any alignment supported by the processor.

Includes xilflash.h

xilflash_cfi.h

xilflash_intel.h

xilflash_amd.h

http://www.xilinx.com

XilFlash Library APIs

UG651 June 23, 2010 www.xilinx.com 4

int XFlash_Write (XFlash *InstancePtr, u32 Offset, u32
Bytes, void *SrcPtr)

int XFlash_Erase (XFlash *InstancePtr, u32 Offset, u32
Bytes)

Parameters InstancePtr is a pointer to XFlash Instance.

Offset is the offset into the devices address space from which to
begin programming.

Bytes is the number of bytes to Program.

SrcPtr is the Source Address containing data to be programmed.

Returns XST_SUCCESS if Successful.

XFLASH_ERROR if a write error has occurred. The error is
usually device specific. Use XFlash_DeviceControl() to retrieve
specific error conditions. When this error is returned, it is possible
that the target address range was only partially programmed.

Description This API programs the flash device with the data specified in the
user buffer. The source and destination addresses must be
aligned to the width of the flash data bus.

The source address doesn't have to be aligned to the flash width
if the processor supports unaligned access. But, since this library
is generic, and some processors (eg. MicroBlaze) do not support
unaligned access, this API requires that the source address be
aligned.

Includes xilflash.h

xilflash_cfi.h

xilflash_intel.h

xilflash_amd.h

Parameters InstancePtr is a pointer to XFlash Instance.

Offset is the offset into the devices address space from which to
begin erasure.

Bytes is the number of bytes to Erase.

Returns XST_SUCCESS if successful.

XFLASH_ADDRESS_ERROR if the destination address range is
not completely within the addressable areas of the device.

Description This API erases the specified address range in the flash device.
The number of bytes to erase can be any number as long as it is
within the bounds of the devices.

Includes xilflash.h

xilflash_cfi.h

xilflash_intel.h

xilflash_amd.h

http://www.xilinx.com

XilFlash Library APIs

UG651 June 23, 2010 www.xilinx.com 5

int XFlash_Lock (XFlash *InstancePtr, u32 Offset, u32
Bytes)

int XFlash_UnLock (XFlash *InstancePtr, u32 Offset, u32
Bytes)

Parameters InstancePtr is a pointer to XFlash Instance.

Offset is the offset of the block address into the devices address
space which need to be locked.

Bytes is the number of bytes to be locked.

Returns XST_SUCCESS if successful.

XFLASH_ADDRESS_ERROR if the destination address range is
not completely within the addressable areas of the device.

Description This API locks a block in the flash device.

Includes xilflash.h

xilflash_cfi.h

xilflash_intel.h

xilflash_amd.h

Parameters InstancePtr is a pointer to XFlash Instance.

Offset is the offset of the block address into the devices address
space which need to be unlocked.

Bytes is the number of bytes to be unlocked.

Returns XST_SUCCESS if successful.

XFLASH_ADDRESS_ERROR if the destination address range is not
completely within the addressable areas of the device.

Description This API unlocks previously locked blocks that are locked.

Includes xilflash.h

xilflash_cfi.h

xilflash_intel.h

xilflash_amd.h

http://www.xilinx.com

XilFlash Library APIs

UG651 June 23, 2010 www.xilinx.com 6

int XFlash_DeviceControl (XFlash *InstancePtr, u32
Command, DeviceControl *Parameters)

int XFlash_IsReady (XFlash *InstancePtr)

Parameters InstancePtr is a pointer to XFlash Instance.

Command is the device specific command to issue.

Parameters specifies the arguments passed to the device control
function.

Returns XST_SUCCESS if successful.

XFLASH_NOT_SUPPORTED if the command is not supported by
the device.

Description This API is used to execute device specific commands.

Includes xilflash.h

xilflash_cfi.h

xilflash_intel.h

xilflash_amd.h

Parameters InstancePtr is a pointer to XFlash Instance.

Returns TRUE if the device has been initialized; otherwise, FALSE.

Description This API checks the readiness of the device, which means it has
been successfully initialized.

Includes xilflash.h

xilflash_cfi.h

xilflash_intel.h

xilflash_amd.h

http://www.xilinx.com

Libgen Customization

UG651 June 23, 2010 www.xilinx.com 7

Libgen
Customization

XilFlash Library can be integrated with a system using the following snippet in the
Microprocessor Software Specification (MSS) file, the PROC_INSTANCE should be changed
depending on the processor used:

BEGIN LIBRARY
parameter LIBRARY_NAME = xilflash
parameter LIBRARY_VER = 2.02.a
parameter PROC_INSTANCE = ppc405_0
parameter flash_family = 1
parameter part_width = 2
parameter num_parts = 2
parameter part_mode= 2
parameter base_address= 0x80800000
parameter platform_flash= 0x0

END

Parameter description:

• flash_family specifies the family to which the flash device belongs to, it should be set
to 1 for Intel CFI compliant flash devices and should be set to 2 to support AMD CFI
compliant flash devices.

• part_width specifies the data bus width supported by the flash part.

• num_part specifies the number of flash device parts in the array that forms the flash
memory.

• part_mode specifies the data bus width of the flash part actually used.

• base_address specifies the flash base address.

• platform_flash specifies if the Flash device is a Xilinx Platform Flash XL device, it
should be set to 1 if the Flash is a Xilinx Platform Flash XL device otherwise it should be
set to 0.

http://www.xilinx.com

UG652 June 23, 2010 www.xilinx.com 1

© 2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries.
All other trademarks are the property of their respective owners.

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development of
designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the Documentation
in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves the right, at its sole discretion,
to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors contained in the Documentation, or to
advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be
provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER WARRANTIES,
WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL
XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF
DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

Summary The Xilinx® In-system and Serial Flash (XilIsf) Library supports the Xilinx In-System Flash and
external Serial Flash Memories from Atmel® (AT45XXXD), Intel (S33), ST Microelectronics
(STM) (M25PXX), and Winbond (W25QXX/W25XX). Intel (S33) and STM (M25PXX) Serial
Flash devices are now a part of Serial Flash devices provided by Numonyx. The library enables
higher layer software (such as an application) to communicate with the serial flash.

This document contains the following sections:

• “LibXil Isf Library Overview”

• “LibXil Isf Library APIs”

• “Libgen Customization”

• “Additional Resources”

LibXil Isf
Library
Overview

The LibXil Isf library:

• Allows the user to Write, Read, and Erase the Serial Flash.

• Allows protection of the data stored in the Serial Flash from unwarranted modification by
enabling the Sector Protection feature.

• Supports the Xilinx In-System Flash and external Serial Flash Memories from Atmel
(AT45XXXD), Intel (S33), ST Microelectronics (STM) (M25PXX), and Winbond
(W25QXX/W25XX). Intel (S33) and STM (M25PXX) Serial Flash devices are now a part of
Serial Flash devices provided by Numonyx.

• Supports multiple instances of Serial Flash at a time, provided they are of the same device
family (either Atmel, Intel, STM or Winbond) as the device family is selected at compile
time.

• Allows the user application to perform different Control operations on Intel, STM and
Winbond Serial Flash.

• Requires the underlying hardware platform to contain the xps_spi device for accessing the
Serial Flash.

• Uses the Xilinx XSpi driver in interrupt-driven mode or polled mode for communicating with
the Serial Flash. In interrupt mode, the user application must acknowledge any associated
interrupts from the Interrupt Controller.

• Requires the user application to track status of initiated operations when in interrupt mode;
the transfer is initiated and the control is given back to the user application.

UG652 June 23, 2010

LibXil Isf (v2.01.a)

http://www.xilinx.com

LibXil Isf Library APIs

UG652 June 23, 2010 www.xilinx.com 2

LibXil Isf
Library APIs

This section provides a linked summary and detailed descriptions of the LibXil Isf library APIs.

API Summary

The following is a summary list of APIs provided by the LibXil Isf library. The list is linked to the
API description. Click on the API name to go to the description..

LibXil Isf API Descriptions

int XIsf_Initialize(XIsf *InstancePtr, XSpi *SpiInstPtr,
u32 SlaveSelect, u8 *WritePtr)

int XIsf_Initialize(XIsf *InstancePtr, XSpi *SpiInstPtr, u32 SlaveSelect, u8 *WritePtr)
int XIsf_GetStatus(XIsf *InstancePtr, u8 *ReadPtr)
int XIsf_GetDeviceInfo(XIsf *InstancePtr, u8 *ReadPtr)
int XIsf_Read(XIsf *InstancePtr, XIsf_ReadOperation Operation, void *OpParamPtr)
int XIsf_Write(XIsf *InstancePtr, XIsf_WriteOperation Operation, void *OpParamPtr)
int XIsf_Erase(XIsf *InstancePtr, XIsf_EraseOperation Operation, u32 Address)
int XIsf_SectorProtect(XIsf *InstancePtr, XIsf_SpOperation Operation, u8 *BufferPtr)
int XIsf_WriteEnable(XIsf *Ins tancePtr, u8 WriteEnable)
int XIsf_Ioctl (XIsf *InstancePtr, XIsf_IoctlOperation Operation)

Parameters InstancePtr is a pointer to the XIsf instance.
SpiInstPtr is a pointer to the XSpi instance to be worked on.
SlaveSelect is a 32-bit mask with a 1 in the bit position of the slave being
selected. Only one slave can be selected at a time.
WritePtr is a pointer to the buffer allocated by the user to be used by the In-
system and Serial Flash Library to perform any read/write operations on the
Serial Flash device.
User applications must initialize the Isf library by passing the address of this buffer
to the Initialization API.
For Write operations:
• A minimum of one byte and a maximum of ISF_PAGE_SIZE bytes can be

written to the Serial Flash, through a single Write operation.
• The buffer size must be equal to the number of bytes to be written to the Serial

Flash + XISF_CMD_MAX_EXTRA_BYTES, and must be large enough for use
across the applications that use a common instance of the Serial Flash.

For Non Write operations:
• The buffer size must be equal to XISF_CMD_MAX_EXTRA_BYTES.

Returns XST_SUCCESS upon success.
XST_DEVICE_IS_STOPPED if the device must be started before transferring
data.
XST_FAILURE upon failure.

Description The geometry of the underlying Serial Flash is determined by reading the Joint
Electron Device Engineering Council (JEDEC) Device Information and the Serial
Flash Status Register.
This API should be called before any other API in this library is used.

Note: The XIsf_Initialize() API is a blocking call (for both polled mode and
interrupt mode of the SPI driver). It reads the JEDEC information of the device and
waits till the transfer is complete before checking if the information is valid.

This library can support multiple instances of Serial Flash at a time, provided they
are of the same device family (either Atmel, Intel, STM, or Winbond) as the device
family is selected at compile time.

Includes xilisf.h

http://www.xilinx.com

LibXil Isf Library APIs

UG652 June 23, 2010 www.xilinx.com 3

int XIsf_GetStatus(XIsf *InstancePtr, u8 *ReadPtr)

int XIsf_GetDeviceInfo(XIsf *InstancePtr, u8 *ReadPtr)

Parameters InstancePtr is a pointer to the XIsf instance.
ReadPtr is a pointer to the memory where the Status Register
content is copied.

Returns XST_SUCCESS upon success
XST_FAILURE upon failure

Description This API reads the Serial Flash Status Register.

Note: The content of the Status Register is stored at the second byte
pointed by the ReadPtr.

Includes xilisf.h

Parameters InstancePtr is a pointer to the XIsf instance.
ReadPtr is a pointer to the memory where the Device information is
copied.

Returns XST_SUCCESS upon success.
XST_FAILURE upon failure.

Description This API reads the JEDEC information of the Serial Flash.

Note: The Device information is stored at the second byte pointed by the
ReadPtr.

Includes xilisf.h

http://www.xilinx.com

LibXil Isf Library APIs

UG652 June 23, 2010 www.xilinx.com 4

int XIsf_Read(XIsf *InstancePtr, XIsf_ReadOperation
Operation, void *OpParamPtr)
Parameters InstancePtr is a pointer to the XIsf instance.

Operation is the type of the read operation to be performed on the
Serial Flash.
The Operation options are:
XISF_READ: Normal Read
XISF_FAST_READ: Fast Read
XISF_PAGE_TO_BUF_TRANS: Page to Buffer Transfer
XISF_BUFFER_READ: Buffer Read
XISF_FAST_BUFFER_READ: Fast Buffer Read
XISF_OTP_READ: One Time Programmable Area (OTP) Read.
OpParamPtr is the pointer to structure variable which contains
operational parameter of specified Operation. This parameter type is
dependent on the type of Operation to be performed.
When specifying Normal Read (XISF_READ), Fast Read
(XISF_FAST_READ) and One Time Programmable Area
Read(XISF_OTP_READ):
• OpParamPtr must be of type struct XIsf_ReadParam.
• OpParamPtr->Address is the start address in the Serial Flash.
• OpParamPtr->ReadPtr is a pointer to the memory where the

data read from the Serial Flash is stored.
• OpParamPtr->NumBytes is number of bytes to read.
Normal Read and Fast Read operations are supported for Atmel, Intel,
STM and Winbond Serial Flash.
OTP Read operation is only supported in Intel Serial Flash.
When specifying Page To Buffer Transfer
(XISF_PAGE_TO_BUF_TRANS):
• OpParamPtr must be of type struct

XIsf_FlashToBufTransferParam.
• OpParamPtr->BufferNum specifies the internal SRAM Buffer of

the Serial Flash. The valid values are XISF_PAGE_BUFFER1 or
XISF_PAGE_BUFFER2. XISF_PAGE_BUFFER2 is not valid in the
case of AT45DB011D Flash as it contains a single buffer.

• OpParamPtr->Address is start address in the Serial Flash.
This operation is only supported in Atmel Serial Flash.

http://www.xilinx.com

LibXil Isf Library APIs

UG652 June 23, 2010 www.xilinx.com 5

XIsf_Read (continued)

Parameters When specifying Buffer Read (XISF_BUFFER_READ) and Fast Buffer
Read (XISF_FAST_BUFFER_READ):
• OpParamPtr must be of type struct XIsf_BufferReadParam.
• OpParamPtr->BufferNum specifies the internal SRAM Buffer of

the Serial Flash. The valid values are XISF_PAGE_BUFFER1 or
XISF_PAGE_BUFFER2. XISF_PAGE_BUFFER2 is not valid in the
case of AT45DB011D Flash as it contains a single buffer.

• OpParamPtr->ReadPtr is pointer to the memory where the data
read from the SRAM buffer is to be stored.

• OpParamPtr->ByteOffset is byte offset in the SRAM buffer
from where the first byte is read.

• OpParamPtr->NumBytes is the number of bytes to be read from
the Buffer.

These operations are supported only in Atmel Serial Flash.

Returns XST_SUCCESS upon success.
XST_FAILURE upon failure.

Description This API reads the data from the Serial Flash.

Note: Application must fill the structure elements of the third argument
and pass its pointer by type casting it with void pointer.

The valid data is available from the fourth location pointed to by the
ReadPtr for Normal Read and Buffer Read operations.

The valid data is available from the fifth location pointed to by the ReadPtr
for Fast Read, Fast Buffer Read and OTP Read operations.

Includes xilisf.h

http://www.xilinx.com

LibXil Isf Library APIs

UG652 June 23, 2010 www.xilinx.com 6

int XIsf_Write(XIsf *InstancePtr, XIsf_WriteOperation
Operation, void *OpParamPtr)

Parameters InstancePtr is a pointer to the XIsf instance.
Operation is the type of write operation to be performed on the
Serial Flash.
The Operation options are:
• XISF_WRITE: Normal Write
• XISF_AUTO_PAGE_WRITE: Auto Page Write
• XISF_BUFFER_WRITE: Buffer Write
• XISF_BUF_TO_PAGE_WRITE_WITH_ERASE: Buffer to Page

Transfer with Erase
• XISF_BUF_TO_PAGE_WRITE_WITHOUT_ERASE: Buffer to Page

Transfer without Erase
• XISF_WRITE_STATUS_REG: Status Register Write
• XISF_OTP_WRITE: OTP Write.
OpParamPtr is the pointer to a structure variable which contains
operational parameters of specified operation.
This parameter type is dependant on value of first argument
(Operation).
When specifying Normal Write (XISF_WRITE):
• OpParamPtr must be of type struct XIsf_WriteParam.
• OpParamPtr->Address is the start address in the Serial Flash.
• OpParamPtr->WritePtr is a pointer to the data to be written to

the Serial Flash.
• OpParamPtr->NumBytes is the number of bytes to be written to

the Serial Flash.
This operation is supported for Atmel, Intel, STM, and Winbond Serial
Flash.
When specifying the Auto Page Write (XISF_AUTO_PAGE_WRITE):
• OpParamPtr must be of 32 bit unsigned integer variable. This is

the address of page number in the Serial Flash which is to be
refreshed.

This operation is only supported in Atmel Serial Flash.
When specifying the Buffer Write (XISF_BUFFER_WRITE):
• OpParamPtr must be of type struct XIsf_BufferWriteParam.
• OpParamPtr->BufferNum specifies the internal SRAM Buffer of

the Serial Flash. The valid values are XISF_PAGE_BUFFER1 or
XISF_PAGE_BUFFER2. XISF_PAGE_BUFFER2 is not valid in the
case of AT45DB011D Flash as it contains a single buffer.

• OpParamPtr->WritePtr is a pointer to the data to be written to
the Serial Flash SRAM Buffer.

• OpParamPtr->ByteOffset is byte offset in the buffer from
where the data is to be written.

• OpParamPtr->NumBytes is number of bytes to be written to the
Buffer.

This operation is supported only for Atmel Serial Flash.

http://www.xilinx.com

LibXil Isf Library APIs

UG652 June 23, 2010 www.xilinx.com 7

XIsf_Write (continued)

Parameters When specifying Buffer To Memory Write With Erase
(XISF_BUF_TO_PAGE_WRITE_WITH_ERASE) or Buffer To Memory
Write Without Erase
(XISF_BUF_TO_PAGE_WRITE_WITHOUT_ERASE):
• OpParamPtr must be of type struct

XIsf_BufferToFlashWriteParam.
• OpParamPtr->BufferNum specifies the internal SRAM Buffer of

the Serial Flash. The valid values are XISF_PAGE_BUFFER1 or
XISF_PAGE_BUFFER2. XISF_PAGE_BUFFER2 is not valid in the
case of AT45DB011D Flash as it contains a single buffer.

• OpParamPtr->Address is starting address in the Serial Flash
memory from where the data is to be written.

These operations are only supported in Atmel Serial Flash.
When specifying Write Status Register
(XISF_WRITE_STATUS_REG), the OpParamPtr must be an 8-bit
unsigned integer variable. This is the value to be written to the Status
Register.
This operation is supported in Intel, STM and Winbond Serial Flash
only.
When specifying One Time Programmable Area Write
(XISF_OTP_WRITE):
• OpParamPtr must be of type struct XIsf_WriteParam.
• OpParamPtr->Address is the address in the SRAM Buffer of the

Serial Flash to which the data is to be written.
• OpParamPtr->WritePtr is a pointer to the data to be written to

the Serial Flash.
• OpParamPtr->NumBytes should be set to 1 when performing

OTPWrite operation.
This operation is only supported in Intel Serial Flash.

Returns XST_SUCCESS upon success.
XST_FAILURE upon failure.

Description This API writes the data to the Serial Flash.

Note: Application must fill the structure elements of the third argument
and pass its pointer by type casting it with void pointer.

For Intel, STM and Winbond Serial Flash the user application must call
the XIsf_WriteEnable() API by passing XISF_WRITE_ENABLE
as an argument before calling the XIsf_Write() API.

Includes xilisf.h

http://www.xilinx.com

LibXil Isf Library APIs

UG652 June 23, 2010 www.xilinx.com 8

int XIsf_Erase(XIsf *InstancePtr, XIsf_EraseOperation
Operation, u32 Address)
Parameters InstancePtr is a pointer to the XIsf instance.

Operation is the type of Erase operation to be performed on the
Serial Flash.
The different operations are
• XISF_PAGE_ERASE: Page Erase
• XISF_BLOCK_ERASE: Block Erase
• XISF_SECTOR_ERASE: Sector Erase
• XISF_BULK_ERASE: Bulk Erase
Address is the address of the Page/Block/Sector to be erased. The
address can be either Page address, Block address or Sector address
based on the Erase operation to be performed.

Returns XST_SUCCESS upon success.
XST_FAILURE upon failure.

Description This API erases the contents of the specified memory in the Serial
Flash.

Note: The erased bytes will read as 0xFF.

For Intel, STM and Winbond Serial Flash the user application must call
XIsf_WriteEnable() API by passing XISF_WRITE_ENABLE as
an argument before calling the XIsf_Erase() API.
Atmel Serial Flash support Page/Block/Sector Erase operations.
Intel and Winbond Serial Flash support Sector/Block/Bulk Erase
operations.
STM Serial Flash support Sector/Bulk Erase operations.

Includes xilisf.h

http://www.xilinx.com

LibXil Isf Library APIs

UG652 June 23, 2010 www.xilinx.com 9

int XIsf_SectorProtect(XIsf *InstancePtr, XIsf_SpOperation
Operation, u8 *BufferPtr)

int XIsf_WriteEnable(XIsf *InstancePtr, u8 WriteEnable)

Parameters InstancePtr is a pointer to the XIsf instance.
Operation is the type of Sector Protect operation to be performed on
the Serial Flash.
The Operation options are
• XISF_SPR_READ: Read Sector Protection Register
• XISF_SPR_WRITE: Write Sector Protection Register
• XISF_SPR_ERASE: Erase Sector Protection Register
• XISF_SP_ENABLE: Enable Sector Protection
• XISF_SP_DISABLE: Disable Sector Protection
BufferPtr is a pointer to the memory where the SPR content is read
to/written from. This argument can be NULL if the Operation is
SprErase, SpEnable and SpDisable.

Returns XST_SUCCESS upon success.
XST_FAILURE upon failure.

Description This API is used for performing Sector Protect related operations.

Note: The SPR content is stored at the fourth location pointed by the
BufferPtr when performing XISF_SPR_READ operation.

For Intel, STM and Winbond Serial Flash the user application must call
the XIsf_WriteEnable() API by passing XISF_WRITE_ENABLE
as an argument, before calling the XIsf_SectorProtect() API, for
Sector Protect Register Write (XISF_SPR_WRITE) operation.
Atmel Flash supports all these Sector Protect operations.
Intel, STM and Winbond Flash support only Sector Protect Read and
Sector Protect Write operations.

Includes xilisf.h

Parameters InstancePtr is a pointer to the XIsf instance.
WriteEnable specifies whether to Enable
(XISF_CMD_ENABLE_WRITE) or Disable
(XISF_CMD_DISABLE_WRITE) the writes to the Serial Flash.

Returns XST_SUCCESS upon success.
XST_FAILURE upon failure.

Description This API Enables/Disables writes to the Intel, STM and Winbond
Serial Flash.

Note: This API works only for Intel, STM and Winbond Serial Flash. If
this API is called for Atmel Flash, XST_FAILURE is returned.

Includes xilisf.h

http://www.xilinx.com

Libgen Customization

UG652 June 23, 2010 www.xilinx.com 10

int XIsf_Ioctl (XIsf *InstancePtr, XIsf_IoctlOperation
Operation)

Libgen
Customization

The LibXil Isf library can be integrated with a system using the following snippet in the
Microprocessor Software Specification (MSS) file.

BEGIN LIBRARY
parameter LIBRARY_NAME = xilisf
parameter LIBRARY_VER = 2.01.a
parameter PROC_INSTANCE = microblaze_0
parameter serial_flash_family = 1

END

Note: The parameter serial_flash_family value should be set to 1 to support Xilinx In-system Flash or
Atmel Serial Flash, should be set to 2 to support Intel (Numonyx) S33 Serial Flash, should be set to 3 to
support STM(Numonyx) M25PXX Serial Flash and should be set to 4 to support Winbond Serial Flash.
The PROC_INSTANCE should be changed depending on the processor used in the system. The
LIBRARY_VER should be the latest version of the library.

Additional
Resources

• Spartan-3AN FPGA In-System Flash User Guide (UG333),
http://www.xilinx.com/support/documentation/user_guides/ug333.pdf

• Atmel Serial Flash Memory web page (AT45XXXD)
http://www.atmel.com/dyn/products/devices.asp?family_id=616#1802

• Intel (Numonyx) S33 Serial Flash Memory web page (S33)
http://www.numonyx.com/Documents/Datasheets/314822_S33_Discrete_DS.pdf

• STM (Numonyx) M25PXX Serial Flash Memory web page (M25PXX)
http://www.numonyx.com/en-
US/MemoryProducts/NORserial/Pages/M25PTechnicalDocuments.aspx

• Winbond Serial Flash Page
http://www.winbond-
usa.com/hq/enu/ProductAndSales/ProductLines/FlashMemory/SerialFlash//

Parameters InstancePtr is a pointer to the XIsf instance.
Operation is the type of Control operation to be performed on the
Serial Flash.
The control Operations options are:
• XISF_RELEASE_DPD: Release from Deep Power Down (DPD)

Mode
• XISF_ENTER_DPD: Enter DPD Mode
• XISF_CLEAR_SR_FAIL_FLAGS: Clear the Status Register Fail

Flags.

Returns XST_SUCCESS upon success.
XST_FAILURE upon failure.

Description This API configures and controls the Intel, STM and Winbond Serial
Flash.

Note: Atmel Serial Flash does not support any of these operations.

Intel Serial Flash support Enter/Release from DPD Mode and Clear
Status Register Fail Flags.
STM and Winbond Serial Flash support Enter/Release from DPD Mode.

Includes xilisf.h

http://www.xilinx.com
http://www.atmel.com/dyn/products/devices.asp?family_id=616#1802
http://www.xilinx.com/support/documentation/user_guides/ug333.pdf
http://www.atmel.com/dyn/products/devices.asp?family_id=616#1802
http://www.atmel.com/dyn/products/devices.asp?family_id=616#1802
http://www.atmel.com/dyn/products/devices.asp?family_id=616#1802
http://www.atmel.com/dyn/products/devices.asp?family_id=616#1802
http://www.numonyx.com/Documents/Datasheets/314822_S33_Discrete_DS.pdf
http://www.numonyx.com/en-US/MemoryProducts/NORserial/Pages/M25PTechnicalDocuments.aspx
http://www.winbond-usa.com/hq/enu/ProductAndSales/ProductLines/FlashMemory/SerialFlash/

UG708 July 23, 2010 www.xilinx.com 1

© 2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries.
All other trademarks are the property of their respective owners.

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development of
designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the Documentation
in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves the right, at its sole discretion,
to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors contained in the Documentation, or to
advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be
provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER WARRANTIES,
WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL
XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF
DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

Summary This document describes the automatic generation of a Linux 2.6 Board Support Package
(BSP) through Xilinx® Software Development Kit (SDK)(1). The document contains the
following sections:

• “Overview”

• “Getting Started with Linux 2.6”

• “Creating a BSP from SDK”

• “Directory Structures”

• “Configuring the Linux Kernel”

• “Linux Devices Reference”

• “Related Information”

Overview In a typical embedded development environment, one of the tasks is to create software to
support the custom hardware on the embedded system for the target O/S. This software that
supports embedded custom hardware is often called a Board Support Package (BSP). In an
environment where hardware is defined in a programmable System-on-Chip (SoC), hardware
changes can come about much more rapidly, making it difficult for the BSP to remain current
with the revisions in hardware.

To ease this situation, Xilinx provides a process called Automatic BSP Generation that tailors a
BSP according to the current hardware configuration of the FPGA.

Automatic generation of a BSP is done using Xilinx SDK, which is available in the Xilinx
Embedded Development Kit (EDK) or as separately installed tool. SDK generates BSPs based
on the defined hardware configuration. For Linux, SDK generates a sparse Linux kernel source
tree containing just the hardware specific files for the BSP. For Linux 2.6, SDK supports both
the MontaVista and Wind River Linux distributions.

UG708 July 23, 2010

Automatic Generation of Linux 2.6 Board
Support Packages

1. The Xilinx SDK is used as the primary software development environment for Xilinx Embedded Development Kit
(EDK) users as of EDK 12.1. The software development capabilities of Xilinx Platform Studio (XPS) are now
deprecated and will be removed from XPS in later releases. The flows described in this document pertain to the
SDK, although they may still be generally applicable to XPS while those features remain in the tool.

http://www.xilinx.com

Getting Started with Linux 2.6

UG708 July 23, 2010 www.xilinx.com 2

In general, the flow of work for using Linux on an embedded system using FPGAs is as follows:

1. Define the hardware components in Xilinx Platform Studio (XPS) and export the project to
the Xilinx SDK.

2. Select a Linux 2.6 distribution as the target operating system in SDK.

3. Specify operating system parameters.

4. Generate the BSP in SDK.

5. Configure the kernel.

6. Define the root file system.

7. Build the kernel.

8. Install the kernel and root file system

9. Develop and run application specific code

This guide describes steps 2 through 5, and 7. The remaining steps are beyond the scope of
this guide.

Getting Started
with Linux 2.6

The Linux 2.6 distributions currently supported in SDK are from MontaVista and Wind River.
These distributions can be purchased directly from those vendors. The MontaVista product is
named as Linux Professional Edition 5.0, which each includes a kernel source tree,
development tools, and technical support. The Wind River product is named as General
Purpose Platform Linux Edition 2.0. These Linux products provide a PowerPC® 405/440
processor cross-development environment that runs on various host operating systems. See
the vendor websites for a list of supported host operating systems.

To get started, first install the MontaVista or Wind River Linux distribution CDs for the PowerPC
405/440 processors. If using the FPU on Virtex®-5 FXT, install the compiler tools for the
PowerPC 440 processor. Once the main distribution is installed, each vendor provides a Xilinx
BSP CD or download image that can be installed on top of the main distribution. Please follow
the vendor-specific installation instructions.

MontaVista uses the term LSP instead of BSP. LSP stands for Linux Support Package, but
should be considered analogous to Board Support Package. The Linux 2.6 BSPs provided are
for specific reference designs for the Xilinx ML507 and ML403 development boards. The
reference designs can be found on the Xilinx website at www.xilinx.com/ml507 and
www.xilinx.com/ml403 respectively. When developing a custom hardware design for these
boards or for other boards, the user should use the automatically generated BSP from SDK in
conjunction with one of the aforementioned BSPs.

Note: Xilinx has tested the BSPs from MontaVista and Wind River for the development boards (ml403
and ml507) without applying any Linux vendor patches or updates. The patches and updates from these
Linux vendors is recommended. However, if you are running into problems, you may want to try first
without the patches and updates.

When building a hardware design on a custom board, the target FPGA needs to have the
PowerPC processor. Either a serial port or some device that can be used as a console device
would be very useful. Also, unless a ramdisk is going to be used, some device that will be used
to access the root file system needs to be considered (e.g., Ethernet for an NFS root filesystem
or System ACE for a CompactFlash root filesystem).

Creating a Working Kernel Tree

It is recommended to create a working copy of the Linux kernel tree that is installed with your
MontaVista or Wind River distribution. This ensures that the installed copy is kept pristine.

http://www.xilinx.com/ml403
http://www.xilinx.com/ml403
www.xilinx.com/ml300
http://www.xilinx.com/ml300
http://www.xilinx.com

Creating a BSP from SDK

UG708 July 23, 2010 www.xilinx.com 3

MontaVista Linux

When installed on a Linux system, the default install directory for the MontaVista Linux kernel
source, for MontaVista Linux Professional Edition, is here:

/opt/montavista/pro/devkit/lsp/<target board>/linux-2.6.24_pro5024

Some care must be taken to correctly copy the kernel source tree to preserve links and other
file attributes. One method is to use tar to make a tarball of the source tree and then extract it
to the target location. This tar method can even be done using a transitory temporary tar file by
piping the output of the tar creation process into the tar extraction process like so:

tar cf - source_dir | tar xvf - -C target_dir

Here is a specific example:

tar cf - /opt/montavista/pro/devkit/lsp/xilinx-ml507-ppc_440/linux-
2.6.24_pro5024 | tar xvf - -C my_linux-2.6.24

On Windows, perform the copy within a cygwin bash shell so that the Linux file attributes can be
preserved, as the Linux kernel build depends on certain soft links to be present.

Wind River Linux

The steps for creating a working Linux kernel tree for Wind River Linux are different than those
for MontaVista Linux. Refer to the Getting Started guide in your Wind River Linux distribution for
details on creating a kernel and filesystem using the pre-built RPM method or the source build
method, or using the Workbench IDE. The following steps describe creating a working kernel
from the command line using the source build method. Note that these steps avoid building a
filesystem.

• Create a working directory where you want the kernel tree to reside

• From the working directory, run the configure script to copy and configure a kernel tree for
the specific BSP you’re targeting. For example, for the ML403 BSP:

WINDRIVER_INSTALL_DIR/wrlinux-2.0/wrlinux/configure --enable-kernel=cgl -
-enable-board=xilinx_ml403

• Type “make -C dist linux.rebuild” to build the working kernel tree, which will reside in
dist/linux-2.6.21-cgl under the working directory (for Wind River GPP LE 2.0).

Creating a BSP
from SDK

SDK is available as a separately installed tool or within the EDK and is a software development
environment for developing embedded software around PowerPC 405/440 processors or
MicroBlaze™ processor based embedded systems. This section describes the steps needed
to create a Linux 2.6 BSP using SDK. These steps are applicable when using The Xilinx 12.1
tools or later.

It is assumed that a valid hardware design has been created and exported to SDK, and SDK
has been opened and pointed to the hardware design.

http://www.xilinx.com

Creating a BSP from SDK

UG708 July 23, 2010 www.xilinx.com 4

Creating a Board Support Package Project

Once the hardware components have been defined and configured in XPS, and exported to
SDK, a Board Support Package project must be created with the SDK in order to select the
target Operating System. Select the Board Support Package item from the File > New menu to
open the New Board Support Package dialog box..

Enter a project name and select linux_2_6 from the Board Support Package Type drop-down
list and click Finish to launch the Board Support Package Settings dialog box.

X-Ref Target - Figure 1

Figure 1: Create a Board Support Package Project

http://www.xilinx.com

Creating a BSP from SDK

UG708 July 23, 2010 www.xilinx.com 5

Configuring the Board Support Package

There are some configuration options available from within the Board Support Package
Settings dialog box.

The options, some of which are required and some that are optional, are as follows:

linux distribution (required)

This parameter specifies which distribution you are using, either Wind River Linux or
MontaVista Linux. The default is WindRiver Linux. Your Linux kernel might not build properly if
this parameter is set incorrectly. This parameter determines the contents of a Kconfig file.

memory size (required)

This setting simply lets the OS know how much general-purpose RAM it can use in the system.
Obviously this value should be less than or equal to the amount of physical general-purpose
RAM available in the system. Though, it can be set to a value less than the amount of physical
general-purpose RAM if simulating a smaller amount of RAM, or if some area of RAM is
reserved for other purposes.

Note that the hardware configuration should be set so that memory starts at address 0x0.

UART16550 bus clock freq (optional)

This parameter specifies the frequency of the bus (in HZ) to which the console serial device is
attached. The Linux kernel uses this value to program a 16550/16450 UART baud rate. Note
that this setting is only required if a UART 16550 is included in the hardware design.

X-Ref Target - Figure 2

Figure 2: Setting Library/OS Parameters

http://www.xilinx.com

Creating a BSP from SDK

UG708 July 23, 2010 www.xilinx.com 6

target directory (optional)

The target directory where the BSP is created can be specified. Typically, the value points to a
copy of the Linux kernel source tree so that the generated BSP will directly overlay a working
kernel tree with the new drivers. For such an overlay to work correctly, target_dir should point to
the top-most directory in the working kernel tree.

If this target directory is left blank, it defaults to:

project directory/processor name/libsrc/linux_2_6_v1_05_a/linux

This directory will contain a sparse kernel tree with updated device drivers configured to match
the hardware design. This directory should then be copied over the user’s working Linux kernel
tree. Please use forward slashes to delimit directory names.

rootfs type (optional)

The rootfs type parameter specifies which type of root filesystem will be used for this kernel
tree. Note that this is an initial default type and it can always be changed in your kernel .config.
The drop-down list in the Current Value column gives the user a selection of nfs, ramdisk, or
sysace. The selection shows in the default kernel command line. The default value is sysace.
Note that as of this writing Wind River Linux does not officially support a ramdisk rootfs.

ramdisk size (optional)

This parameter specifies the size of the ramdisk if ramdisk was chosen for the rootfs type. The
default value is 8192 1K byte blocks (8 MB). Note that this is an initial default value and it can
be changed in your kernel .config.

NFS info source (optional)

This parameter specifies how the NFS root filesystem will be retrieved during boot if nfs was
chosen for the rootfs type. The default value is dhcp, which means the NFS information will be
taken from the DHCP server. The other option is to select kernel command line to get the NFS
information directly from the kernel command string (for example, nfsroot=).

NFS server (optional)

This parameter specifies the name of the NFS server from which the root filesystem will be
mounted during boot if nfs is chosen for the rootfs type and kernel command line is chosen for
the NFS info source.

NFS share (optional)

This parameter specifies the name of the NFS share on the NFS server. This parameter is only
used if an NFS server name is provided and nfs is chosen for the rootfs type and kernel
command line is chosen for the NFS info source.

sysace partition (optional)

This parameter specifies the CompactFlash card partition which contains the root filesystem.
This parameter is only used if sysace was chosen for the rootfs type. The default value is 2.

IP Address (optional)

This parameter can be set to on, off, or a static IP address. If on is selected, DHCP will be used
to retrieve the target’s IP address during boot. If off is selected, the network is disabled during
boot. If a static IP address is specified, this IP address is assigned to the primary Ethernet
interface during boot. The default value is on.

Additional kernel command line items (optional)

This parameter can be used to specify additional command line options if not addressed by the
options addressed above. For example, options for kgdb configuration or changing the console
device could be specified here.

http://www.xilinx.com

Creating a BSP from SDK

UG708 July 23, 2010 www.xilinx.com 7

powerdown Parameters (optional)

The powerdown parameters are placeholders to aid in creating a soft power down feature in
your board. Some Xilinx boards support a soft power down feature through a GPIO address.

Note: This parameter applies only if you have a powerdown feature on the board and it is accessible
through a memory-mapped address (e.g., GPIO). Please see your board user guide as a reference.

These values are intended to support a power down method where the powerdown value is
written to the powerdown baseaddr to initiate the hardware power down sequence. The
powerdown highaddr is used to indicate a memory range used to map pages to a set of
physical pages.

IIC Parameters (optional)

The IIC parameters are based around the hardware on the Xilinx ML403 and ML507 boards.
The boards have an EEPROM attached to an I2C bus. In addition, Linux is set up to read the
MAC address for the Ethernet driver from an address on this EEPROM. The IIC parameters
specify which addresses in the EEPROM are to be used to read this MAC address as well as
specify the device ID of the EEPROM on the I2C bus.

If your board does not have an EEPROM on an I2C bus, these parameters can be safely
ignored.

The IIC persistent baseaddr value specifies the base address in the EEPROM where the
MAC address is stored.

The IIC persistent highaddr value is not used for booting up. This value is used by other
utilities available with the Xilinx boards that write to the EEPROM.

The IIC persistent eepromaddr value specifies the I2C bus device ID of the EEPROM.

PCI Board (optional)

This parameter specifies the target board for a PCI system. Currently, only the Xilinx ML410
and ML510 boards are supported. When this parameter is set to "ml410", for example, the most
common on-board PCI peripherals are enabled in the Linux kernel configuration through the
automatic kernel configuration in SDK (see Linux Kernel Configuration section).

connected_periphs (required)

This parameter specifies which hardware devices are to be supported in Linux through the
generated BSP. See Table 1, page 22. Clicking in the Current Value column will bring up a
dialog box in which you can specify which peripherals are to be connected to the OS. By
default, this parameter has the list of all peripherals in the hardware design. In most cases, this
parameter can be left unchanged

Generating the BSP

Click OK on the Board Support Package Settings dialog box to generate the BSP.

http://www.xilinx.com

Directory Structures

UG708 July 23, 2010 www.xilinx.com 8

Directory
Structures

If the target directory is left blank, the target directory defaults to

project directory\processor name\libsrc\linux_2_6_v1_05_a\linux.

The Linux directory shown in Figure 3 contains a directory tree of various Linux drivers for the
currently configured hardware devices. If the specified target directory does not refer to the
same directory as the working Linux kernel source tree, copy this directory into the working
Linux kernel source tree.

Copying the BSP to the Linux Kernel Source Tree

If the target directory option in the Board Support Package settings refers to your working Linux
kernel source tree, the generated BSP does not need to be copied. Otherwise the generated
BSP needs to be copied over the top of a working kernel source tree. The top-most directories
in the generated BSP match some of those in the working Linux kernel directory structure.
Copy the generated BSP files so that the files in the /arch directory and /drivers directory
go into the /arch directory and /drivers directory in the working kernel source tree
respectively.

Care should be taken when copying the BSP using the SMB (Windows Networking) protocol.
When using this file sharing protocol, symbolic links to directories on the target can be
overwritten as separate directories. The Linux kernel build seems to require the symbolic links
to be present rather than having separate directories. In particular, pay attention to the /asm
directories.

X-Ref Target - Figure 3

Figure 3: Example Directory Structure for a Generated Linux BSP

http://www.xilinx.com

Configuring the Linux Kernel

UG708 July 23, 2010 www.xilinx.com 9

Configuring the
Linux Kernel

The Linux 2.6 BSP generation process through SDK does kernel customization and the user
needs to do very little, if any, kernel customization other than application-specific
customization. For WindRiver Linux 2.0, the kernel configuration can be updated to enable the
drivers for the device in the hardware design. For MontaVista Linux 5.0, all Xilinx related drivers
are enabled by default and devices are enabled at run-time through the use of the device-tree
structure.

There are three methods for configuring your kernel to match the FPGA hardware design:

1. The target directory points to a valid Linux 2.6 kernel tree.

This method is recommended if starting with unmodified Linux kernel source because it
automatically updates the kernel .config file to match the hardware design. This method is
not recommended if kernel modifications have been made which need to be preserved.
Users do not need to manually configure the kernel (for example by running make
menuconfig) to change individual menu options/setting hiding in different menus and
sub-menus. Instead, simply generating the BSP from SDK followed by a kernel compilation
will generate a kernel that will work on the specific hardware design. (Note this does not
prevent users from running traditional make menuconfig to change individual kernel
settings). A copy of the old .config is saved before updating it with the design-specific
configuration. The saved .config is named
.config.bak.month_day_year_hour_min_sec. (Note that if generating the BSP for
MontaVista Linux 5.0, .config is not updated and is also not copied to a backup file.)

To compile the kernel tree in MontaVista Linux, change the directory to the Linux kernel
source tree, and type:

make oldconfig bzImage

To compile the kernel tree in Wind River Linux, change the directory to the Linux working
directory (the directory that contains the /dist subdirectory), and type:

make -C dist linux.rebuild

or, from the root of the Linux kernel source tree, type:

make ARCH=ppc CROSS_COMPILE=powerpc-wrs-linux-gnu- oldconfig
bzImage

When first running make oldconfig or when first using xmake (described in the following
method), especially when there is a change in the board architecture from the base BSP,
you may be prompted for configuration options on the command line. If this happens, just
press enter to accept the default for all of the questions.

To accomplish this customization, more options were made available in the Board Support
Package Settings dialog box within SDK, as described earlier in this document.

Note: If you want SDK to leave your kernel .config file alone, then leave the target_dir
parameter blank and copy the resulting sparse tree from the SDK project into your working
kernel tree.

2. Target directory is left blank and the config updater tool provided by Xilinx is used.

For WindRiver Linux 2.0:

If the target directory is left blank or does not point to a valid Linux kernel source tree, the
user must copy the sparse Linux tree from the project area to the working kernel tree.
Xilinx provides a Tcl command script that can be run after the sparse tree copy to update
the .config to match the XPS hardware design.

To run the command, be sure an appropriate Tcl/TK interpreter is installed on the host
system where the working Linux kernel tree resides. If this host system has the Xilinx EDK
tools installed, then the appropriate interpreter is already installed and you can use the
EDK/cygwin shell to perform the next step. Otherwise, be sure the host has a Tcl/TK
interpreter 8.0 or newer installed.

http://www.xilinx.com

Manually Configuring the Kernel

UG708 July 23, 2010 www.xilinx.com 10

To update the .config file, change directory to the Linux kernel source tree, then type:

 $ tclsh cow.tcl

Once the Tcl script is run once, there is no need to run it again unless a new BSP is
generated from SDK. Also, the user must compile the kernel after the script is run.

Note that you can alternatively use xmake in place of the standard make command to
update the .config file. You would, for example, type:

 ./xmake bzImage

in the root of the Linux kernel source tree. The xmake tool will first invoke the above Tcl
script and then invoke the standard Linux make command.

For MontaVista Linux 5.0:

If the target directory is left blank or does not point to a valid Linux kernel source tree, the
user must copy the sparse Linux tree from the project area to the working kernel tree.

The default Linux kernel source tree for MontaVista Linux 5.0 has all of the Xilinx-related
drivers enabled. Specific drivers are then enabled when the system probes the device tree,
which describes the hardware in the system. Thus there is no need for the Xilinx tools nor
the user to enable specific drivers in the Linux kernel.

To build the kernel, first type:

 make ml403_defconfig (for virtex4 boards)

or

 make ml507_defconfig (for virtex5 boards)

This will set up the kernel for the processor on the board (PowerPC 405 or PowerPC 440).

Then, if using a ramdisk, type:

make zImage.initrd

otherwise

make zImage

3. The target directory is left blank and the kernel is configured manually.

If the target directory is left blank, copy the sparse Linux tree from the project area to the
working kernel tree. The user can then manually configure the kernel using “make
menuconfig” or its equivalent. See the section below on Manual Kernel Configuration.

Manually
Configuring the
Kernel

This section gives details on manually configuring the kernel for Xilinx-related IP. If you are
using MontaVista Linux 5.0 or if the target directory specified points to a valid Linux kernel tree,
you might not need to use these steps, which means the kernel .config was updated during
the BSP generation process to match the hardware design.

The default kernel configuration file that comes with a Linux 2.6 distribution contains a general
set of kernel options. MontaVista Linux kernel source comes with predefined kernel
configuration files for various development boards. One of these other configuration files may
be a better starting point for your needs. These other configuration files can be found at:

linux/arch/ppc/configs

in the Linux kernel source tree. To use one of these configuration files, copy the desired
configuration file to:

linux/.config

It is a good idea to first save a copy of the original configuration file, .config, in case the
original configuration needs to be restored in the future.

http://www.xilinx.com

Manually Configuring the Kernel

UG708 July 23, 2010 www.xilinx.com 11

One of the common methods for configuring the Linux kernel is to use the make menuconfig
command. There are several other methods for configuring the Linux kernel, but for this guide,
configuration options are described using the make menuconfig method.

Covering every kernel configuration option for the various versions of the Linux kernel is beyond
the scope of this guide; however, information on using WindRiver Linux 2.0 is included as an
example on how to accomplish some of the initial development tasks that will likely be
encountered in your project. Configuration options for other Linux distributions and other kernel
versions may vary from the examples.

Booting From a Compact Flash Card (using System ACE™)

There are various boot loaders that can be selected for booting Linux from a Compact Flash
(CF) card. However, Xilinx and related boards often provide an alternative boot method called
Booting from SystemACE. Booting from SystemACE is different from other boot loaders in that
it also loads a hardware bitstream into the FPGA.

Booting from System ACE involves the following steps:

1. Generate the hardware bitstream.

2. Build the Linux kernel.

3. Create the System ACE file.

4. Partition the CF card.

5. Copy the System ACE file to the CF card.

Boards that provide booting from System ACE have a chip, called a System ACE chip, which
will read an inserted CF card and look for a file with an .ace extension. This ace file contains
the hardware bitstream along with possibly an executable program. The System ACE chip then
loads the FPGA with the hardware bitstream, and if there is an executable program, it will load
the program into memory and begin executing the program.

Keep in mind that the hardware bitstream can also have an application that runs in block RAM
in the FPGA. When booting from System ACE, it is recommended to have such an application
in the hardware bitstream such as a bootloader or bootloop application. This will ensure that the
processor does not execute random instructions in the timing window between when the FPGA
is programmed and when the application in the ace file is loaded and run. When in doubt, just
use the EDK processor bootloop program.

To boot from System ACE, the ace file needs to be in the first partition on the CF card. This
partition needs to be formatted to have the DOS file system. This DOS partition might need to
be created on the CF card and should be large enough to hold the ace file. Extra space for
additional ace files may be desired as well. 10 megabytes should be sufficient for most
situations. If multiple ace files are being managed on the CF card, refer to the SystemACE
Compact Flash Solution data sheet (DS080), which can be found on the Xilinx web site
(http://www.xilinx.com).

Note: CF card images can be found for the Xilinx ML403 and ML507 boards at
http://www.xilinx.com/ml403 and http://www.xilinx.com/ml507 under the Demos and Reference Designs
link.

Finally, the ace file needs to be copied to the DOS partition on the CF card. Refer to the Xilinx
System ACE datasheet for information on where in the DOS partition the ace file needs to
reside. To boot the system, ensure that the CF card is in the proper card reader slot before
powering on the board. If everything is in proper order, the System ACE chip will take care of
the rest.

http://www.xilinx.com
http://www.xilinx.com
http://www.xilinx.com
http://www.xilinx.com/ml403
http://www.xilinx.com/ml507

Manually Configuring the Kernel

UG708 July 23, 2010 www.xilinx.com 12

Setting Up Ethernet

This section will specifically describe the steps needed to get ethernet working on Xilinx
boards. Other development boards may be set up similarly, so this section may still be useful for
other boards.

In the Xilinx ML403 and ML507 boards, a unique ethernet MAC address for the board is stored
in an EEPROM. The EEPROM is accessed from the FPGA using an I2C bus, and therefore an
I2C controller within the FPGA. The Linux BSPs for these Xilinx boards attempt to read the
MAC address over I2C during initialization. In Linux, if the MAC address cannot be found for
one reason or another, a default MAC address is used. This default MAC address is fine to use.
Though, it is not very convenient if your network will have many of these development boards
attached, as each board will need different kernel software each with a different default MAC
address. The default MAC address is defined in arch/ppc/boot/simple/embedded_config.c.

In many cases there is a need to use Ethernet without an I2C bus, thus the I2C driver will not
be present. In other cases, other methods of retrieving the MAC address are desired. If, for
whatever reason, there is a need to use Ethernet without the I2C driver, in
arch/ppc/boot/simple/embed_config.c, the line

#error I2C needed for obtaining the Ethernet MAC address

may need to be removed or changed into a warning or comment line to avoid a compilation
error.

In order to retrieve this MAC address, the I2C bus is used to read the EEPROM containing the
MAC address. To use Ethernet with the stored MAC address, the following steps need to be
done to configure the Linux kernel:

1. Enable the I2C driver in the kernel

2. Enable the Ethernet driver in the kernel

Note: A common mistake is to get to this section of the document, and try to enable the I2C
driver while forgetting that the I2C IP core is not included in the hardware design of the
FPGA. Remember to make sure the I2C IP core is included in the hardware configuration.

X-Ref Target - Figure 4

The I2C driver can be enabled in the kernel by selecting Device Drivers > I2C Support > I2C
Algorithms, then I2C IP from Xilinx EDK in the make menuconfig menus.

Figure 4: Enabling I2C in the Kernel

http://www.xilinx.com

Manually Configuring the Kernel

UG708 July 23, 2010 www.xilinx.com 13

If the root filesystem will reside on NFS, it will be best to have the I2C driver included in the
kernel. Otherwise the I2C driver can be built as a module.
X-Ref Target - Figure 5

You can enable the ethernet driver in the kernel from make menuconfig by selecting Device
Drivers > Networking support >Ethernet (10 or 100Mbit) then Xilinx 10/100 Mbit EMAC
support or Ethernet (1000 Mbit) then Xilinx 10/100/1000 Mbit TEMAC support. If the root
file system will reside on NFS, this driver should be built into the kernel. Otherwise it can be built
as a module. By default, the BSPs for the Xilinx boards in Linux have 10/100 Ethernet enabled
in the kernel (not as a module).

Linux Root Filesystem Setup

The location of the root filesystem can reside in a number of different places irrespective of how
the system boots. The root filesystem may reside on an NFS network share, on a CF card, or
even get loaded into RAM, among other choices.

There are various methods for creating the root filesystem contents including using vendor
tools. Describing how to create a root filesystem or even describing what executables are
needed on the root filesystem is beyond the scope of this guide. Some good resources for
getting help in this area are:

Building Embedded Linux Systems: (http://www.oreilly.com/catalog/belinuxsys/index.html)

Linux From Scratch Project: (http://www.linuxfromscratch.org)

Filesystem Hierarchy Standard: (http://www.pathname.com/fhs)

Note: If the Xilinx ML403 or ML507 is being used and you’re using MontaVista Linux, you
can start with the root filesystem that is on the CompactFlash card that comes with the
board. Note that the root filesystem on the CF card was built for MontaVista Linux and is not
guaranteed to work with Wind River Linux.

In an embedded system, there is often a requirement to separate the static root filesystem
(used for boot-up processes) from an area that is storing transient, field-use data or end-user
data. This separation can prevent dynamic data from accidentally overwriting system files or
simply filling up the root filesystem preventing the system from booting.

Linux supports a wide range of file systems such as Ext2, Ext3, ReiserFS, JFS, XFS, and
others. The root filesystem for many embedded systems will remain mostly static. In this case
a good filesystem to use is Ext2, which is widely used and is well tested.

Figure 5: Enabling 10/100/1000 Ethernet in the Kernel

http://www.xilinx.com
http://www.oreilly.com/catalog/belinuxsys/index.html
http://www.linuxfromscratch.org
http://www.pathname.com/fhs

Manually Configuring the Kernel

UG708 July 23, 2010 www.xilinx.com 14

If the embedded system will be writing many files, in particular large files, the XFS file system is
a good choice. Ext3 is also commonly used. Note that using Ext3 or XFS on a CF card is not
particularly useful, as CF cards are relatively slow and have a relative low capacity. If all that is
being written or modified is configuration data written through well-defined methods, using a
single root partition should be sufficient. Use of Ext3, XFS, or some other filesystems is more
beneficial when there is a fairly fast or large-capacity storage medium in the embedded system
such as, say, a hard disk.

Using the Root Filesystem on a Compact Flash Card

This section explains how to use a root filesystem on a CF card, accessed through System
ACE. If the root file system is to reside on the CF card, the following steps are needed:

1. Partition the CF card.

2. Create file systems on the CF card.

3. Copy the root filesystem files and directories.

4. Configure the kernel to compile in the CF card drivers.

5. Configure the kernel boot parameters to use the root file system on the CF card.

If a CF card needs to be re-partitioned to hold the root filesystem, an easy way to partition it is
to attach a CF card reader to a Linux workstation and use the Linux tools for partitioning drives.
Linux fdisk seems to work well. On a system here, the CF card could be accessed through
/dev/sda, though this may be different on your system.

Note: If the CF card is also going to be used to boot from System ACE, remember to leave
the first partition as a DOS partition.

Technically, a swap partition is not needed. However, having a swap partition will increase the
amount of virtual memory available. The recommended swap partition size is usually twice the
size of RAM. Though, more or less swap space may be specified depending on the system
needs. When creating a swap partition, remember to set the partition’s type to Linux Swap (type
82).

The partitions for the root filesystem should be large enough to hold the files being placed in the
root filesystem. A helpful utility for determining the root filesystem size, if it’s in a staging area,
is du. When creating the root partition, remember to set the partition type to Linux (type 83).

Once the partitions have been created, the file system on the Linux partitions will need to be
created. Some Linux tools such as parted are capable of creating the empty filesystem at the
time each partition is created. Otherwise, a tool such as mkfs will be needed.

Often the root filesystem contents are placed in a staging area allowing a whole directory tree
to be copied over at once. When copying such a directory tree, it is a good idea to get the file
and directory attributes set correctly before performing the copy. Make sure when performing
the copy to use a command that will preserve the attributes such as cp -a, or tar.

http://www.xilinx.com

Manually Configuring the Kernel

UG708 July 23, 2010 www.xilinx.com 15

After the root filesystem files have been copied over to the CF card, the kernel will need to be
configured to use that root filesystem. For the kernel to be able to read the CF card, the System
ACE kernel driver must be enabled.

Note: A common mistake at this point might be to have forgotten to include the System
ACE IP core in your hardware project.

X-Ref Target - Figure 6

The System ACE driver can be enabled by selecting Device Drivers > Block Devices, then
Xilinx on-chip SystemACE in the menu from make menuconfig. Make sure support for this
device is included in the kernel, not as a module. See Figure 4, page 12. By default in the BSP
for the Xilinx boards in Linux, this option is enabled.
X-Ref Target - Figure 7

Figure 6: Selecting SystemACE kernel support

X-Ref Target - Figure 8

Figure 7: Initial Kernel Command String Option

http://www.xilinx.com

Manually Configuring the Kernel

UG708 July 23, 2010 www.xilinx.com 16

Next, edit the initial kernel command string option. This option can be found by selecting
Platform options in the main menu of make menuconfig, to tell the kernel where the root
filesystem resides. Default bootloader kernel arguments must also be selected for this
option to appear. The root= item of this initial kernel command string should, among other
options, contain

root=/dev/xsysace2 rw

where N is the partition number of the root file system on the CF card.

By default in the BSPs for the Xilinx boards, this option is set up to use the root filesystem on a
CF card.

Using the Root Filesystem in a RAM disk

When using a RAM disk for the root filesystem, the RAM disk image gets linked in with the
kernel image. The process for using a root filesystem is nearly identical to using an initial RAM
disk (initrd). The only difference is that in the boot sequence instead of performing a pivot root
to the root filesystem on a different medium, the kernel performs a pivot root back to the RAM
disk file system. Note that as of this writing Wind River Linux does not officially support a
ramdisk rootfs.

The steps needed to use a RAM disk root filesystem are:

1. Create the RAM disk file.

2. Configure the kernel to have the RAM disk driver.

3. Configure the kernel initial command string to use the root from RAM disk.

4. Build the kernel so it includes the ram disk.

Directions for how to make use of this pre-built image are described below. If for some reason
this RAM disk image will not work for your project, a different RAM disk image will have to be
created. The Wind River Linux distribution does not contain a pre-built RAM disk image.

The RAM disk starts out as an image file containing the file system that will be loaded into
memory at boot time. This RAM disk image should hold a standard ext2 filesystem.

The easiest way to create the image file, is to use an available Linux workstation and to start
with the following commands:

dd if=/dev/zero of=initrd.img bs=1k count=kbytes size

mke2fs -F -v -m0 initrd.img

These commands create an empty RAM disk image. The next step is to mount that image file,
and copy the root filesystem files to the image files.. To mount the image file to /mnt/tmp, the
following command can be used:

mount -o loop initrd.img /mnt/tmp

Now, copy the files and directories, preserving their attributes, to the RAM disk root filesystem,
and then unmount it. Remember to use cp -a or tar when performing the copy so that file and
directory attributes can be preserved. The umount program is used to unmount a filesystem. If
your image is mounted on /mnt/tmp as in the example above, the command

umount /mnt/tmp

will unmount the file system in the image file.

Finally compress the image file using the following command:

gzip -9 initrd.img ramdisk.image.gz

And then copy ramdisk.image.gz to the following directory in your working Linux kernel
source tree:

arch/ppc/boot/images

http://www.xilinx.com

Manually Configuring the Kernel

UG708 July 23, 2010 www.xilinx.com 17

Now that the RAM disk image file has been created and is in the right place, the kernel must be
configured to use that file. The RAM disk driver must be enabled and the kernel initial command
string must be set so it uses the RAM disk as the /root filesystem.
X-Ref Target - Figure 8

The options for enabling RAM disk support in the kernel can be found in make menuconfig by
selecting Device Drivers->Block devices in the top-level menu as shown in Figure 6, page 15.
To set up the kernel for a RAM disk root, RAM disk support as well as Initial RAM disk (initrd)
support must both be enabled in the kernel (not as a module). The Default RAM disk size
should be set to a value a little larger than the actual RAM disk image uncompressed size so
that there is room for temporary files used during boot up. Making the RAM disk size in the
kernel 8K larger than the image uncompressed size has been observed to work well.

To configure the kernel to use the RAM disk as it’s root file system, the Initial kernel command
string must be modified. This option can be found in make menuconfig by selecting Platform
options in the main menu as shown in Figure 5, page 13. Note that Default bootloader kernel
arguments must also be selected for this option to appear.

To continue using the initial RAM disk as your root file system, you will have to set the root= item
of the initial kernel command string to have

root=/dev/ram rw

Note there should be no other root= options on this command string. Wind River Linux may use

root=/dev/ram0 rw

instead.

By default in the BSPs Xilinx boards in Linux, this option is not set up to use a RAM disk root
filesystem. The part of the line that reads

root =/dev/xsysace2

needs to be replaced with the correct text, as described above.

Figure 8: RAM Disk Options

http://www.xilinx.com

Manually Configuring the Kernel

UG708 July 23, 2010 www.xilinx.com 18

Configuring an NFS Root Filesystem

Most embedded systems won’t be using NFS to store the root filesystem in the final product.
However, using NFS for the root filesystem during development can be useful. With an NFS
root filesystem, you don’t need to worry about size requirements. This is especially useful when
working with temporary debug files. It is also much easier to update an NFS root filesystem, as
opposed to CF cards or RAM disk images, when, during development, new programs are
discovered to be necessary.

To use an NFS share for the root file system, there are three steps:

1. Create the root filesystem on an NFS share

2. Setup Ethernet (see above)

3. Configure the kernel boot parameters to use an NFS root

To create the root filesystem on an NFS share, put the target root file system files in a directory
tree that will be exported through NFS. Keep in mind that the files for this share are not
necessarily the same as those that run on the host system. In fact, most of the time, the system
hosting the NFS will not have the same processor architecture as the target system. There are
many resources available that describe how to share a directory through NFS. NFS will not be
fully covered here. A basic NFS share can be created on a Linux host system by adding

directory path *(rw)

to the /etc/exports file and then restart the NFS daemon. Keep in mind that you have to be
logged in as root to edit that file and to restart the NFS daemon.

To set up ethernet in the kernel see the section, “Setting Up Ethernet,” page 12.

X-Ref Target - Figure 9

Figure 9: Root File System on NFS

http://www.xilinx.com

Manually Configuring the Kernel

UG708 July 23, 2010 www.xilinx.com 19

Lastly, the kernel must be told to use NFS for the root filesystem along with the location on the
network of the NFS to use. In File systems >Network File Systems, enable Root file system
on NFS. See Figure 7, page 15. The Initial kernel command string is again modified to
complete the settings to use the root filesystem over NFS. This option can be found in make
menuconfig by selecting Platform options in the main menu as shown in Figure 5, page 13.

If using an NFS server and share, the root= item of the initial kernel command string should be
replaced with:

ip=on nfsroot=nfs share rw

Here is an example

ip=on nfsroot=192.168.1.10:/export/virtex5_root rw

If using DHCP to retrieve the NFS server and share name, the root= item should contain:

ip=on root=/dev/nfs

By default in the BSPs for the Xilinx boards in Linux, this option is not set up to use the root
filesystem over NFS. The part of the line that reads

root =/dev/xsysace2

needs to be replaced with the correct text as described above.

Configuring a Serial/UART Main Console

Linux provides for various consoles to be connected. Some may be over a serial port while
others are through a keyboard and monitor. The main console is the console on which the
kernel displays messages. Other consoles merely provide additional login sessions.

To have the main console use a serial port, there are three steps:

1. Configure the kernel to include a UART driver.

2. Configure the UART driver to include support for the main console.

3. Configure the kernel boot parameters to use UART as the primary console.

To set up the kernel so that it uses the serial port for the main console, the correct UART driver
needs to be enabled according to the hardware configuration. The UART Lite driver is for the
UART Lite IP core that may be present in your hardware configuration. Otherwise the standard
Linux UART driver is used.
X-Ref Target - Figure 10

Figure 10: Kernel Configuration for UART Lite

http://www.xilinx.com

Manually Configuring the Kernel

UG708 July 23, 2010 www.xilinx.com 20

The option to enable the Xilinx UART Lite driver can be found under the Device Drivers
>Character devices>Serial drivers menu in make menuconfig. If using the UART Lite driver
for the main console over a serial port, this driver must be enabled in the kernel, as opposed to
being a module. Once Xilinx UART Lite has been properly enabled, Console on UART Lite port
must also be selected.
X-Ref Target - Figure 11

If, instead of the UART Lite IP core, the UART16550 IP core is used, the standard Linux 16550
serial driver should be used. This option can be found under the Device Drivers >Character
devices >Serial drivers menu. Just as with the UART Lite, this driver should be included in the
kernel instead of being a module, and the Console on 8250/16550 and compatible serial
port option should be enabled as well.

Once a UART driver has been enabled and it has been configured to allow a serial console, the
Initial kernel command string option needs to be modified. See Figure 5, page 13.

Make sure the Initial kernel command string option contains the following text:

for UART Lite (WR GPP LE 2.0):

console=ttyULport number

for UART 16550:

console=ttyS port number,baud rate

where:

− the port number refers to which serial port is used.

− the baud rate is the speed of the serial port.

For example, for a 16550 serial console on the first serial port with a baud rate of 9600, the
string looks like

console=ttyS0,9600

When using a string, as in the example above, a client terminal application should connect
using 9600 bps, 8 data bits, no parity, and 1 stop bit. Note that the UART Lite baud rate is fixed
at hardware build time, so there is no need to specify it in software.

Figure 11: Kernel Configuration for UART 16550

http://www.xilinx.com

Manually Configuring the Kernel

UG708 July 23, 2010 www.xilinx.com 21

Sometimes there may be uncertainty about how the main console is set up and how
subsequent consoles are set up. With the main console on the serial port, all of the boot
messages will be sent to the serial port. This is generally the desired outcome for embedded
development. This way any error messages presented there can be seen during the boot up
sequence. The method described here to set up the main serial console should not be
confused with methods for attaching additional console through the file /etc/inittab.

Configuring PCI and Related Peripherals

This section describes the configuration options for the ML410 board. If you are using the
automatic configuration update feature in SDK (cow.tcl or xmake), you can ignore this
section.

The following is a quick list of the "make menuconfig" options for each of the PCI devices on the
ML410 using WindRiver Linux 2.0.

• Enable Bus Options > PCI Support

• Enable Device Drivers > ATA/ATAPI/MFM/RLL support > ATA/ATAPI/MFM/RLL
support

− Enable Enhanced IDE/MFM/RLL disk/cdrom/tape/floppy/support

- Enable Include IDE/ATA-2 DISK support

- Enable Include IDE/ATAPI CDROM support

- Enable Include IDE/ATAPI TAPE support

- Enable PCI IDE chipset support

- Enable Sharing PCI IDE interrupts source

- Enable Boot off-board chipsets first support

- Enable Generic PCI IDE chipset support

- Enable Generic PCI bus-master DMA support

- Enable ALI M15x3 chipset support

- Enable PROMIS PDC202{46|62|65|

• Enable Device Driver > SCSI device support > SCSI device support

− Enable SCSI generic support

• If using a 3COM Ethernet card:

− Enable Device Driver > Networking support > Ethernet (10 or 100Mbit) > 3COM
cards

− Enable 3c590/3c900 series (592/595/597) Vortex/Boomerang support

− Enable Device Driver > USB support > Support for Host-side USB

- Enable USB device filesystem

Note that the above options may vary depending on your needs.

http://www.xilinx.com

Linux Devices Reference

UG708 July 23, 2010 www.xilinx.com 22

Linux Devices
Reference

To reduce the amount of time spent searching for files and settings, Table 1 provides the
relationship between driver modules, Xilinx provided IP cores, location of driver source files,
and kernel config items.

Driver Configuration and the Platform Bus

The Linux 2.6 distributions and Xilinx device drivers have begun to move toward the platform
bus model for driver initialization. This means that (almost) all Xilinx drivers no longer depend

Table 1: Drivers and IP cores supported in Linux

Xilinx Driver Xilinx IP Core Driver Location in LSP Linux Kernel Config Item

n/a opb_uart16550
plb_uart16550
xps_uart16550

linux/drivers/serial/8250.c Device Drivers/Character
devices/Serial drivers/ 8250/16550
and compatible serial support

uartlite opb_uartlite
xps_uartlite

linux/drivers/serial/uartlite.c Device Drivers/Character
devices/Serial drivers/Xilinx UART Lite
support

emac opb_ethernet
plb_ethernet

linux/drivers/net/xilinx_emac Device Drivers/Networking
support/Network device
support/Ethernet (10 or 100Mbit)/Xilinx
10/100 Mbit EMAC support

temac plb_temac linux/drivers/net/xilinx_temac Device Drivers/Networking
support/Network device
support/Ethernet (1000 Mbit)/Xilinx
10/100/1000 Mbit TEMAC support

lltemac xps_ll_temac linux/drivers/net/xilinx_temac Device Drivers/Networking
support/Network device
support/Ethernet (1000 Mbit)/Xilinx
10/100/1000 Mbit TEMAC support

llfifo xps_ll_fifo linux/drivers/xilinx_common n/a

lldma mpmc w/ sdma
ppc440 dma

linux/drivers/xilinx_common n/a

n/a opb_intc
dcr_intc
xps_intc

linux/arch/ppc/syslib/xilinx_pic.c n/a

iic opb_iic
xps_iic

linux/drivers/i2c/algos/xilinx_iic Device Drivers/I2C support/I2C
Algorithms/I2C IP from Xilinx EDK

n/a plb_tft_cntlr_ref linux/drivers/video/xilinxfb.c n/a

touchscreen_ref opb_tsd_ref linux/drivers/char/xilinx_ts n/a

ps2_ref opb_ps2_dual_ref

opb_ps2_ref

linux/drivers/input/serio/xilinx_ps2 Device Drivers/Input device
support/Xilinx PS/2 Controller Support

spi opb_spi
xps_spi

linux/drivers/char/xilinx_spi Device Drivers/Character devices/Xilinx
SPI

sysace opb_sysace
xps_sysace

linux/drivers/block/xilinx_sysace Device Drivers/Block devices/Xilinx on-
chip System ACE

gpio opb_gpio
plb_gpio
xps_gpio

linux/drivers/char/xilinx_gpio Device Drivers/Character devices/Xilinx
GPIO support

common n/a linux/drivers/xilinx_common n/a

http://www.xilinx.com

Related Information

UG708 July 23, 2010 www.xilinx.com 23

on xparameters.h, nor do they use the _g.c file for driver configuration. Instead, the files
virtex.c and virtex.h in arch/ppc/platforms/4xx and xilinx_devices.h in
include/linux specify the Xilinx driver configurations. Device drivers get their configuration
from the platform bus structures populated in the virtex.c file. The virtex.* files currently
depend on xparameters.h, but in the future could be made to depend instead on non-static
configuration data, such as data passed to the kernel from a bootloader. The ultimate intent
being that the kernel tree need not be recompiled in order to reconfigure Xilinx device drivers.

Related
Information

If you have a question or problem associated with the Xilinx IP or drivers associated with such
IP, contact Xilinx Support. The Xilinx support web site is here: http://support.xilinx.com

Otherwise, if you have purchased MontaVista or Wind River Linux, you are entitled to support
from those vendors.

The Internet also contains a wealth of information on Linux. A few Internet resources can be
found here:

Linux From Scratch Project (http://www.linuxfromscratch.org)

Filesystem Hierarchy Standard (http://www.pathname.com/fhs)

In addition to just using web searches, there are also various e-mail lists you can search or join.
At the time of this writing, one such list called linuxppc-embedded, can be found here:

https://ozlabs.org/mailman/listinfo/linuxppc-embedded

The archives for this list can be found here: http://ozlabs.org/pipermail/linuxppc-embedded/

O’Reilly also publishes several good books on using and developing software for Linux. Here
are some such books that you might find useful:

Running Linux, 4th Edition (http://www.oreilly.com/catalog/runux4/)

Building Embedded Linux Systems (http://www.oreilly.com/catalog/belinuxsys/index.html)

Understanding the Linux Kernel, 3rd Edition
(http://www.oreilly.com/catalog/understandlk/index.html)

Linux Device Drivers, 3rd Edition (http://www.oreilly.com/catalog/linuxdrive3/index.html)

Linux Network Administrator's Guide (http://www.oreilly.com/catalog/linag3/index.html)

http://www.xilinx.com
http://support.xilinx.com
http://www.linuxfromscratch.org
http://www.pathname.com/fhs
https://ozlabs.org/mailman/listinfo/linuxppc-embedded
http://ozlabs.org/pipermail/linuxppc-embedded/
http://www.oreilly.com/catalog/runux4/
http://www.oreilly.com/catalog/belinuxsys/index.html
http://www.oreilly.com/catalog/understandlk/index.html
http://www.oreilly.com/catalog/linuxdrive3/index.html
http://www.oreilly.com/catalog/linag3/index.html

UG703 June 23, 2010 www.xilinx.com 1

© 2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries.
All other trademarks are the property of their respective owners.

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development of
designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the Documentation
in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves the right, at its sole discretion,
to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors contained in the Documentation, or to
advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be
provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER WARRANTIES,
WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL
XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF
DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

Summary This document describes the automatic generation of a Workbench Board Support Package
(BSP) using Xilinx® Software Development Kit (SDK)(1). The document contains the following
sections:

• “Overview”

• “Generating the VxWorks 6.3 BSP”

• “The VxWorks 6.3 BSP”

• “Booting VxWorks”

Overview One of the key embedded system development activities is the development of the BSP. The
creation of a BSP can be a lengthy and tedious process that must be incurred when there is a
change in the microprocessor complex which is comprised of the processor and associated
peripherals. Although the management of these changes applies to any microprocessor-based
project, now the changes can be accomplished more rapidly with the advent of programmable
System-on-Chip (SoC) hardware.

This document describes automatic generation of a customized VxWorks 6.3 BSP for the IBM
PowerPC® 405/440 processors and peripherals as defined within a Xilinx FPGA. An
automatically generated BSP enables embedded system designers to:

• Decrease the development cycles, thereby decreasing the time-to-market

• Create a customized BSP to match the hardware and the application

• Eliminate BSP design bugs (automatically created based on certified components)

• Enable application software development by eliminating the wait for BSP development

The VxWorks 6.3 BSP is generated from SDK, an IDE delivered as part of the Xilinx Embedded
Development Kit (EDK) or available separately from Xilinx. SDK is used to create software
applications for embedded systems within Xilinx FPGAs. The VxWorks BSP contains all the
necessary support software for a system, including boot code, device drivers, and RTOS

UG703 June 23, 2010

Automatic Generation of Wind River
VxWorks 6.3 Board Support Packages

1. SDK is used as the primary software development environment for Xilinx Embedded Development Kit (EDK) users
as of EDK 11.1. The software development capabilities of Xilinx Platform Studio (XPS) are now deprecated. The
flows described in this document pertain to the SDK, although they might still be generally applicable to XPS while
those features are provided in the tool.

http://www.xilinx.com

UG703 June 23, 2010 www.xilinx.com 2

Overview

initialization. The BSP is customized based on the peripherals chosen and configured by the
user for the FPGA-based embedded system

Experienced BSP designers should readily integrate a generated BSP into their target system.
Conversely, less experience users may encounter difficulties because even though SDK can
generate an operational BSP for a given set of IP hardware, there will always be some
additional configuration and adjustments required to produce the best performance out of the
target system. It is recommended that the user have available the Wind River VxWorks BSP
Developer’s Guide and the VxWorks Application Programmer’s Guide or consider the Wind
River classes on BSP design, available at an additional cost.

Requirements

The Wind River Workbench 2.5 development kit must be installed on the host computer.
Because SDK generates re-locatable BSPs that are compiled and configured outside the SDK
environment, the host computer need not have both the Xilinx SDK and Workbench installed.

Microprocessor Library Definition

SDK supports a plug-in interface for 3rd party libraries and operating systems through the
Microprocessor Library Definition (MLD) interface, thereby allowing 3rd party vendors to have
their software available to SDK users. In addition, it provides the vendors a means for tailoring
their libraries or BSPs to the FPGA-based embedded system. Because the system can change
easily, this capability is critical in properly supporting embedded systems in FPGAs.

Xilinx develops and maintains the VxWorks 6.3 MLD in its SDK releases. The MLD is used to
automatically generate the VxWorks 6.3 BSP.

Template-Based Approach

A set of VxWorks 6.3 BSP template files are released with the SDK. These template files are
used during automatic generation of the BSP and appropriate modifications are made based
on the makeup of the FPGA-based embedded system.

These template files could be used as a reference for building a BSP from scratch if the user
chooses not to automatically generate a BSP.

Device Drivers

A set of device driver source files are released with the SDK and reside in an installation
directory. During creation of a customized BSP, device driver source code is copied from this
installation directory to the BSP directory. Only the source code pertaining to the devices built
into the FPGA-based embedded system are copied. This copy provides the user with a self-
contained, standalone BSP directory which can be modified or relocated. If the user makes
changes to the device driver source code for this BSP, then later wishes to undo the changes,
the SDK tools can be used to regenerate the BSP. At that point, the device driver source files
are recopied from the installation directory to the BSP.

http://www.xilinx.com

UG703 June 23, 2010 www.xilinx.com 3

Generating the VxWorks 6.3 BSP

Generating the
VxWorks 6.3
BSP

Using SDK

SDK is available as a standalone executable or within the EDK and is a software development
environment for embedded software around Xilinx PowerPC 405/440 processors or
MicroBlaze™ processor-based embedded systems. This section describes the steps needed
to create a VxWorks 6.3 BSP using SDK. These steps are applicable when using The Xilinx
11.1 tools or later.

It is assumed that a valid hardware design has been created and exported to SDK, and SDK
has been opened and pointed to the hardware design.

1. Using File > New, create a new Board Support Package project. In the dialog box, enter a
project name, and select vxworks6_3 as the Board Support Package Type. Note that SDK
can manage multiple projects of different BSP types.

The Board Support Package Settings... dialog box, displays.

2. Configure the VxWorks console device:

If a serial device, such as a Uart is used as the VxWorks console, select or enter the
instance name of the serial device as the STDIN/STDOUT peripheral in the Board Support
Package Settings dialog box. It is important to enter the same device for both STDIN and
STDOUT. Currently, only the Uart 16550/16450 and UartLite devices are supported as
VxWorks console devices.

3. Integrate the device drivers:

a. Connect to VxWorks:

The connected_periphs dialog is within the Board Support Package Settings... dialog
box. Peripherals have been pre-populated for user convenience. Use this dialog box to
modify those peripherals to be tightly integrated with the OS, including the device that
was selected as the STDIN/STDOUT peripheral. See the “Device Integration,” page 7
for more details on tight integration of devices.

b. Memory Size:

This field is used to configure the BSP to match the actual hardware memory size on
your board.

c. Uart16550_baud_rate:

This field is used to input the baud rate for projects with the UART 16550/16450 core.
It is not necessary to enter a value here for projects with the UART Lite core since the
baud rate is set for a UART Lite at hardware build time.

4. Generate the VxWorks 6.3 BSP:

Click OK on the Board Support Package Settings... dialog box to generate the BSP. The
output of this invocation is shown in the SDK console window. Once done, the resulting
VxWorks 6.3 BSP will exist in your SDK workspace, under the project directory name you
created in step 1 under the PowerPC 405/440 instance subdirectory. For example, if in the
hardware design is the PowerPC 405 processor instance, ppc405_0, the BSP will reside at
<SDK workspace>/<SDK project name>/ppc405_0/bsp_ppc405_0.

Backups

To prevent the loss of changes to BSP source files, existing files in the directory location of the
BSP are copied into a backup directory before being overwritten. The backup directory is
named backup timestamp where timestamp represents the current date and time, and is
located in the BSP directory. Because the BSP that is generated by SDK is re-locatable, it is
recommended to relocate the BSP from the SDK project directory to an appropriate BSP
development directory as soon as the hardware platform is stable.

http://www.xilinx.com

UG703 June 23, 2010 www.xilinx.com 4

The VxWorks 6.3 BSP

The VxWorks
6.3 BSP

This section describes the VxWorks 6.3 BSP output by SDK. Familiarity with the Wind River
Workbench 2.5 IDE and a set up workbench environment is assumed. You can use the Wind
River environment utility command-line wrenv on a a Windows platform. See the Wind River
Workbench Command-Line Users Guide: “Creating a Development Shell With wrenv” for more
information on using the command-line utilities.

The automatically-generated BSP is integrated into the Workbench IDE. The BSP can be
compiled from the command-line using the Workbench make tools, or from the Workbench
Project facility (also referred to as the Workbench IDE). Once the BSP has been generated,
type make vxWorks from the command-line to compile a bootable RAM image.

If using the Workbench Project facility, you can create a project based on the newly-generated
BSP, then use the build environment provided through the IDE to compile the BSP.

In Workbench 2.5, the diab compiler is supported in addition to the GNU compiler. You can
modify the VxWorks 6.3 BSP Makefile created by SDK to use the diab compiler instead of the
gnu compiler. Look for the make variable named TOOLS and set the value to sfdiab instead of
sfgnu. For a PowerPC 440 processor with hard Floating-Point Unit (FPU) systems, select
either diab or gnu. If using the Workbench Project facility, you can select the desired tool when
the project is first created.

Driver Organization

This section briefly discusses how Xilinx drivers are compiled and linked and eventually used
by Workbench makefiles to be included into the VxWorks image.

Xilinx drivers are implemented in C programming language and can be distributed among
several source files unlike traditional VxWorks drivers, which consist of single C header and
implementation files.

There are up to three components for Xilinx drivers:

• Driver source inclusion

• OS independent implementation

• OS dependent implementation (optional)

Driver source inclusion refers to how Xilinx drivers are compiled. For every driver, there is a file
named procname_drv_dev_version.c. Using the #include command will include the
source file(s) (*.c) for each driver for each given device.

This process is analogous to how the VxWorks sysLib.c # include’s source for Wind River
supplied drivers. Xilinx files are not included in sysLib.c, because of namespace conflicts and
maintainability issues. If all Xilinx files were part of a single compilation then the unit, static
functions, and data are no longer private. This places restrictions on the device drivers and
would negate their operating system independence.

The OS-independent part of the driver is designed for use with any operating system or any
processor. It provides an API that uses the functionality of the underlying hardware. The OS-
dependent part of the driver adapts the driver for use with VxWorks. Such examples are SIO
drivers for serial ports, or END drivers for ethernet adapters. Not all drivers require the OS
dependent drivers, nor is it required to include the OS-dependent portion of the driver in the
VxWorks build.

http://www.xilinx.com

UG703 June 23, 2010 www.xilinx.com 5

The VxWorks 6.3 BSP

Device Driver Location

The automatically-generated BSP resembles most other Workbench BSPs except for the
placement of device driver code. Off-the-shelf device driver code distributed with the
Workbench IDE typically resides in the vxworks-6.3/target/src/drv directory in the
Workbench installation directory. Device driver code for a BSP that is automatically generated
resides in the BSP directory. This minor deviation is because of the dynamic nature of FPGA-
based embedded system. Because the FPGA-based embedded system can be reprogrammed
with new or changed IP, the device driver configuration can change, calling for a more dynamic
placement of device driver source files.

The directory tree for the automatically generated BSP is shown in the following figure.

The top-level directory is named according to the name of the processor instance in the
hardware design project. The customized BSP source files reside in this directory. There is a
subdirectory within the BSP directory named according to the processor instance with
_drv_csp as a suffix. The driver directory contains two subdirectories. The xsrc subdirectory
contains all the device driver related source files. If building from the Workbench Project facility,
the files generated during the build process reside at $PRJ_DIR/$BUILD_SPEC.

Configuration

BSPs generated by SDK are configured like any other VxWorks 6.3 BSP. There is little
configurability to Xilinx drivers because the IP hardware has been pre-configured. The only
configuration available generally is whether the driver is included in the VxWorks build at all.
The process of including/excluding drivers depends on whether the Project facility or the
command-line method is being used to perform the configuration activities.

Note: including a Xilinx device driver does not mean that the driver is used automatically. Most drivers
with VxWorks adapters have initialization code. In some cases the user is required to add the proper driver
initialization function calls to the BSP.

When using SDK to generate a BSP, the resulting BSP files might contain “TODO” comments.
These comments, many of which originate from the PowerPC 405/440 processor BSP template
provided by Wind River, provides suggestions about what the user must provide to configure
the BSP for the target board. The VxWorks BSP Developer Guide and VxWorks Application
Programmer’s Guide are resources for BSP configuration.

Command-Line Driver Inclusion/Exclusion

Within the BSP, a set of constants (one for each driver) are defined in
procname_drv_config.h and follow the format:

#define INCLUDE_<XDRIVER>

This file is included near the top of config.h. By default all drivers are included in the build. To
exclude a driver, add the following line in config.h after the inclusion of the
procname_drv_config.h header file.

#undef INCLUDE_<XDRIVER>

This exclusion prevents the driver from being compiled and linked into the build. To re-instate
the driver, remove the #undef line from config.h. Some care is required for certain drivers.

Figure 1: Driver Directory Location

<bsp_name>

<csp_name>_csp

xsrc

http://www.xilinx.com

UG703 June 23, 2010 www.xilinx.com 6

The VxWorks 6.3 BSP

For example, Ethernet might require that a DMA driver be present. Undefining the DMA driver
will cause the build to fail.

Project Facility Driver Inclusion/Exclusion

The file 50<csp_name>.cdf resides in the BSP directory and is tailored during creation of the
BSP. This file integrates the Xilinx device drivers into the Workbench IDE. The Xilinx device
drivers are hooked into the IDE at the hardware/peripherals sub-folder of the components
tab. Below this are individual device driver folders. An example of the GUI with Xilinx drivers is
shown in the following figure. To add or delete Xilinx drivers, include or exclude driver
components as with any other VxWorks component.

Note: Whatever configuration specified in procname_drv_config.h and config.h is overridden by
the project facility.

Building VxWorks

The automatically generated BSPs follow the standard Workbench conventions when it comes
to creating VxWorks images. Refer to Workbench documentation on how to make a VxWorks
image.

Command-Line BSP Build Extensions

The Xilinx drivers are compiled/linked with the same toolchain VxWorks is built with. Minor
additions to the Makefile were required to help Workbench find the location of driver source
code files.

Figure 2: Workbench 2.5 Project IDE - VxWorks

http://www.xilinx.com

UG703 June 23, 2010 www.xilinx.com 7

The VxWorks 6.3 BSP

Project BSP Build Extensions

The number of new files used to integrate the Xilinx device drivers into the Workbench build
process can be seen in the bsp_name directory. As stated earlier, these files are automatically
created by SDK. The user need only be aware of that the files exist. These files are prefixed
with the instance name of the processor.

Device Integration

Devices in the FPGA-based embedded system have varying degrees of integration with the
VxWorks operating system. The degree of integration is selectable by the SDK user in the
Connected Peripherals dialog box of the Library/OS Parameters tab. Below is a list of currently
supported devices and their level of integration.

• One or more UART 16450/16550/Lite devices can be integrated into the VxWorks Serial
I/O (SIO) interface. This makes a UART available for file I/O and printf/stdio. Only one
UART device can be selected as the console, where standard I/O (stdin, stdout, and
stderr) is directed. A UART device, when integrated into the SIO interface, must be
capable of generating an interrupt. Reference the sysSerial.c file of the BSP to see
details of this integration.

• Ethernet 10/100 MAC, Ethernet Lite 10/100, Gigabit Ethernet MAC, and 10/100/1000 Tri-
speed Ethernet MAC devices can be integrated into the VxWorks Enhanced Network
Driver (END) interface. This makes the device available to the VxWorks network stack and
thus socket-level applications. An Ethernet device, when integrated into the END interface,
must be capable of generating interrupts. Reference the configNet.h and sysNet.c files of
the BSP to see details of this integration. Also, the user might need to modify the default
bootline values in config.h for the Ethernet device to be used as the boot device.

• An Interrupt controller can be connected to the VxWorks intLib exception handling and the
PowerPC 405/440 external non-critical interrupt pin. The generated BSP does not
currently handle interrupt controller integration for the critical interrupt pin of the PowerPC
405/440, nor does it support direct connection of a single interrupting device (other than
the intc) to the processor. However, the user is always able to add manually this integration
in the sysInterrupt.c file of the BSP.

• A System ACE™ controller can be connected to VxWorks as a block device, allowing the
user to attach a filesystem to the CompactFlash device connected to the System ACE
controller. The user must call manually the BSP functions to initialize the System
ACE/CompactFlash as a block device and attach it to the DOS operating system. The
functions currently available to the user are: sysSystemAceInitFS() and
sysSystemAceMount(). A system ACE controller, when integrated into the block device
interface, must be capable of generating an interrupt. Reference the file sysSystemAce.c
in the BSP for more details. The BSP will mount the compact flash as a DOS FAT disk
partition using the Wind River DosFs2.0 add-on. For the VxWorks libraries to be included
into the image, the following packages must be defined in config.h or by the Project
Facility:

♦ INCLUDE_DOSFS_MAIN

♦ INCLUDE_DOSFS_FAT

♦ INCLUDE_DISK_CACHE

♦ INCLUDE_DISK_PART

♦ INCLUDE_DOSFS_DIR_FIXED

♦ INCLUDE_DOSFS_DIR_VFAT

♦ INCLUDE_XBD_BLK_DEV

♦ INCLUDE_XBD_PART_LIB

http://www.xilinx.com

UG703 June 23, 2010 www.xilinx.com 8

The VxWorks 6.3 BSP

Programmatically, an application can mount the DOS file system using the following API
calls:

FILE *fp;

sysSystemAceInitFS();
if (sysSystemAceMount("/cf0", 1) != OK)
{

 /* handle error */
}

fp = fopen("/cf0/myfile.dat","r");

• A PCI bridge can be initialized and made available to the standard VxWorks PCI driver
and configuration functions. The user is required to edit the config.h and sysBusPci.c
BSP files to tailor the PCI memory addresses and configuration for their target system.
Note that PCI interrupts are not automatically integrated into the BSP.

• A USB device controller can be integrated into the USB peripheral controller interface of
the VxWorks BSP components. To test the USB peripheral controller using the existing
Mass Storage emulator component of VxWorks, the following changes are to be done in
the VxWorks source file usbTargMsLib.c and in the BSP file config.h . These changes
are to be done before the VxWorks project is created.

♦ Modify the MS_BULK_OUT_ENDPOINT_NUM constant value as "2" in usbTargMsLib.c
file. This file is located in the WindRiver-Installed-Directory/Vx-
Works6.3/target/src/drv/usb/target/ directory.

♦ After the modification, the VxWorks source is to be compiled at this directory. The
compiler command for a PowerPC 440 processor based system is make CPU=PPC32
and for a PowerPC 405 processor based system it is make CPU=PPC405.

♦ USB MassStorage emulator uses the local memory for the storage area. The user
needs to provide a minimum of 4MB space (modify the LOCAL_MEM_SIZE constant
value in the config.h file as 0x400000) in the RAM. The MassStorage emulator code
emulates a default storage area of 32k.

• All other devices and associated device drivers are not tightly integrated into a VxWorks
interface. Instead, they are loosely integrated and access to these devices is available by
directly accessing the associated device drivers from the user’s application.

• User cores and associated device drivers, if included in the SDK project, are supported
through the BSP generation flow. The user core device drivers will be copied into the BSP
in the same way the Xilinx device drivers are copied. This assumes the directory structure
of the user core device driver matches the structure of the Xilinx device drivers. The /data
and /build sub-directories of the device driver must exist and be formatted in the same
way as the Xilinx device drivers. This includes the CDF snippet and xtag files in the
/build/vxworks5_4 sub-directory. User device drivers are not automatically integrated
into any OS interface (for example SIO), but they are available for direct access by an
application.

Deviations

The following list summarizes the differences between SDK generated BSPs and traditional
BSPs.

• An extra directory structure is added to the root BSP directory to contain the device driver
source code files.

• To keep the BSP buildable while maintaining compatibility with the Workbench Project
facility, a set of files named procname_drv_driver_version.c populate the BSP
directory that simply #include the source code from the driver subdirectory of the BSP.

http://www.xilinx.com

UG703 June 23, 2010 www.xilinx.com 9

The VxWorks 6.3 BSP

• The BSP Makefile has been modified so that the compiler can find the driver source code.
The Makefile contains more information about this deviation and its implications.

• SystemACE usage could require changes to VxWorks source code files found in the
Workbench distribution directory. See the “Bootrom with SystemACE as the Boot Device,”
page 13.

Limitations

The automatically-generated BSP is a good starting point, but should not be expected to meet
all requirement without configuration. Due to the potential complexities of a BSP, the variety of
features that can be included in a BSP, and the support necessary for board devices external to
the FPGA, the automatically-generated BSP will likely require enhancements. However, the
generated BSP will be able to compile and will contain the necessary device drivers
represented in the FPGA-based embedded system. Some of the commonly used devices are
also integrated with the operating system. Specific limitations are listed below.

• An interrupt controller connected to the PowerPC 405/440 processor critical interrupt pin is
not automatically integrated into VxWorks’ interrupt scheme. Only the external interrupt is
currently supported.

• Bus error detection from bus bridges or arbiters is not supported.

• The command-line VxWorks 6.3 BSP defaults to use the GNU compiler. The user must
manually change the Makefile to use the DIAB compiler, or specify the DIAB compiler
when creating a Workbench project based on the BSP.

• Memory address ranges might need to be tailored in config.h to match specific memory
devices and their address ranges.

• PowerPC 405/440 processor caches are disabled by default. You must manually enable
caches through the config.h file or the Workbench project menu.

• When SystemACE is setup to download VxWorks images into RAM using JTAG, all boots
are cold (no warm boots). This is because the System ACE controller resets the processor
whenever it performs an ace file download. An effect of this could cause exception
messages generated by VxWorks to not be printed on the console when the system is
rebooted due to an exception in an ISR or a kernel panic.

Note: No compressed images can be used with SystemACE. This applies to standard compressed
images created with Workbench such as bootrom. Compressed images cannot be placed on
SystemACE as an ace file. SystemACE cannot decompress data as it writes it to RAM. Starting such
an image will lead to a system crash.

• A command-line build cannot initialize the network when SystemACE is the boot device.
This requires that the application provide code to initialize the network when SystemACE
is the boot device. To circumvent this issue see the discussion of
$WIND_BASE/target/src/config/usrNetwork.c in the “Bootrom with
SystemACE as the Boot Device,” page 13.

• On the PowerPC 405/440 processor, the reset vector is at physical address 0xFFFFFFFC.
There is a short time window where the processor will attempt to fetch and execute the
instruction at this address while SystemACE processes the ace file. The processor needs
to be given something to do during this time even if it is a spin loop:

FFFFFFFC b .

If block RAM occupies this address range, then the designer who creates the bitstream
should place instructions here with the ELF to block RAM utility found in the Xilinx
Integrated Software Environment (ISE®) tools.

• VxBus is not supported.

http://www.xilinx.com

UG703 June 23, 2010 www.xilinx.com 10

Booting VxWorks

Booting
VxWorks

VxWorks Bootup Sequence

There are many variations of VxWorks images with some based in RAM, some in ROM.
Depending on board design, not all these images are supported. The following list discusses
various image types:

• ROM compressed images - These images begin execution in ROM and decompress the
BSP image into RAM, then transfer control to the decompressed image in RAM. This
image type is not compatible with SystemACE because SystemACE doesn’t know the
image is compressed and will dutifully place it in RAM at an address that will be
overwritten by the decompression algorithm when it begins. It may be possible to get this
type of image to work if modifications are made to the standard Workbench makefiles to
handle this scenario.

• RAM based images - These images are loaded into RAM by a bootloader, SystemACE, or
an emulator. These images are fully supported.

• ROM based images - These images begin execution in ROM, copy themselves to RAM
then transfer execution to RAM. In designs with SystemACE as the bootloader, the image
is automatically copied to RAM. The hand-coded BSP examples short-circuit the VxWorks
copy operation so that the copy does not occur again after control is transferred to RAM by
SystemACE (see romInit.s).

• ROM resident images - These images begin execution in ROM, copy the data section to
RAM, and execution remains in ROM. In systems with only a SystemACE, this image is
not supported. Theoretically block RAM could be used as a ROM, however, the current
FPGAs being used in the evaluation boards may not have the capacity to store a VxWorks
image which could range in size from 200KB to over 700KB.

VxWorks Boot Sequence

This standard image is designed to be downloaded to the target RAM space by some device.
Once downloaded, the processor is setup to begin execution at function _sysInit at address
RAM_LOW_ADRS. (this constant is defined in config.h and Makefile). Most of the time, the device
performing the download will do this automatically as it can extract the entry point from the
image.

1. _sysInit : This assembly language function running out of RAM performs low level
initialization. When completed, this function will setup the initial stack and invoke the first C
function usrInit(). The _sysInit is located in source code file <bspname>/sysALib.s.

2. usrInit() : This C function running out of RAM sets up the C runtime environment and
performs pre-kernel initialization. It invokes sysHwInit() (implemented in sysLib.c) to
place the HW in a quiescent state. When completed, this function will call kernelInit()
to bring up the VxWorks kernel. This function will in turn invoke usrRoot() as the first task.

3. usrRoot() : Performs post-kernel initialization. Hooks up the system clock, initializes the
TCP/IP stack, etc. It invokes sysHwInit2() (implemented in sysLib.c) to attach and
enable HW interrupts. When complete, usrRoot() invokes user application startup code
usrAppInit() if so configured in the BSP.

Both usrInit() and usrRoot() are implemented by Wind River. The source code files they
exist in are different depending on whether the command line or the Workbench Project facility
is being used to compile the system. Under the command line interface, they are implemented
at $WIND_BASE/target/config/all/usrConfig.c. Under the project facility, they are
maintained in the project directory.

http://www.xilinx.com

UG703 June 23, 2010 www.xilinx.com 11

Booting VxWorks

"bootrom_uncmp" Boot Sequence

This standard image is ROM based but in reality it is linked to execute out of RAM addresses.
While executing from ROM, this image uses relative addressing tricks to call functions for
processing tasks before jumping to RAM.

1. Power on. Processor vectors to 0xFFFFFFFC where a jump instruction should be located
that transfers control to the bootrom at address _romInit.

2. _romInit : This assembly language function running out of ROM notes that this is a cold
boot then jumps to start. Both _romInit and start are located in source code file
bspname/romInit.s.

3. start : This assembly language function running out of ROM sets up the processor,
invalidates the caches, and prepares the system to operate out of RAM. The last operation
is to invoke C function romStart() which is implemented by Wind River and is located in
source code file $WIND_BASE/target/config/ all/bootInit.c.

4. romStart() : This C function running out of ROM copies VxWorks to its RAM start
address located at RAM_HIGH_ADRS (this constant is defined in config.h and
Makefile). After copying VxWorks, control is transferred to function usrInit() in RAM.

5. Follows steps 2 and 3 of the “VxWorks Boot Sequence”.

"bootrom_uncmp" Boot Sequence with SystemACE

This non-standard image is similar to the image discussed in the previous section except that
SystemACE is used to load it. Several changes have to be made to the boot process. More
information can be found in section “Bootrom with SystemACE as the Boot Device,” page 13.

1. Power on. SystemACE loads the image into RAM at RAM_HIGH_ADRS (this constant is
defined in config.h and Makefile) and sets the processor to begin fetching instructions at
address _romInit.

2. _romInit : This assembly language function running out of RAM notes that this is a cold
boot then jumps to start. Both _romInit and start are located in source code file
<bspname>/romInit.s.

3. start : This assembly language function running out of RAM simply jumps to function
_sysInit. The call to romStart() is bypassed because SystemACE has already loaded the
bootrom into it’s destination RAM address.

Follow steps 1, 2, and 3 of the “VxWorks Boot Sequence,” page 10.

Bootroms

The bootrom is a scaled down VxWorks image that operates in much the same way a PC BIOS.
Its primary function is to find and boot a full VxWorks image. The full VxWorks image can reside
on disk, in flash memory, or on some host using the Ethernet. The bootrom must be compiled
in such a way that it has the ability to retrieve the image. If the image is retrieved from an
Ethernet network, then the bootrom must have the TCP/IP stack compiled in, if the image is on
disk, then the bootrom must have disk access support compiled in, and so forth. The bootroms
do little else than retrieve and start the full image and maintain a bootline. The bootline is a text
string that sets certain user characteristics such as the IP address target when using Ethernet
and the file path to the VxWorks image to boot.

Bootroms are not a requirement. They are typically used in a development environment then
replaced with a production VxWorks image.

http://www.xilinx.com

UG703 June 23, 2010 www.xilinx.com 12

Booting VxWorks

Creating Bootroms

At a command shell in the BSP directory, issue the following command to create an
uncompressed bootrom image (required for SystemACE):

make bootrom_uncmp

or

make bootrom

to create a compressed image suitable for placing in a flash memory array.

Bootrom Display

Upon cycling power, if the bootroms are working correctly, output similar to the following should
be seen on the console serial port:

 VxWorks System Boot

Copyright 1984-2006 Wind River Systems, Inc.

CPU: ppc405_0 VirtexII Pro PPC405
Version: VxWorks 6.3
BSP version: 1.2/0
Creation date: Aug 11, 2006, 16:40:32

Press any key to stop auto-boot...
 3

[VxWorks Boot]:

Typing help at this prompt lists the available commands.

Bootline

The bootline is a text string that defines user serviceable characteristics such as the IP address
of the target board and how to find a VxWorks image to boot. The bootline is maintained at
runtime by the bootrom and is typically kept in some non-volatile (NVRAM) storage area of the
system such as an EEPROM or flash memory. If there is no NVRAM, or an error occurs reading
it, then the bootline is hard-coded with DEFAULT_BOOT_LINE defined in the config.h source
code file of the BSP. In new systems where NVRAM has not been initialized, the bootline may
be undefined data.

The bootline can be changed if the auto-boot countdown sequence is interrupted by entering a
character on the console serial port. The c command can then be used to interactively edit the
bootline. Enter p to view the bootline. On a non-bootrom image, the bootline can be changed by
entering the bootChange command at a host or target shell prompt.

The bootline fields are defined below:

• boot device : Device from which to boot. This could be ethernet, or a local disk.

• When changing the bootline, the unit number can be shown appended to this field
(xemac0 or sysace=10) when prompting for the new boot device. This number can be
ignored.

• processor number : Always 0 with single processor systems.

• host name : Name as needed.

• file name : The VxWorks image to boot.

• inet on ethernet (e) : The IP internet address of the target. If there is no network interface,
then this field can be left blank.

http://www.xilinx.com

UG703 June 23, 2010 www.xilinx.com 13

Booting VxWorks

• host inet (h) : The IP internet address of the host. If there is no network interface, then this
field can be left blank.

• user (u) : User name for host file system access. Pick whatever name suites you. Your
FTP server must be setup to allow this user access to the host file system.

• ftp password (pw) : Password of your choice for host file system access. Your FTP server
must be setup to allow this user access to the host file system.

• flags (f) : For a list of options, enter the help command at the [VxWorks Boot]: prompt.

• target name (tn) : Name as needed. Set according to network requirements.

• other (o) : This field is useful when you have a non-ethernet device as the boot device.
When this is the case, VxWorks will not start the network when it boots. Specifying an
ethernet device here will enable that device at boot time with the network parameters
specified in the other bootline fields.

• inet on backplane (b) : Typically left blank if the target system is not on a VME or PCI
backplane.

• gateway inet (g) : Enter an IP address here if you have to go through a gateway to reach
the host computer. Otherwise leave blank.

• startup script (s) : Path to a file on the host computer containing shell commands to
execute once bootup is complete. Leave blank if not using a script. Examples are:

♦ SystemACE resident script: /cf0/vxworks/scripts/myscript.txt

♦ Host resident script: c:/temp/myscript.txt

Bootrom with SystemACE as the Boot Device

SystemACE enabled bootroms are capable of booting VxWorks images directly off the
Compact Flash device either as a regular elf file or an ace file.

Required Modifications to VxWorks Source

While the SDK is capable of generating a BSP that uses SystemACE in a VxWorks image that
can open and close files in a DOS filesystem, it cannot generate a BSP that uses SystemACE
as a bootrom boot device. To use SystemACE in this way requires extensive modifications to
bootrom code provided by Wind River. Wind River allows BSP developers to change
Workbench source code files provided they keep the changes local to the BSP and leave the
original code as is. The two files that have to be modified from their original version are:

1. $WIND_BASE/target/config/all/bootConfig.c: This file is overridden with one
found in the bspname directory. The changes needed are to add code to properly parse the
bootline and to initialize and use SystemACE as a JTAG and DOS boot device. To override
the default bootConfig.c, the following line must be added to the Makefile for the BSP:

BOOTCONFIG = ./bootConfig.c.

2. $WIND_BASE/target/config/comps/src/net/usrNetBoot.c: This file is overridden
with one found in the bspname/net/usrNetBoot.c directory. The changes needed are to add
code to make VxWorks aware that SystemACE is a disk based system like IDE, SCSI, or
floppy drives. This change allows a BSP built from the Workbench Project downloaded with
a SystemACE enabled bootrom to properly process the other field of the bootline. The
existence of the modified file in the BSP directory automatically overrides the original.

Neither of these files are provided by the SDK because they are maintained in their original
form by Wind River.

A third file, $WIND_BASE/target/src/config/usrNetwork.c, cannot be overridden
because of the architecture of the command line BSP build process. This affects network
capable BSPs built from the command line that are downloaded with a SystemACE enabled
bootrom. Without modifying usrNetwork.c, affected BSPs are unable to initialize their
network device and must rely on application code to perform this function.

http://www.xilinx.com

UG703 June 23, 2010 www.xilinx.com 14

Booting VxWorks

If the user desires, they can make the change to this file in their Workbench installation. There
are disadvantages to this approach because any edits made to this file affect all users of that
installation and may be lost if the user upgrades or re-installs Workbench. The change to
usrNetwork.c occurs in function usrNetDevStart().

from:

if ((strncmp (params.bootDev, "scsi", 4) == 0) ||
 (strncmp (params.bootDev, "ide", 3) == 0) ||
 (strncmp (params.bootDev, "ata", 3) == 0) ||
 (strncmp (params.bootDev, "fd", 2) == 0) ||
 (strncmp (params.bootDev, "tffs", 4) == 0))

to

if ((strncmp (params.bootDev, "scsi", 4) == 0) ||
 (strncmp (params.bootDev, "ide", 3) == 0) ||
 (strncmp (params.bootDev, "ata", 3) == 0) ||
 (strncmp (params.bootDev, "fd", 2) == 0) ||
 (strncmp (params.bootDev, "sysace", 6) == 0) ||
 (strncmp (params.bootDev, "tffs", 4) == 0))

Note: Edit this code at your own risk.

Special Configuration

Preparing a bootrom_uncmp image downloadable by SystemACE as an ace file requires
special configuration. These changes are required because the bootrom is linked to begin
running out of a non-volatile memory device, copy itself to RAM, then transfer control to the
RAM copy. The changes will prevent the copy operation since SystemACE has already place
the bootrom into a RAM device at reset.

a. Change the definitions of ROM_TEXT_ADRS and ROM_WARM_ADRS to a value equivalent
to RAM_HIGH_ADRS in both config.h and Makefile.

b. Change the assembly language code at the start label in romInit.s to jump to function
_sysInit:

start:
 LOADPTR (r1, _sysInit)
 mtlr r1

blrl

Bootline Format

The boot device field 6_3 of the bootline is specified using the following syntax:

 sysace=partition number

where partition number is the partition from which to boot. Normally, this value is set to 1,
but some compact flash devices do not have a partition table and are formatted as if they were
a large floppy disk. In this case, specify 0 as the partition number. Failure to get the partition
number correct will lead to errors being reported by the VxWorks dosFS libraries when the
drive is mounted.

http://www.xilinx.com

UG703 June 23, 2010 www.xilinx.com 15

Booting VxWorks

The file name field of the bootline is set depending on how the System ACE is to boot the
system. There are two boot methods:

1. Boot from a regular file. This is similar to network booting in that the vxWorks image resides
in the SystemACE compact flash storage device instead of the host file system. The
compact flash device is a DOS FAT file system partition. Build vxWorks using the
Workbench tools, copy the resulting image file to the compact flash device using a USB
card reader or similar tool, then specify that file in the file name field of the boot ROM. The
file name must have the following syntax:

cf0/path to vxWorks image

where:

♦ cf0 is the mount point

♦ The path to vxWorks image provides the complete path to the VxWorks image to boot.
When being specified in this way, the bootrom will mount the drive as a FAT formatted
disk, load the file into memory and begin execution.

2. Boot from an ace file. The ace file can contain HW only, SW only, or HW + SW. When
booting from an ace file with HW, the FPGA is reprogrammed. If the ace file contains SW,
then it is loaded into the memory, the PC of the processor is set to the entry point and
released to begin fetching instructions. This boot method is flexible in that a totally different
HW profile can be booted from a VxWorks bootrom. The file name must have the following
syntax:

cfgaddr[x]

where [X] is a number between 0 and 7 that corresponds to one of the configuration
directories specified in the XILINX.SYS file resident in the root directory of the compact
flash device. If [X] is omitted, then the default configuration is used. The default
configuration is typically selected by a rotary switch mounted somewhere on the evaluation
board. The bootrom will trigger a JTAG download of the ace file pointed to by the specified
config address. There should be only a single file with an .ace extension in the selected
configuration directory.

In either boot scenario, if the ethernet device is to be started when the downloaded VxWorks
starts, the "other" field of the bootline must be modified to contain the name of the network
device.

Bootrom with 10/100 Ethernet (EMAC) as the Boot Device

SDK will generate a BSP that is capable of being built as a bootrom using the EMAC as a boot
device. Very little user configuration is required. The MAC address is hard coded in the source
file sysNet.c. The BSP can be used with the default MAC as long as the target is on a private
network and there is no more than one target on that network with the same default MAC
address. Otherwise the designer should replace this MAC with a function to retrieve one from
a non-volatile memory device on their target board.

To specify the EMAC as the boot device in the bootrom, change the boot device field in the
bootline to xemac. If there is a single EMAC, set the unit number to 0.

Bootrom with 1 Gigabit Ethernet (GEMAC) as the Boot Device

SDK will generate a BSP that is capable of being built as a bootrom using the GEMAC as a boot
device. Very little user configuration is required. The MAC address is hard coded in the source
file sysNet.c. The BSP can be used with the default MAC as long as the target is on a private
network and there is no more than one target on that network with the same default MAC
address. Otherwise the designer should replace this MAC with a function to retrieve one from
a non-volatile memory device on their target board.

To specify the GEMAC as the boot device in the bootrom, change the boot device field in the
bootline to xgemac. If there is a single GEMAC, set the unit number to 0.

http://www.xilinx.com

UG703 June 23, 2010 www.xilinx.com 16

Booting VxWorks

Bootline Examples

The following example boots from the ethernet using the Xilinx xemac as the boot device. The
image booted is on the host file system on drive C.

boot device : xemac
unit number : 0
processor number : 0
host name : host
file name : c:/WindRiver/vxworks-6.3/target/config/ml507/vxWorks
inet on ethernet (e) : 192.168.0.2
host inet (h) : 192.168.0.1
user (u) : xemhost
ftp password (pw) : whatever
flags (f) : 0x0
target name (tn) : vxtarget
other (o) :

The following example boots from a file resident on the first partition of the compact Flash
device for the SystemACE. If the file booted from /cf0/vxworks/images/vxWorks uses the
network, then the xemac device is initialized.

boot device : sysace=1
unit number : 0
processor number : 0
host name : host
file name : /cf0/vxworks/images/vxWorks
inet on ethernet (e) : 192.168.0.2
host inet (h) : 192.168.0.1
user (u) : xemhost
ftp password (pw) : whatever
flags (f) : 0x0
target name (tn) : vxtarget
other (o) : xemac

The following example boots from an ace file resident on the first partition of the SystemACE
compact flash device. The location of the ace file is set by XILINX.SYS located in the root
directory of the compact flash device. If the ace file contains a VxWorks SW image that uses
the network, then the xemac device is initialized for that image.

boot device : sysace=1
unit number : 0
processor number : 0
host name : host
file name : cfgaddr2
inet on ethernet (e) : 192.168.0.2
host inet (h) : 192.168.0.1
user (u) : xemhost
ftp password (pw) : whatever
flags (f) : 0x0
target name (tn) : vxtarget
other (o) : xemac

http://www.xilinx.com

UG703 June 23, 2010 www.xilinx.com 17

Booting VxWorks

Caches

The instruction and data caches are managed by VxWorks proprietary libraries. They are
enabled by modifying the following constants in config.h or by using the Workbench Project
facility to change the constants of the same name:

• INCLUDE_CACHE_SUPPORT: If defined, the VxWorks cache libraries are linked into the
image. If caching is not desired, then #undef this constant.

• USER_I_CACHE_ENABLE: If defined, VxWorks will enable the instruction cache at boot
time. Requires INCLUDE_CACHE_SUPPORT be defined to have any effect.

• USER_D_CACHE_ENABLE: If defined, VxWorks enables the data cache at boot time.
Requires INCLUDE_CACHE_SUPPORT be defined to have any effect.

MMU

If the MMU is enabled, then the cache control discussed in the previous section may not have
any effect. The MMU is managed by VxWorks proprietary libraries but the initial setup is
defined in the BSP. To enable the MMU, the constant INCLUDE_MMU_BASIC should be defined
in config.h or by using the Project Facility. The constant USER_D_MMU_ENABLE and
USER_I_MMU_ENABLE control whether the instruction and/or data MMU is utilized.

VxWorks initializes the MMU based on data in the sysPhysMemDesc structure defined in
sysCache.c. User reserved memory and ED&R (when INCLUDE_EDR_PM is enabled)
reserved memory is included in this table. Amongst other things, this table configures memory
areas with the following attributes:

• Whether instruction execution is allowed

• Whether data writes are allowed

• Instruction and data cacheability attributes

• Translation offsets used to form virtual addresses.

When VxWorks initializes the MMU, it takes the definitions from sysPhysMemDesc and creates
page table entries (PTEs) in RAM. Each PTE describes 4KB of memory area (even though the
processor is capable of representing up to 16MB per PTE) Beware that specifying large areas
of memory uses substantial amounts of RAM to store the PTEs. To map 4MB of contiguous
memory space takes 8KB of RAM to store the PTEs.

To increase performance with the VxWorks basic MMU package for the PowerPC 405/440
processor, it might be beneficial to not enable the instruction MMU and rely on the cache
control settings in the ICCR register. This strategy can dramatically reduce the number of page
faults while still keeping instructions in cache. The initial setting of the ICCR is defined in the
bspname.h header file.

Without the MMU enabled, the following rules apply to configuring memory access attributes
and caching:

• There is no address translation, all effective addresses are physical.

• Cache control granularity is 128MB.

• The guarded attribute applies only to speculative instruction fetches on the PowerPC 405
processor.

FPU

Hard floating-point unit(FPU) is supported for PowerPC 440 processor systems. To enable hard
floating-point unit, select diab or gnu in generated BSP Makefile TOOLS. To disable hard
floating-point unit, select sfdiab or sfgnu in Makefile’s make variable TOOLS.

http://www.xilinx.com

UG703 June 23, 2010 www.xilinx.com 18

Booting VxWorks

http://www.xilinx.com

UG704 June 23, 2010 www.xilinx.com 1

© 2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries.
All other trademarks are the property of their respective owners.

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development of
designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the Documentation
in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves the right, at its sole discretion,
to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors contained in the Documentation, or to
advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be
provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER WARRANTIES,
WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL
XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF
DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

Summary This document describes the automatic generation of a Workbench Board Support Package
(BSP) using the Xilinx® Software Development Kit (SDK)(1). The document contains the
following sections.

• “Overview”

• “Generating the VxWorks 6.5 BSP”

• “The VxWorks 6.5 BSP”

• “Booting VxWorks”

Overview One of the key embedded system development activities is the development of the BSP. The
creation of a BSP can be a lengthy and tedious process that must be incurred when there is a
change in the microprocessor complex which is comprised of the processor and associated
peripherals. Although the management of these changes applies to any microprocessor-based
project, now the changes can be accomplished more rapidly with the advent of programmable
System-on-Chip (SoC) hardware.

This document describes automatic generation of a customized VxWorks 6.5 BSP for the IBM
PowerPC® 405/440 microprocessor and its peripherals as defined within a Xilinx FPGA. An
automatically generated BSP enables embedded system designers to:

• Decrease substantially the development cycles, thereby decreasing the time-to-market

• Create a customized BSP to match the hardware and the application

• Eliminate BSP design bugs (automatically created based on certified components)

• Enable application software development by eliminating the wait for BSP development

The VxWorks 6.5 BSP is generated from SDK, an IDE delivered as part of the Xilinx Embedded
Development Kit (EDK) or available separately from Xilinx. SDK is used to create software
applications for embedded systems within Xilinx FPGAs. The VxWorks BSP contains all the
necessary support software for a system, including boot code, device drivers, and RTOS

UG704 June 23, 2010

Automatic Generation of Wind River
VxWorks 6.5 Board Support Packages

1. SDK is used as the primary software development environment for Xilinx Embedded Development Kit (EDK) users
as of EDK 11.1. The software development capabilities of Xilinx Platform Studio (XPS) are now deprecated and will
be removed from XPS in later releases. The flows described in this document pertain to the SDK, although they
may still be generally applicable to XPS while those features remain in the tool.

http://www.xilinx.com

UG704 June 23, 2010 www.xilinx.com 2

Overview

initialization. The BSP is customized based on the peripherals chosen and configured by the
user for the FPGA-based embedded system.

Experienced BSP designers should readily integrate a generated BSP into their target system.
Conversely, less experience users may encounter difficulties because even though SDK can
generate an operational BSP for a given set of IP hardware, there will always be some
additional configuration and adjustments required to produce the best performance out of the
target system. It is recommended that the user have available the Wind River VxWorks BSP
Developer’s Guide and the VxWorks Application Programmer’s Guide or consider the Wind
River classes on BSP design, available at an additional cost.

Requirements

The Wind River Workbench 2.6.1 development kit must be installed on the host computer.
Because SDK generates re-locatable BSPs that are compiled and configured outside the SDK
environment, the host computer need not have both the Xilinx SDK and Workbench installed.

Microprocessor Library Definition

SDK supports a plug-in interface for 3rd party libraries and operating systems through the
Microprocessor Library Definition (MLD) interface, thereby allowing 3rd party vendors to have
their software available to SDK users. In addition, it provides the vendors a means for tailoring
their libraries or BSPs to the FPGA-based embedded system created within Xilinx tools.
Because the system can change easily, this capability is critical in properly supporting
embedded systems in FPGAs.

Xilinx develops and maintains the VxWorks 6.5 MLD in its SDK releases. The MLD is used to
automatically generate the VxWorks 6.5 BSP.

Template-Based Approach

A set of VxWorks 6.5 BSP template files are released with the SDK. These template files are
used during automatic generation of the BSP and appropriate modifications are made based
on the makeup of the FPGA-based embedded system.

These template files could be used as a reference for building a BSP from scratch if the user
chooses not to automatically generate a BSP.

Device Drivers

A set of device driver source files are released with the SDK and reside in an installation
directory. During creation of a customized BSP, device driver source code is copied from this
installation directory to the BSP directory. Only the source code pertaining to the devices built
into the FPGA-based embedded system are copied. This copy provides the user with a self-
contained, standalone BSP directory which can be modified or relocated. If the user makes
changes to the device driver source code for this BSP, then later wishes to undo the changes,
the SDK tool can be used to regenerate the BSP. At that point, the device driver source files are
recopied from the installation directory to the BSP.

http://www.xilinx.com

UG704 June 23, 2010 www.xilinx.com 3

Generating the VxWorks 6.5 BSP

Generating the
VxWorks 6.5
BSP

Using SDK

SDK is available as a separately installed tool or within the EDK and is a software development
environment for developing embedded software around Xilinx PowerPC 405/440 or
MicroBlaze™ processor-based embedded systems. This section describes the steps needed
to create a VxWorks 6.5 BSP using SDK. These steps are applicable when using The Xilinx
11.1 tools or later.

It is assumed that a valid hardware design has been created and exported to SDK, and SDK
has been opened and pointed to the hardware design.

1. Using File > New, create a new Board Support Package project. In the dialog box, enter a
project name, and select vxworks6_5 as the Board Support Package Type. Note that SDK
can manage multiple projects of different BSP types.

The remaining steps pertain to the Tools > Board Support Package Settings dialog box, which
should automatically be displayed after the above step.

Figure 1: Board Support Package settings

2. Configure the VxWorks console device

If a serial device such as a Uart is intended to be used as the VxWorks console, select or
enter the instance name of the serial device as the STDIN/STDOUT peripheral in the Board
Support Package Settings dialog box. It is important to enter the same device for both
STDIN and STDOUT. Currently, only the Uart 16550/16450 and UartLite devices are
supported as VxWorks console devices.

http://www.xilinx.com

UG704 June 23, 2010 www.xilinx.com 4

Generating the VxWorks 6.5 BSP

3. Integrate the device drivers

a. Connect to VxWorks

There is a connected_periphs dialog box available in the Board Support Package
Settings... dialog box. Peripherals have been pre-populated for user convenience. Use
this dialog box to modify those peripherals to be tightly integrated with the OS,
including the device that was selected as the STDIN/STDOUT peripheral. See the
“Device Integration” section for more details on tight integration of devices.

b. Memory Size

This field is used to configure the BSP to match the actual hardware memory size on
your board.

c. Uart16550_baud_rate

This field is used to input the baud rate for projects with the UART 16550/16450 core.
It is not necessary to enter a value here for projects with the UART Lite core since the
baud rate is set for a UART Lite at hardware build time.

d. RAM_INSTANCE

This is a drop down menu to select the peripheral instance that is to be used as RAM
in BSP. The subfields memory bank and the base address of RAM under
RAM_INSTANCE are to be configured to match the actual hardware settings.

e. ROM_INSTANCE

This is a drop down menu to select the peripheral instance that is to be used as ROM
in BSP. FLASH is the only ROM device supported on the Xilinx Evaluation boards. If
there is no ROM in the system, the user can leave the default setting i.e. none. If there
is a FLASH in the system the subfields memory bank and the base address of ROM
under ROM_INSTANCE are to be configured to match the actual hardware settings.

f. RAM_LOW_ADRS_OFFSET

This field is used to input the address offset for the RAM base address to obtain the
RAM address for vxWorks used in the BSP and is to be configured to match the
hardware system settings.

g. RAM_HIGH_ADRS_OFFSET

This field is used to input the address offset for the RAM base address to obtain the
RAM address used in the BSP for boot ROM and is to be configured to match the
hardware system settings.

h. ROM_LOW_ADRS_OFFSET

This field is used to input the address offset for the ROM base address to obtain the
FLASH start address used in the BSP and is to be configured to match the hardware
system settings.

i. ROM_HIGH_ADRS_OFFSET

This field is used to input the address offset for the ROM base address to obtain the
FLASH end address used in the BSP and is to be configured to match the hardware
system settings.

j. ROM_SIZE

This field is used to configure the BSP and should match the actual hardware system
settings.

http://www.xilinx.com

UG704 June 23, 2010 www.xilinx.com 5

The VxWorks 6.5 BSP

k. ROM_TEXT_ADRS_OFFSET

This field is used to input the address offset for the ROM base address to obtain the
text section start address used in the BSP and is to be configured to match the
hardware system settings.

l. ROM_WARM_ADRS_OFFSET

This field is used to input the address offset for the ROM base address to obtain the
warm reboot entry address used in the BSP and is to be configured to match the
hardware system settings.

4. Generate the VxWorks 6.5 BSP

Click OK on the Board Support Package Settings dialog box to generate the BSP. The
output of this invocation is shown in the SDK console window. Once done, the resulting
VxWorks 6.5 BSP will exist in your SDK workspace, under the project directory name you
created in step 1 above, under the PowerPC 405/440 instance subdirectory. For example,
if in the hardware design the user has named the PowerPC 405 instance, myppc405, the
BSP will reside at <SDK workspace>/<SDK project name>/myppc405/bsp_ppc405.

Backups

To prevent the inadvertent loss of changes made by the user to BSP source files, existing files
in the directory location of the BSP will be copied into a backup directory before being
overwritten. The backup directory resides within the BSP directory and is named
backup<timestamp>, where <timestamp> represents the current date and time. Because the
BSP that is generated by SDK is relocatable, it is recommended to relocate the BSP from the
SDK project directory to an appropriate BSP development directory as soon as the hardware
platform is stable.

The VxWorks
6.5 BSP

This section describes the VxWorks 6.5 BSP output by SDK. It is assumed that the reader is
familiar with Wind River’s Workbench 2.6.1 IDE.

The automatically generated BSP is integrated into the Workbench IDE. The BSP can be
compiled from the command-line using the Workbench make tools, or from the Workbench
Project facility (also referred to as the Workbench IDE). Once the BSP has been generated, the
user can type make vxWorks from the command-line to compile a bootable RAM image. This
assumes the Workbench environment has been previously set up, which can be done via the
command-line using the wrenv Wind River environment utility on a a Windows platform. See
the Wind River Workbench Command-Line Users Guide: Creating a Development Shell With
wrenv for more information on using the command-line utilities. If using the Workbench Project
facility, the user can create a project based on the newly generated BSP, then use the build
environment provided through the IDE to compile the BSP.

In Workbench 2.6.1, the diab compiler is supported in addition to the gnu compiler. The
VxWorks 6.5 BSP created by SDK has a Makefile that can be modified by the command-line
user to use the diab compiler instead of the gnu compiler. Look for the make variable named
TOOLS and set the value to sfdiab instead of sfgnu. For PowerPC 440 processors with hard
floating-point unit (FPU) systems, please select diab or gnu. If using the Workbench Project
facility, the user can select the desired tool when the project is first created.

Driver Organization

This section briefly discusses how the Xilinx drivers are compiled and linked and eventually
used by Workbench makefiles to be included into the VxWorks image.

Xilinx drivers are implemented in C programming language and can be distributed among
several source files unlike traditional VxWorks drivers, which consist of single C header and
implementation files.

http://www.xilinx.com

UG704 June 23, 2010 www.xilinx.com 6

The VxWorks 6.5 BSP

There are up to three components for Xilinx drivers:

• Driver source inclusion.

• OS independent implementation

• OS dependent implementation (optional).

Driver source inclusion refers to how Xilinx drivers are compiled. For every driver, there is a file
named <procname>_drv_<dev>_<version>.c. Using the #include command will include the
source file(s) (*.c) for each driver for each given device.

This process is analogous to how the VxWorks sysLib.c # include’s source for Wind River
supplied drivers. The reason why Xilinx files are not simply included in sysLib.c, as are the rest
of the drivers, is because of namespace conflicts and maintainability issues. If all Xilinx files
were part of a single compilation unit, static functions and data are no longer private. This
places restrictions on the device drivers and would negate their operating system
independence.

The OS independent part of the driver is designed for use with any operating system or any
processor. It provides an API that utilizes the functionality of the underlying hardware. The OS
dependent part of the driver adapts the driver for use with VxWorks. Such examples are SIO
drivers for serial ports, or END drivers for ethernet adapters. Not all drivers require the OS
dependent drivers, nor is it required to include the OS dependent portion of the driver in the
VxWorks build.

Device Driver Location

The automatically generated BSP resembles most other Workbench BSPs except for the
placement of device driver code. Off-the-shelf device driver code distributed with the
Workbench IDE typically resides in the vxworks-6.5/target/src/drv directory in the Workbench
installation directory. Device driver code for a BSP that is automatically generated resides in the
BSP directory itself. This minor deviation is due to the dynamic nature of FPGA-based
embedded system. Since the FPGA-based embedded system can be reprogrammed with new
or changed IP, the device driver configuration can change, calling for a more dynamic
placement of device driver source files.

The directory tree for the automatically generated BSP is <bsp_name>/<csp_name>_csp/xsrc.

The top-level directory is named according to the name of the processor instance in the
hardware design project. The customized BSP source files reside in this directory. There is a
subdirectory within the BSP directory named according to the processor instance with
_drv_csp as a suffix. The driver directory contains two subdirectories. The xsrc subdirectory
contains all the device driver related source files. If building from the Workbench Project facility,
the files generated during the build process reside at $PRJ_DIR/$BUILD_SPEC.

Configuration

BSPs generated by SDK are configured like any other VxWorks 6.5 BSP. There is little
configurability to Xilinx drivers because the IP hardware has been pre-configured in most
cases. The only configuration available generally is whether the driver is included in the
VxWorks build at all. The process of including/excluding drivers depends on whether the
Project facility or the command-line method is being used to perform the configuration
activities.

Note that simply by including a Xilinx device driver does not mean that the driver will be
automatically utilized. Most drivers with VxWorks adapters have initialization code. In some
cases the user may be required to add the proper driver initialization function calls to the BSP.

When using SDK to generate a BSP, the resulting BSP files may contain “TODO” comments.
These comments, many of which originate from the PowerPC 405/440 BSP template provided
by Wind River, provides suggestions what the user must provide to configure the BSP for the

http://www.xilinx.com

UG704 June 23, 2010 www.xilinx.com 7

The VxWorks 6.5 BSP

target board. The VxWorks BSP Developer Guide and VxWorks Application Programmer’s
Guide are very useful resources for BSP configuration.

Command-Line Driver Inclusion/Exclusion

Within the BSP, a set of constants (one for each driver) are defined in <procname>_drv_config.h
and follow the format:

#define INCLUDE_<XDRIVER>

This file is included near the top of config.h. By default all drivers are included in the build. To
exclude a driver, add the following line in config.h after the inclusion of the
<procname>_drv_config.h header file.

#undef INCLUDE_<XDRIVER>

This exclusion will prevent the driver from being compiled and linked into the build. To re-
instate the driver, remove the #undef line from config.h. Some care is required for certain
drivers. For example, Ethernet may require that a DMA driver be present. Undefining the
DMA driver will cause the build to fail.

Project Facility Driver Inclusion/Exclusion

The file 50<csp_name>.cdf resides in the BSP directory and is tailored during creation of the
BSP. This file integrates the Xilinx device drivers into the Workbench IDE. The Xilinx device
drivers are hooked into the IDE at the hardware/peripherals sub-folder of the components tab.
Below this are individual device driver folders. An example of the GUI with Xilinx drivers is
shown in Figure 2. To add or delete Xilinx drivers, include or exclude driver components as with
any other VxWorks component.

Note that whatever configuration has been specified in <procname>_drv_config.h and
config.h will be overridden by the project facility

Figure 2: Workbench 2.6.1 Project IDE - VxWorks

http://www.xilinx.com

UG704 June 23, 2010 www.xilinx.com 8

The VxWorks 6.5 BSP

Building VxWorks

The automatically generated BSPs follow the standard Workbench conventions when it comes
to creating VxWorks images. Refer to Workbench documentation on how to make a VxWorks
image.

Command-Line BSP Build Extensions

The Xilinx drivers are compiled/linked with the same toolchain VxWorks is built with. Minor
additions to the Makefile were required to help Workbench find the location of driver source
code files.

Project BSP Build Extensions

The number of new files used to integrate the Xilinx device drivers into the Workbench build
process can be seen in the <bsp_name> directory. As stated earlier, these files are
automatically created by SDK. The user need only be aware of that the files exist. These files
are prefixed with the instance name of the processor.

Device Integration

Devices in the FPGA-based embedded system have varying degrees of integration with the
VxWorks operating system. The degree of integration is selectable by the SDK user in the
Connected Peripherals dialog box of the Library/OS Parameters tab. Below is a list of currently
supported devices and their level of integration.

• VxBus device driver model is supported starting from vxWorks6.5 BSP. Reference the
sysLib.c and hwconf.c of the BSP to see details of this migration.

• One or two UART 16450/16550/Lite devices can be integrated into the VxWorks Serial I/O
(SIO) interface. This makes a UART available for file I/O and printf/stdio. Only one UART
device can be selected as the console, where standard I/O (stdin, stdout, and stderr) is
directed. A UART device, when integrated into the SIO interface, must be capable of
generating an interrupt. If the user wants more than two UART device in their BSP, the
ppc405_0.h/ppc440_0.h file will need to be manually modified to change the number of
SIO devices to match.

• Ethernet Lite 10/100 and 10/100/1000 Local Link Tri-speed Ethernet MAC devices can be
integrated into the VxWorks Enhanced Network Driver (END) interface. This makes the
device available to the VxWorks network stack and thus socket-level applications. An
Ethernet device, when integrated into the END interface, must be capable of generating
interrupts. You might need to modify the default bootline values in config.h for the Ethernet
device to be used as the boot device.

• An Interrupt controller can be connected to the VxWorks intLib exception handling and the
PowerPC 405/440 external non-critical interrupt pin. The generated BSP does not
currently handle interrupt controller integration for the critical interrupt pin of the PowerPC
405/440, nor does it support direct connection of a single interrupting device (other than
the intc) to the processor. However, the user is always able to add manually this integration
in the sysInterrupt.c file of the BSP.

• A System ACE™ controller can be connected to VxWorks as a block device, allowing the
user to attach a filesystem to the CompactFlash device connected to the System ACE
controller. The user must call manually the BSP functions to initialize the System
ACE/CompactFlash as a block device and attach it to the DOS operating system. The
function currently available to the user is sysSystemAceMount(). A system ACE controller,
when integrated into the block device interface, must be capable of generating an
interrupt. Reference the file xsysaceblkadapter.c in the BSP for more details. The BSP will
mount the CF as a DOS FAT disk partition using Wind River’s DosFs2.0 add-on.

To get the required VxWorks libraries into the image, the following packages must be
defined in config.h or by the Project Facility:

http://www.xilinx.com

UG704 June 23, 2010 www.xilinx.com 9

The VxWorks 6.5 BSP

- INCLUDE_DOSFS_MAIN

- INCLUDE_DOSFS_FAT

- INCLUDE_DISK_CACHE

- INCLUDE_DISK_PART

- INCLUDE_DOSFS_DIR_FIXED

- INCLUDE_DOSFS_DIR_VFAT

- INCLUDE_XBD_BLK_DEV

- INCLUDE_XBD_PART_LIB

Programmatically, an application can mount the DOS file system using the following API
calls:

FILE *fp;

if (sysSystemAceMount(0, "/cf0", 1) != OK)
{

 /* handle error */
}

fp = fopen("/cf0/myfile.dat","r");

• A PCI bridge can be initialized and made available to the standard VxWorks PCI driver
and configuration functions. The user is required to edit the config.h and hwconf.c BSP
files to tailor the PCI memory addresses and configuration for their target system. Note
that PCI interrupts are not automatically integrated into the BSP.

• A USB device controller can be integrated into the USB peripheral controller interface of
the VxWorks BSP components. To test the USB peripheral controller using the existing
Mass Storage emulator component of VxWorks, the following changes are to be done in
the VxWorks source file "usbTargMsLib.c" and in the BSP file "config.h". These
changes are to be done before the VxWorks project is created.

- Modify the MS_BULK_OUT_ENDPOINT_NUM constant value as "2" in
"usbTargMsLib.c" file. This file is located at the directory <WindRiver-Installed-
Directory>/Vx-Works6.5/target/src/drv/usb/target/.

- After the modification, the VxWorks source is to be compiled at this directory. The
compiler command for a PowerPC 440 processor based system is "make
CPU=PPC32" and for a PowerPC 405 processor based system it is "make
CPU=PPC405".

- USB MassStorage emulator uses the local memory for the storage area. The user
needs to provide a minimum of 4MB space (modify the LOCAL_MEM_SIZE
constant value in the config.h file as 0x400000) in the RAM. The MassStorage
emulator code emulates a default storage area of 32k.

• All other devices and associated device drivers are not tightly integrated into a VxWorks
interface. Instead, they are loosely integrated and access to these devices is available by
directly accessing the associated device drivers from the user’s application.

• User cores and associated device drivers, if included in the EDK project, are supported
through the BSP generation flow. The user core device drivers will be copied into the BSP
in the same way the Xilinx device drivers are copied. This assumes the directory structure
of the user core device driver matches the structure of the Xilinx device drivers. The /build
sub-directories of the device driver must exist and be formatted in the same way as the
Xilinx device drivers. This includes the CDF snippet and xtag files in the
/drivers/core_vxworks_v2_00_a/build sub-directory. User device drivers are not
automatically integrated into any OS interface (e.g., SIO), but they are available for direct
access by an application.

http://www.xilinx.com

UG704 June 23, 2010 www.xilinx.com 10

The VxWorks 6.5 BSP

Deviations

The following list summarizes the differences between SDK generated BSPs and traditional
BSPs.

• An extra directory structure is added to the root BSP directory to contain the device driver
source code files.

• To keep the BSP buildable while maintaining compatibility with the Workbench Project
facility, a set of files named <procname>_drv_<driver>_<version>.c populate the
BSP directory that simply #include the source code from the driver subdirectory of the
BSP.

• The BSP Makefile has been modified so that the compiler can find the driver source code.
The Makefile contains more information about this deviation and its implications.

• SystemACE usage as a boot device may require changes to VxWorks source code files
found in the Workbench distribution directory. These changes are out of scope of this
document.

Limitations

The automatically generated BSP should be considered a good starting point for the user, but
should not be expected to meet all the user’s needs right out of the box. Due to the potential
complexities of a BSP, the variety of features that can be included in a BSP, and the support
necessary for board devices external to the FPGA, the automatically generated BSP will likely
require enhancements by the user. However, the generated BSP will be compilable and will
contain the necessary device drivers represented in the FPGA-based embedded system.
Some of the commonly used devices are also integrated with the operating system. Specific
limitations are listed below.

• An interrupt controller connected to the PowerPC 405/440 critical interrupt pin is not
automatically integrated into VxWorks’ interrupt scheme. Only the external interrupt is
currently supported.

• Bus error detection from bus bridges or arbiters is not supported.

• The command-line VxWorks 6.5 BSP defaults to use the GNU compiler. The user must
manually change the Makefile to use the DIAB compiler, or specify the DIAB compiler
when creating a Workbench project based on the BSP.

• The ROM addresses in the config.h and Makefiles of BSP are updated based on the
peripheral instance selected in the ROM_INSTANCE drop down menu box of the Board
Support Package settings in SDK.The user must select the peripheral instance as per the
hardware settings. In case of wrong selection, the BSP files will be updated with wrong
values.

• PowerPC 405 caches are disabled by default. The user must enable caches manually
through the config.h file or the Workbench project menu.

• PowerPC 440 caches are enabled by default. The user must disable caches manually
through the config.h file or the Workbench project menu.

• When SystemACE is setup to download VxWorks images into RAM via JTAG, all boots
are cold (i.e., no warm boots). This is because the System ACE controller resets the
processor whenever it performs an ace file download. An effect of this could cause
exception messages generated by VxWorks to not be printed on the console when the
system is rebooted due to an exception in an ISR or a kernel panic.

Note: No compressed images can be used with SystemACE. This applies to standard compressed
images created with Workbench such as bootrom. Compressed images cannot be placed on
SystemACE as an ace file. SystemACE cannot decompress data as it writes it to RAM. Starting such
an image will lead to a system crash.

http://www.xilinx.com

UG704 June 23, 2010 www.xilinx.com 11

Booting VxWorks

• On the PowerPC 405/440 processor, the reset vector is at physical address 0xFFFFFFFC.
There is a short time window where the processor will attempt to fetch and execute the
instruction at this address while SystemACE processes the ace file. The processor needs
to be given something to do during this time even if it is a spin loop:

FFFFFFFC b .

If BRAM occupies this address range, then the designer who creates the bitstream should
place instructions here with the elf to BRAM utility found in the Xilinx Integrated Software
Environment (ISE®) tools.

Booting
VxWorks

VxWorks Bootup Sequence

There are many variations of VxWorks images with some based in RAM, some in ROM.
Depending on board design, not all these images are supported. The following list discusses
various image types:

• ROM compressed images - These images begin execution in ROM and decompress the
BSP image into RAM, then transfer control to the decompressed image in RAM. This
image type is not compatible with SystemACE because SystemACE doesn’t know the
image is compressed and will dutifully place it in RAM at an address that will be
overwritten by the decompression algorithm when it begins. It may be possible to get this
type of image to work if modifications are made to the standard Workbench makefiles to
handle this scenario.

• RAM based images - These images are loaded into RAM by a bootloader, SystemACE, or
an emulator. These images are fully supported.

• ROM based images - These images begin execution in ROM, copy themselves to RAM
then transfer execution to RAM. In designs with SystemACE as the bootloader, the image
is automatically copied to RAM. The hand-coded BSP examples short-circuit the VxWorks
copy operation so that the copy does not occur again after control is transferred to RAM by
SystemACE (see romInit.s).

• ROM resident images - These images begin execution in ROM, copy the data section to
RAM, and execution remains in ROM. In systems with only a SystemACE, this image is
not supported. Theoretically BRAM could be used as a ROM, however, the FPGAs being
used in the evaluation boards may not have the capacity to store a VxWorks image which
could range in size from 200KB to over 700KB.

VxWorks Boot Sequence

This standard image is designed to be downloaded to the target RAM space by some device.
Once downloaded, the processor is setup to begin execution at function _sysInit at address
RAM_LOW_ADRS. (this constant is defined in config.h and Makefile). Most of the time, the device
performing the download will do this automatically as it can extract the entry point from the
image.

1. _sysInit : This assembly language function running out of RAM performs low level
initialization. When completed, this function will setup the initial stack and invoke the first
"C" function usrInit(). _sysInit is located in source code file <bspname>/sysALib.s.

2. usrInit() : This “C” function running out of RAM sets up the “C” runtime environment
and performs pre-kernel initialization. It invokes sysHwInit() (implemented in sysLib.c) to
place the HW in a quiescent state. When completed, this function will call kernelInit() to
bring up the VxWorks kernel. This function will in turn invoke usrRoot() as the first task.

3. usrRoot() : Performs post-kernel initialization. Hooks up the system clock, initializes the
TCP/IP stack, etc. It invokes sysHwInit2() (implemented in sysLib.c) to attach and enable
HW interrupts. When complete, usrRoot() invokes user application startup code
usrAppInit() if so configured in the BSP.

http://www.xilinx.com

UG704 June 23, 2010 www.xilinx.com 12

Booting VxWorks

Both usrInit() and usrRoot() are implemented by Wind River. The source code files they exist in
are different depending on whether the command line or the Workbench Project facility is being
used to compile the system. Under the command line interface, they are implemented at
$WIND_BASE/target/config/all/usrConfig.c. Under the project facility, they are maintained in
the user’s project directory.

"bootrom_uncmp" Boot Sequence

This standard image is ROM based but in reality it is linked to execute out of RAM addresses.
While executing from ROM, this image uses relative addressing tricks to call functions for
processing tasks before jumping to RAM.

1. Power on. Processor vectors to 0xFFFFFFFC where a jump instruction should be located that
transfers control to the bootrom at address _romInit.

2. _romInit : This assembly language function running out of ROM notes that this is a cold
boot then jumps to start. Both _romInit and start are located in source code file
<bspname>/romInit.s.

3. start : This assembly language function running out of ROM sets up the processor,
invalidates the caches, and prepares the system to operate out of RAM. The last operation
is to invoke “C” function romStart() which is implemented by Wind River and is located in
source code file $WIND_BASE/target/config/ all/bootInit.c.

4. romStart() : This “C” function running out of ROM copies VxWorks to its RAM start address
located at RAM_HIGH_ADRS (this constant is defined in config.h and Makefile). After
copying VxWorks, control is transferred to function usrInit() in RAM.

5. Follows steps 2 & 3 of the "vxWorks" bootup sequence.

Bootroms

The bootrom is a scaled down VxWorks image that operates in much the same way a PC BIOS
does. Its primary job is to find and boot a full VxWorks image. The full VxWorks image may
reside on disk, in flash memory, or on some host via the Ethernet. The bootrom must be
compiled in such a way that it has the ability to retrieve the image. If the image is retrieved from
an Ethernet network, then the bootrom must have the TCP/IP stack compiled in, if the image is
on disk, then the bootrom must have disk access support compiled in, etc. The bootroms do
little else than retrieve and start the full image and maintain a bootline. The bootline is a text
string that set certain user characteristics such as the target’s IP address if using Ethernet and
the file path to the VxWorks image to boot.

Bootroms are not a requirement. They are typically used in a development environment then
replaced with a production VxWorks image.

Creating Bootroms

At a command shell in the BSP directory, issue the following command to create an
uncompressed bootrom image:

make bootrom_uncmp

or

make bootrom

to create a compressed image suitable for placing in a flash memory array.

Bootrom Display

Upon cycling power, if the bootroms are working correctly, output similar to the following
should be seen on the console serial port:

 VxWorks System Boot

http://www.xilinx.com

UG704 June 23, 2010 www.xilinx.com 13

Booting VxWorks

Copyright 1984-2007 Wind River Systems, Inc.

CPU: ppc405_0 VirtexII Pro PPC405
Version: VxWorks 6.5
BSP version: 2.0/0.
Creation date: Oct 11, 2007, 16:40:32

Press any key to stop auto-boot...
 3

[VxWorks Boot]:

Typing the help at this prompt lists the available commands.

Bootline

The bootline is a text string that defines user serviceable characteristics such as the IP address
of the target board and how to find a vxWorks image to boot. The bootline is maintained at
runtime by the bootrom and is typically kept in some non-volatile (NVRAM) storage area of the
system such as an EEPROM or flash memory. If there is no NVRAM, or an error occurs reading
it, then the bootline is hard-coded with DEFAULT_BOOT_LINE defined in the BSPs config.h
source code file. In new systems where NVRAM has not been initialized, the bootline may be
undefined data.

The bootline can be changed if the auto-boot countdown sequence is interrupted by entering a
character on the console serial port. The "c" command can then be used to interactively edit the
bootline. Enter "p" to view the bootline. On a non-bootrom image, the bootline can be changed
by entering the bootChange command at a host or target shell prompt.

The bootline fields are defined below:

• boot device : Device to boot from. This could be Ethernet, or a local disk. Note that when
changing the bootline, the unit number may be shown appended to this field ("lltemac0")
when prompting for the new boot device. This number can be ignored.

• processor number : Always 0 with single processor systems.

• host name : Name as needed.

• file name : The VxWorks image to boot.

• inet on ethernet (e) : The IP internet address of the target. If there is no network interface,
then this field can be left blank.

• host inet (h) : The IP internet address of the host. If there is no network interface, then this
field can be left blank.

• user (u) : User name for host file system access. Pick whatever name suites you. Your ftp
server must be setup to allow this user access to the host file system.

• ftp password (pw) : Password for host file system access. Pick whatever name suites you.
Your ftp server must be setup to allow this user access to the host file system.

• flags (f) : For a list of options, enter the "help" command at the [VxWorks Boot]: prompt.

• target name (tn) : Name as needed. Set per network requirements.

• other (o) : This field is useful when you have a non-Ethernet device as the boot device.
When this is the case, VxWorks will not start the network when it boots. Specifying an
Ethernet device here will enable that device at boot time with the network parameters
specified in the other bootline fields.

• inet on backplane (b) : Typically left blank if the target system is not on a VME or PCI
backplane.

http://www.xilinx.com

UG704 June 23, 2010 www.xilinx.com 14

Booting VxWorks

• gateway inet (g) : Enter an IP address here if you have to go through a gateway to reach
the host computer. Otherwise leave blank.

startup script (s): Path to a file on the host computer containing shell commands to execute
once bootup is complete. Leave blank if not using a script. Examples:

SystemACE resident script: /cf0/vxworks/scripts/myscript.txt

Host resident script: c:/temp/myscript.txt

Bootrom with Local Link Tri-mode Ethernet (LLTEMAC) as the Boot Device

SDK will generate a BSP that is capable of being built as a bootrom using the LLTEMAC as a
boot device. Very little user configuration is required. The MAC address is hard coded in the
source file hwconf.c. The BSP can be used with the default MAC as long as the target is on a
private network and there is no more than one target on that network with the same default
MAC address. Otherwise the designer should replace this MAC with a function to retrieve one
from a non-volatile memory device on their target board.

To specify the LLTEMAC as the boot device in the bootrom, change the boot device field in the
bootline to lltemac. If there is a single LLTEMAC, set the unit number to 0.

Bootline Examples

The following example boots from the ethernet using the Xilinx lltemacas the boot device. The
image booted is on the host file system on drive C.

boot device : lltemac
unit number : 0
processor number : 0
host name : host
file name : c:/WindRiver/vxworks-6.5/target/config/ml507/vxWorks
inet on ethernet (e) : 192.168.0.2
host inet (h) : 192.168.0.1
user (u) : xemhost
ftp password (pw) : whatever
flags (f) : 0x0
target name (tn) : vxtarget
other (o) :

Caches

The instruction and data caches are managed by VxWorks proprietary libraries. They are
enabled by modifying the following constants in config.h or by using the Workbench Project
facility to change the constants of the same name:

• INCLUDE_CACHE_SUPPORT: If defined, the VxWorks cache libraries are linked into the
image. If caching is not desired, then #undef this constant.

• USER_I_CACHE_ENABLE: If defined, VxWorks will enable the instruction cache at boot
time. Requires INCLUDE_CACHE_SUPPORT be defined to have any effect.

• USER_D_CACHE_ENABLE: If defined, VxWorks will enable the data cache at boot time.
Requires INCLUDE_CACHE_SUPPORT be defined to have any effect.

MMU

If the MMU is enabled, then the cache control discussed in the previous section may not have
any effect. The MMU is managed by VxWorks proprietary libraries but the initial setup is
defined in the BSP. To enable the MMU, the constant INCLUDE_MMU_BASIC should be defined
in config.h or by using the Project Facility. The constant USER_D_MMU_ENABLE and
USER_I_MMU_ENABLE control whether the instruction and/or data MMU is utilized.

VxWorks initializes the MMU based on data in the sysPhysMemDesc structure defined in
sysCache.c. User reserved memory and ED&R (when INCLUDE_EDR_PM is enabled)

http://www.xilinx.com

UG704 June 23, 2010 www.xilinx.com 15

Booting VxWorks

reserved memory is included in this table. Amongst other things, this table configures memory
areas with the following attributes:

• Whether instruction execution is allowed.

• Whether data writes are allowed

• Instruction & data cacheability attributes.

• Translation offsets used to form virtual addresses.

When VxWorks initializes the MMU, it takes the definitions from sysPhysMemDesc and creates
page table entries (PTEs) in RAM. Each PTE describes 4KB of memory area (even though the
processor is capable of representing up to 16MB per PTE) Beware that specifying large areas
of memory uses substantial amounts of RAM to store the PTEs. To map 4MB of contiguous
memory space takes 8KB of RAM to store the PTEs.

To increase performance with the VxWorks basic MMU package for the PowerPC 405/440
processor, it may be beneficial to not enable the instruction MMU and rely on the cache control
settings in the ICCR register. This strategy can dramatically reduce the number of page faults
while still keeping instructions in cache. The initial setting of the ICCR is defined in the
<bspname>.h header file.

For PowerPC 440 processors, caches and MMU are enabled by default.

Without the MMU enabled, the following rules apply to configuring memory access attributes
and caching:

• There is no address translation, all effective addresses are physical.

• Cache control granularity is 128MB.

• The guarded attribute applies only to speculative instruction fetches on the PowerPC 405
processors.

FPU

Hard floating-point unit (FPU) is supported for PowerPC 440 processor systems. To enable
hard floating-point unit, please select diab or gnu in generated BSP Makefile TOOLS. To
disable hard floating-point unit, select sfdiab or sfgnu in Makefile’s make variable TOOLS.

http://www.xilinx.com

UG704 June 23, 2010 www.xilinx.com 16

Booting VxWorks

http://www.xilinx.com

UG705 September 21, 2010 www.xilinx.com 1

© 2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries.
All other trademarks are the property of their respective owners.

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development of
designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the Documentation
in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves the right, at its sole discretion,
to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors contained in the Documentation, or to
advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be
provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER WARRANTIES,
WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL
XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF
DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

Summary This document describes the automatic generation of a Workbench Board Support Package
(BSP) using Xilinx® Software Development Kit (SDK)(1). The document contains the following
sections.

• “Overview”

• “Generating the VxWorks 6.7 BSP”

• “The VxWorks BSP”

• “Booting VxWorks”

Overview One of the key embedded system development activities is the development of the BSP. The
creation of a BSP can be a lengthy and tedious process that must be incurred when there is a
change in the microprocessor complex which is comprised of the processor and associated
peripherals. Although the management of these changes applies to any microprocessor-based
project, now the changes can be accomplished more rapidly with the advent of programmable
System-on-Chip (SoC) hardware.

This document describes automatic generation of a customized VxWorks 6.7 BSP for the IBM
PowerPC® 440 microprocessor and its peripherals as defined within a Xilinx FPGA.

Note: VxWorks 6.7 BSPs do not support PowerPC 405 processors.

An automatically generated BSP enables embedded system designers to:

• Decrease the development cycles, thereby decreasing the time-to-market

• Create a customized BSP to match the hardware and the application

• Eliminate BSP design bugs (automatically created based on certified components)

• Enable application software development by eliminating the wait for BSP development

UG705 September 21, 2010

Automatic Generation of Wind River
VxWorks 6.7 Board Support Packages

1. SDK is used as the primary software development environment for Xilinx Embedded Development Kit (EDK) users
as of EDK 11.1. The software development capabilities of Xilinx Platform Studio (XPS) are now deprecated and will
be removed from XPS in later releases. The flows described in this document pertain to the SDK, although they
may still be generally applicable to XPS while those features remain in the tool.

http://www.xilinx.com

UG705 September 21, 2010 www.xilinx.com 2

Overview

The VxWorks 6.7 BSP is generated from SDK, an IDE delivered as part of the Xilinx Embedded
Development Kit (EDK) or available separately from Xilinx. SDK is used to create software
applications for embedded systems within Xilinx FPGAs. The VxWorks BSP contains all the
necessary support software for a system, including boot code, device drivers, and RTOS
initialization. The BSP is customized based on the peripherals chosen and configured by the
user for the FPGA-based embedded system.

Experienced BSP designers should readily integrate a generated BSP into their target system.
Conversely, less experience users may encounter difficulties because even though SDK can
generate an operational BSP for a given set of IP hardware, there will always be some
additional configuration and adjustments required to produce the best performance out of the
target system. It is recommended that the user have available the Wind River VxWorks BSP
Developer’s Guide and the VxWorks Application Programmer’s Guide or consider the Wind
River classes on BSP design, available at an additional cost.

Requirements

The Wind River Workbench 3.1 development kit must be installed on the host computer.
Because SDK generates re-locatable BSPs that are compiled and configured outside the SDK
environment, the host computer need not have both the Xilinx SDK and Workbench installed.

Microprocessor Library Definition

SDK supports a plug-in interface for 3rd party libraries and operating systems through the
Microprocessor Library Definition (MLD) interface, thereby allowing 3rd party vendors to have
their software available to SDK users. In addition, it provides the vendors a means for tailoring
their libraries or BSPs to the FPGA-based embedded system created within Xilinx tools.
Because the system can change easily, this capability is critical in properly supporting
embedded systems in FPGAs.

Xilinx develops and maintains the VxWorks 6.7 MLD in its SDK releases. The MLD is used to
automatically generate the VxWorks 6.7 BSP.

Template-Based Approach

A set of VxWorks 6.7 BSP template files are released with the SDK. These template files are
used during automatic generation of the BSP and appropriate modifications are made based
on the makeup of the FPGA-based embedded system.

These template files could be used as a reference for building a BSP from scratch if the user
chooses not to automatically generate a BSP.

Device Drivers

A set of device driver source files are released with the SDK and reside in an installation
directory. During creation of a customized BSP, device driver source code is copied from this
installation directory to the BSP directory. Only the source code pertaining to the devices built
into the FPGA-based embedded system are copied. This copy provides the user with a self-
contained, standalone BSP directory which can be modified or relocated. If the user makes
changes to the device driver source code for this BSP, then later wishes to undo the changes,
the SDK tool can be used to regenerate the BSP. At that point, the device driver source files are
recopied from the installation directory to the BSP.

http://www.xilinx.com

UG705 September 21, 2010 www.xilinx.com 3

Generating the VxWorks 6.7 BSP

Generating the
VxWorks 6.7
BSP

Using SDK

SDK is available as a separately installed tool or within the EDK and is a software development
environment for developing embedded software around Xilinx PowerPC 405/440 or
MicroBlaze™ processor-based embedded systems. This section describes the steps needed
to create a VxWorks 6.7 BSP using SDK. These steps are applicable when using The Xilinx
11.1 tools or later.

It is assumed that a valid hardware design has been created and exported to SDK, and SDK
has been opened and pointed to the hardware design.

1. Using File > New, create a new Board Support Package project. In the dialog box, enter a
project name, and select vxworks6_7 as the Board Support Package Type. Note that SDK
can manage multiple projects of different BSP types.

The remaining steps pertain to the Tools > Board Support Package Settings... dialog box,
which should automatically be displayed after the above step.

X-Ref Target - Figure 1

Figure 1: Board Support Package settings

http://www.xilinx.com

UG705 September 21, 2010 www.xilinx.com 4

Generating the VxWorks 6.7 BSP

2. Configure the VxWorks console device.

If a serial device such as a Uart is intended to be used as the VxWorks console, select or
enter the instance name of the serial device as the STDIN/STDOUT peripheral in the
Board Support Package Settings dialog box. It is important to enter the same device for
both STDIN and STDOUT. Currently, only the Uart 16550/16450 and UartLite devices are
supported as VxWorks console devices.

3. Integrate the device drivers.

a. Connect to VxWorks.

The connected_periphs dialog box is available in the Board Support Package
Settings... dialog box. Peripherals have been pre-populated for user convenience. Use
this dialog box to modify those peripherals to be tightly integrated with the OS,
including the device that was selected as the STDIN/STDOUT peripheral. See the
“Device Integration” section for more details on tight integration of devices.

b. Memory Size

This field is used to configure the BSP to match the actual hardware memory size on
your board.

c. Uart16550_baud_rate

This field is used to input the baud rate for projects with the UART 16550/16450 core.
It is not necessary to enter a value here for projects with the UART Lite core since the
baud rate is set for a UART Lite at hardware build time.

d. RAM_INSTANCE

This is a drop down menu to select the peripheral instance that is to be used as RAM
in BSP. The subfields memory bank and the base address of RAM under
RAM_INSTANCE are to be configured to match the actual hardware settings.

e. ROM_INSTANCE

This is a drop down menu to select the peripheral instance that is to be used as ROM
in BSP. FLASH is the only ROM device supported on the Xilinx Evaluation boards. If
there is no ROM in the system, the user can leave the default setting i.e. none. If there
is a FLASH in the system the subfields memory bank and the base address of ROM
under ROM_INSTANCE are to be configured to match the actual hardware settings.

f. RAM_LOW_ADRS_OFFSET

This field is used to input the address offset for the RAM base address to obtain the
RAM address for vxWorks used in the BSP and is to be configured to match the
hardware system settings.

g. RAM_HIGH_ADRS_OFFSET

This field is used to input the address offset for the RAM base address to obtain the
RAM address used in the BSP for boot ROM and is to be configured to match the
hardware system settings.

h. ROM_LOW_ADRS_OFFSET

This field is used to input the address offset for the ROM base address to obtain the
FLASH start address used in the BSP and is to be configured to match the hardware
system settings.

i. ROM_HIGH_ADRS_OFFSET

This field is used to input the address offset for the ROM base address to obtain the
FLASH end address used in the BSP and is to be configured to match the hardware
system settings.

http://www.xilinx.com

UG705 September 21, 2010 www.xilinx.com 5

The VxWorks BSP

j. ROM_SIZE

This field is used to configure the BSP and should match the actual hardware system
settings.

k. ROM_TEXT_ADRS_OFFSET

This field is used to input the address offset for the ROM base address to obtain the
text section start address used in the BSP and is to be configured to match the
hardware system settings.

l. ROM_WARM_ADRS_OFFSET

This field is used to input the address offset for the ROM base address to obtain the
warm reboot entry address used in the BSP and is to be configured to match the
hardware system settings.

4. Generate the VxWorks 6.7 BSP

Click OK on the Board Support Package Settings... dialog box to generate the BSP. The
output of this invocation is shown in the SDK console window. Once done, the resulting
VxWorks 6.7 BSP will exist in your SDK workspace, under the project directory name you
created in step 1 above, under the PowerPC 440 instance subdirectory. For example, if in
the hardware design the user has named the PowerPC 440 instance, myppc440, the BSP
will reside at SDK workspace/SDK project name/myppc440/bsp_ppc440.

Backups

To prevent the inadvertent loss of changes made by the user to BSP source files, existing files
in the directory location of the BSP will be copied into a backup directory before being
overwritten. The backup directory resides within the BSP directory and is named
backuptimestamp, where timestamp represents the current date and time. Because the BSP
that is generated by SDK is re-locatable, it is recommended to relocate the BSP from the SDK
project directory to an appropriate BSP development directory as soon as the hardware
platform is stable.

The VxWorks
BSP

This section describes the VxWorks 6.7 BSP output by SDK. It is assumed that the reader is
familiar with Wind River’s Workbench 3.1 IDE.

The automatically generated BSP is integrated into the Workbench IDE. The BSP can be
compiled from the command-line using the Workbench make tools, or from the Workbench
Project facility (also referred to as the Workbench IDE). Once the BSP has been generated, the
user can type make vxWorks from the command-line to compile a bootable RAM image. This
assumes the Workbench environment has been previously set up, which can be done via the
command-line using the wrenv Wind River environment utility on a a Windows platform. See
the Wind River Workbench Command-Line Users Guide: Creating a Development Shell With
wrenv for more information on using the command-line utilities. If using the Workbench Project
facility, the user can create a project based on the newly generated BSP, then use the build
environment provided through the IDE to compile the BSP.

In Workbench 3.1, the diab compiler is supported in addition to the gnu compiler. The VxWorks
6.7 BSP created by SDK has a Makefile that can be modified by the command-line user to use
the diab compiler instead of the gnu compiler. Look for the make variable named TOOLS and
set the value to sfdiab instead of sfgnu. For PowerPC 440 processors with hard floating-point
unit(FPU) systems, please select diab or gnu. If using the Workbench Project facility, the user
can select the desired tool when the project is first created.

http://www.xilinx.com

UG705 September 21, 2010 www.xilinx.com 6

The VxWorks BSP

Driver Organization

This section briefly discusses how the Xilinx drivers are compiled and linked and eventually
used by Workbench makefiles to be included into the VxWorks image.

Xilinx drivers are implemented in C programming language and can be distributed among
several source files unlike traditional VxWorks drivers, which consist of single C header and
implementation files.

There are up to three components for Xilinx drivers:

• Driver source inclusion

• OS independent implementation

• OS dependent implementation (optional)

Driver source inclusion refers to how Xilinx drivers are compiled. For every driver, there is a file
named procname_drv_dev_version.c. Using the #include command will include the source
file(s) (*.c) for each driver for each given device.

This process is analogous to how the VxWorks sysLib.c # include’s source for Wind River
supplied drivers. The reason why Xilinx files are not simply included in sysLib.c, as are the
rest of the drivers, is because of namespace conflicts and maintainability issues. If all Xilinx files
were part of a single compilation unit, static functions and data are no longer private. This
places restrictions on the device drivers and would negate their operating system
independence.

The OS independent part of the driver is designed for use with any operating system or any
processor. It provides an API that uses the functionality of the underlying hardware.

The OS dependent part of the driver adapts the driver for use with VxWorks. Such examples
are SIO drivers for serial ports, or IPNET drivers for ethernet adapters. Not all drivers require
the OS dependent drivers, nor is it required to include the OS dependent portion of the driver in
the VxWorks build.

Device Driver Location

The automatically generated BSP resembles most other Workbench BSPs except for the
placement of device driver code. Off-the-shelf device driver code distributed with the
Workbench IDE typically resides in the vxworks-6.7/target/src/drv directory in the
Workbench installation directory. Device driver code for a BSP that is automatically generated
resides in the BSP directory itself. This minor deviation is due to the dynamic nature of FPGA-
based embedded system. Since the FPGA-based embedded system can be reprogrammed
with new or changed IP, the device driver configuration can change, calling for a more dynamic
placement of device driver source files.

The directory tree for the automatically generated BSP is bsp_name/csp_name_csp/xsrc.

The top-level directory is named according to the name of the processor instance in the
hardware design project. The customized BSP source files reside in this directory. There is a
subdirectory within the BSP directory named according to the processor instance with a suffix
of _drv_csp. The driver directory contains two subdirectories. The xsrc subdirectory
contains all the device driver related source files. If building from the Workbench Project facility,
the files generated during the build process reside at $PRJ_DIR/$BUILD_SPEC.

http://www.xilinx.com

UG705 September 21, 2010 www.xilinx.com 7

The VxWorks BSP

Configuration

BSPs generated by SDK are configured like any other VxWorks 6.7 BSP. There is little
configurability to Xilinx drivers because the IP hardware has been pre-configured in most
cases. The only configuration available generally is whether the driver is included in the
VxWorks build at all. The process of including/excluding drivers depends on whether the
Project facility or the command-line method is being used to perform the configuration
activities.

Note that simply by including a Xilinx device driver does not mean that the driver will be
automatically utilized. Most drivers with VxWorks adapters have initialization code. In some
cases the user may be required to add the proper driver initialization function calls to the BSP.

When using SDK to generate a BSP, the resulting BSP files might contain “TODO” comments.
These comments, many of which originate from the PowerPC 440 BSP template provided by
Wind River, provide suggestions about what the user must provide to configure the BSP for the
target board. The VxWorks BSP Developer Guide and VxWorks Application Programmer’s
Guide are very useful resources for BSP configuration.

Command-Line Driver Inclusion/Exclusion

Within the BSP, a set of constants (one for each driver) are defined in
procname_drv_config.h and follow the format:

#define INCLUDE_XDRIVER

This file is included near the top of config.h. By default all drivers are included in the build. To
exclude a driver, add the following line in config.h after the inclusion of the
procname_drv_config.h header file.

#undef INCLUDE_XDRIVER

This exclusion will prevent the driver from being compiled and linked into the build. To re-instate
the driver, remove the #undef line from config.h. Some care is required for certain drivers. For
example, Ethernet may require that a DMA driver be present. Undefining the DMA driver will
cause the build to fail.

Project Facility Driver Inclusion/Exclusion

The file 50csp_name.cdf resides in the BSP directory and is tailored during creation of the
BSP. This file integrates the Xilinx device drivers into the Workbench IDE. The Xilinx device
drivers are hooked into the IDE at the hardware/peripherals sub-folder of the components
tab. Below this are individual device driver folders.

http://www.xilinx.com

UG705 September 21, 2010 www.xilinx.com 8

The VxWorks BSP

An example of the GUI with Xilinx drivers is shown in Figure 2. To add or delete Xilinx drivers,
include or exclude driver components as with any other VxWorks component.

Note: The configuration specified in procname_drv_config.h and config.h is overridden by the
project facility.

Building VxWorks

The automatically-generated BSPs follow the standard Workbench conventions when it comes
to creating VxWorks images. Refer to Workbench documentation on how to make a VxWorks
image.

Command-Line BSP Build Extensions

The Xilinx drivers are compiled/linked with the same toolchain VxWorks is built with. Minor
additions to the Makefile were required to help Workbench find the location of driver source
code files.

Project BSP Build Extensions

The number of new files used to integrate the Xilinx device drivers into the Workbench build
process can be seen in the <bsp_name> directory. These files are automatically created by
SDK. The user need only be aware of that the files exist. These files are prefixed with the
instance name of the processor.

Figure 2: Workbench 3.1 Project IDE - VxWorks

http://www.xilinx.com

UG705 September 21, 2010 www.xilinx.com 9

The VxWorks BSP

Device Integration

Devices in the FPGA-based embedded system have varying degrees of integration with the
VxWorks operating system. The degree of integration is selectable by the SDK user in the
Connected Peripherals dialog box of the Library/OS Parameters tab. Below is a list of currently
supported devices and their level of integration.

• VxBus device driver model is supported starting from VxWorks6.5 BSP. Reference the
sysLib.c and hwconf.c of the BSP to see details of this migration.

• One or two UART 16450/16550/Lite devices can be integrated into the VxWorks Serial
I/O (SIO) interface. This makes a UART available for file I/O and printf/stdio. Only one
UART device can be selected as the console, where standard I/O (stdin, stdout, and
stderr) is directed. A UART device, when integrated into the SIO interface, must be
capable of generating an interrupt. If the user wants more than two UART device in their
BSP, the ppc440_0.h file must be manually modified to change the number of SIO
devices to match.

• Ethernet Lite 10/100 and 10/100/1000 Local Link Tri-speed Ethernet MAC devices can be
integrated into the VxWorks IPNET interface. This makes the device available to the
VxWorks network stack and thus socket-level applications. An Ethernet device, when
integrated into the IPNET interface, must be capable of generating interrupts. You might
need to modify the default bootline values in config.h for the Ethernet device to be used
as the boot device.

• An Interrupt controller can be connected to the VxWorks intLib exception handling and
the PowerPC 440 external non-critical interrupt pin. The generated BSP does not currently
handle interrupt controller integration for the critical interrupt pin of the PowerPC 440,
nor does it support direct connection of a single interrupting device (other than the intc) to
the processor. However, the user is always able to add manually this integration in the
sysInterrupt.c file of the BSP.

• A System ACE™ controller can be connected to VxWorks as a block device, allowing the
user to attach a filesystem to the CompactFlash device connected to the System ACE
controller. The user must call manually the BSP functions to initialize the System
ACE/CompactFlash as a block device and attach it to the DOS operating system. The
function currently available to the user is sysSystemAceMount(). A system ACE
controller, when integrated into the block device interface, must be capable of generating
an interrupt. Reference the file xsysaceblkadapter.c in the BSP for more details. The BSP
will mount the CF as a DOS FAT disk partition using the Wind River DosFs2.0 add-on. To
get the required VxWorks libraries into the image, the following packages must be defined
in config.h or by the Project Facility:

− INCLUDE_DOSFS_MAIN

− INCLUDE_DOSFS_FAT

− INCLUDE_DISK_CACHE

− INCLUDE_DISK_PART

− INCLUDE_DOSFS_DIR_FIXED

− INCLUDE_DOSFS_DIR_VFAT

− INCLUDE_XBD_BLK_DEV

− INCLUDE_XBD_PART_LIB

http://www.xilinx.com

UG705 September 21, 2010 www.xilinx.com 10

The VxWorks BSP

Programmatically, an application can mount the DOS file system using the following API
calls:

FILE *fp;

if (sysSystemAceMount(0, "/cf0", 1) != OK)
{

 /* handle error */
}
fp = fopen("/cf0/myfile.dat","r");

• A PCI bridge can be initialized and made available to the standard VxWorks PCI driver
and configuration functions. The user is required to edit the config.h and hwconf.c BSP
files to tailor the PCI memory addresses and configuration for their target system. Note
that PCI interrupts are not automatically integrated into the BSP.

• A USB device controller can be integrated into the USB peripheral controller interface of
the VxWorks BSP components. To test the USB peripheral controller using the existing
Mass Storage emulator component of VxWorks, the following changes are to be done in
the VxWorks source file usbTargMsLib.c and in the BSP file config.h. These changes
are to be done before the VxWorks project is created.

− Modify the MS_BULK_OUT_ENDPOINT_NUM constant value as 2 in usbTargMsLib.c
file. This file is located at the directory WindRiver-Installed-Directory/Vx-
Works6.7/target/src/drv/usb/target/.

− After the modification, the VxWorks source is to be compiled at this directory. The
compiler command for a PowerPC 440 processor based system is make CPU=PPC32.

− USB MassStorage emulator uses the local memory for the storage area. The user
needs to provide a minimum of 4MB space (modify the LOCAL_MEM_SIZE constant
value in the config.h file as 0x400000) in the RAM. The MassStorage emulator
code emulates a default storage area of 32k.

• All other devices and associated device drivers are not tightly integrated into a VxWorks
interface. Instead, they are loosely integrated and access to these devices is available by
directly accessing the associated device drivers from the user’s application.

• User cores and associated device drivers, if included in the EDK project, are supported
through the BSP generation flow. The user core device drivers will be copied into the BSP
in the same way the Xilinx device drivers are copied. This assumes the directory structure
of the user core device driver matches the structure of the Xilinx device drivers. The /build
sub-directories of the device driver must exist and be formatted in the same way as the
Xilinx device drivers. This includes the CDF snippet and xtag files in the
/drivers/core_vxworks_v2_00_a/build sub-directory. User device drivers are not
automatically integrated into any OS interface (for example, SIO), but they are available
for direct access by an application.

Deviations

The following list summarizes the differences between SDK generated BSPs and traditional
BSPs.

• An extra directory structure is added to the root BSP directory to contain the device driver
source code files.

• To keep the BSP buildable while maintaining compatibility with the Workbench Project
facility, a set of files named procname_drv_driver_version.c populate the BSP
directory that #include the source code from the driver subdirectory of the BSP.

http://www.xilinx.com

UG705 September 21, 2010 www.xilinx.com 11

The VxWorks BSP

• The BSP Makefile has been modified so that the compiler can find the driver source code.
The Makefile contains more information about this deviation and its implications.

• SystemACE usage as a boot device may require changes to VxWorks source code files
found in the Workbench distribution directory. These changes are out of scope of this
document.

Limitations

The automatically generated BSP should be considered a good starting point for the user, but
should not be expected to meet all the user’s needs right out of the box. Due to the potential
complexities of a BSP, the variety of features that can be included in a BSP, and the support
necessary for board devices external to the FPGA, the automatically generated BSP will likely
require enhancements by the user. However, the generated BSP will be compilable and will
contain the necessary device drivers represented in the FPGA-based embedded system.
Some of the commonly used devices are also integrated with the operating system. Specific
limitations are listed below.

• An interrupt controller connected to the PowerPC 440 critical interrupt pin is not
automatically integrated into the VxWorks interrupt scheme. Only the external interrupt
is currently supported.

• Bus error detection from bus bridges or arbiters is not supported.

• The command-line VxWorks 6.7 BSP defaults to use the GNU compiler. The user must
manually change the Makefile to use the DIAB compiler, or specify the DIAB compiler
when creating a Workbench project based on the BSP.

• The ROM addresses in the config.h and Makefiles of BSP are updated based on the
peripheral instance selected in the ROM_INSTANCE drop down menu box of the Board
Support Package settings of SDK. The user must select the peripheral instance as per the
hardware settings. In case of wrong selection, the BSP files will be updated with wrong
values.

• PowerPC 440 caches are enabled by default. The user must disable caches manually
through the config.h file or the Workbench project menu.

• When SystemACE is setup to download VxWorks images into RAM via JTAG, all boots
are cold (i.e., no warm boots). This is because the System ACE controller resets the
processor whenever it performs an ace file download. An effect of this could cause
exception messages generated by VxWorks to not be printed on the console when the
system is rebooted due to an exception in an ISR or a kernel panic.

Note: No compressed images can be used with SystemACE. This applies to standard compressed
images created with Workbench such as bootrom. Compressed images cannot be placed on
SystemACE as an ace file. SystemACE cannot decompress data as it writes it to RAM. Starting such
an image will lead to a system crash.

• On the PowerPC 440 processor, the reset vector is at physical address 0xFFFFFFFC. There
is a short time window where the processor will attempt to fetch and execute the
instruction at this address while SystemACE processes the ace file. The processor needs to
be given something to do during this time even if it is a spin loop:

FFFFFFFC b .

If block RAM occupies this address range, then the designer who creates the bitstream
should place instructions here with the ELF to block RAM utility found in the Xilinx
Integrated Software Environment (ISE®) tools.

http://www.xilinx.com

UG705 September 21, 2010 www.xilinx.com 12

Booting VxWorks

Booting
VxWorks

VxWorks Bootup Sequence

There are many variations of VxWorks images with some based in RAM, some in ROM.
Depending on board design, not all these images are supported. The following list discusses
various image types:

• ROM compressed images - These images begin execution in ROM and decompress the
BSP image into RAM, then transfer control to the decompressed image in RAM. This
image type is not compatible with SystemACE because SystemACE doesn’t know the
image is compressed and will dutifully place it in RAM at an address that will be
overwritten by the decompression algorithm when it begins. It may be possible to get this
type of image to work if modifications are made to the standard Workbench makefiles to
handle this scenario.

• RAM based images - These images are loaded into RAM by a bootloader, SystemACE, or
an emulator. These images are fully supported.

• ROM based images - These images begin execution in ROM, copy themselves to RAM
then transfer execution to RAM. In designs with SystemACE as the bootloader, the image
is automatically copied to RAM. The hand-coded BSP examples short-circuit the VxWorks
copy operation so that the copy does not occur again after control is transferred to RAM
by SystemACE (see romInit.s).

• ROM resident images - These images begin execution in ROM, copy the data section to
RAM, and execution remains in ROM. In systems with only a SystemACE, this image is
not supported. Theoretically BRAM could be used as a ROM, however, the FPGAs being
used in the evaluation boards may not have the capacity to store a VxWorks image which
could range in size from 200KB to over 700KB.

VxWorks Boot Sequence

This standard image is designed to be downloaded to the target RAM space by some device.
Once downloaded, the processor is setup to begin execution at function _sysInit at address
RAM_LOW_ADRS. (this constant is defined in config.h and Makefile). Most of the time, the device
performing the download will do this automatically as it can extract the entry point from the
image.

1. _sysInit: This assembly language function running out of RAM performs low level
initialization. When completed, this function will setup the initial stack and invoke the first C
function usrInit(). _sysInit is located in source code file bspname/sysALib.s.

2. usrInit(): This C function running out of RAM sets up the C runtime environment and
performs pre-kernel initialization. It invokes sysHwInit() (implemented in sysLib.c) to
place the hardware in a quiescent state. When completed, this function will call
kernelInit() to bring up the VxWorks kernel. This function will in turn invoke
usrRoot() as the first task.

3. usrRoot(): Performs post-kernel initialization. Hooks up the system clock, initializes the
TCP/IP stack, etc. It invokes sysHwInit2() (implemented in sysLib.c) to attach and
enable HW interrupts. When complete, usrRoot() invokes user application startup code
usrAppInit() if so configured in the BSP.

Both usrInit() and usrRoot() are implemented by Wind River. The source code files they
exist in are different depending on whether the command line or the Workbench Project facility
is being used to compile the system. Under the command line interface, they are implemented
at $WIND_BASE/target/config/all/usrConfig.c. Under the project facility, they are
maintained in the user’s project directory.

http://www.xilinx.com

UG705 September 21, 2010 www.xilinx.com 13

Booting VxWorks

"bootrom_uncmp" Boot Sequence

This standard image is ROM based but in reality it is linked to execute out of RAM addresses.
While executing from ROM, this image uses relative addressing tricks to call functions for
processing tasks before jumping to RAM.

1. Power on. Processor vectors to 0xFFFFFFFC where a jump instruction should be located
that transfers control to the bootrom at address _romInit.

2. _romInit: This assembly language function running out of ROM notes that this is a cold
boot then jumps to start. Both _romInit and start are located in source code file
bspname/romInit.s.

3. start: This assembly language function running out of ROM sets up the processor,
invalidates the caches, and prepares the system to operate out of RAM. The last operation
is to invoke C function romStart() which is implemented by Wind River and is located in
source code file $WIND_BASE/target/config/ all/bootInit.c.

4. romStart(): This C function running out of ROM copies VxWorks to its RAM start
address located at RAM_HIGH_ADRS (this constant is defined in config.h and
Makefile). After copying VxWorks, control is transferred to function usrInit() in RAM.

5. Follows steps 2 and 3 of the “VxWorks Bootup Sequence,” page 12.

Bootroms

The bootrom is a scaled down VxWorks image that operates in much the same way a PC BIOS
does. Its primary job is to find and boot a full VxWorks image. The full VxWorks image may
reside on disk, in flash memory, or on some host via the Ethernet. The bootrom must be
compiled in such a way that it has the ability to retrieve the image. If the image is retrieved from
an Ethernet network, then the bootrom must have the TCP/IP stack compiled in, if the image is
on disk, then the bootrom must have disk access support compiled in, and so forth. The
bootroms retrieve and start the full image and maintain a bootline. The bootline is a text string
that set certain user characteristics such as the target’s IP address if using Ethernet and the file
path to the VxWorks image to boot.

Bootroms are not a requirement. They are typically used in a development environment then
replaced with a production VxWorks image.

Creating Bootroms

At a command shell in the BSP directory, issue the following command to create an
uncompressed bootrom image:

make bootrom_uncmp

or

make bootrom

to create a compressed image suitable for placing in a flash memory array.

http://www.xilinx.com

UG705 September 21, 2010 www.xilinx.com 14

Booting VxWorks

Bootrom Display

Upon cycling power, if the bootroms are working correctly, output similar to the following should
be seen on the console serial port:

VxWorks System Boot

Copyright 1984-2008 Wind River Systems, Inc.

CPU: Xilinx Virtex5 ppc440x5
Version: VxWorks 6.7
BSP version: 2.0/0.
Creation date: July 11, 2009, 16:40:32

Press any key to stop auto-boot...
 3

[VxWorks Boot]:

Typing help at this prompt lists the available commands.

Bootline

The bootline is a text string that defines user serviceable characteristics such as the IP address
of the target board and how to find a vxWorks image to boot. The bootline is maintained at
runtime by the bootrom and is typically kept in some non-volatile (NVRAM) storage area of the
system such as an EEPROM or flash memory. If there is no NVRAM, or an error occurs reading
it, then the bootline is hard-coded with DEFAULT_BOOT_LINE defined in the config.h source
code file of the BSP. In new systems where NVRAM has not been initialized, the bootline may
be undefined data.

The bootline can be changed if the auto-boot countdown sequence is interrupted by entering a
character on the console serial port. The c command can then be used to interactively edit the
bootline. Enter p to view the bootline. On a non-bootrom image, the bootline can be changed by
entering the bootChange command at a host or target shell prompt.

The bootline fields are defined below:

− boot device: Device to boot from. This could be Ethernet, or a local disk. Note that
when changing the bootline, the unit number can be shown appended to this field
(lltemac0) when prompting for the new boot device. This number can be ignored.

− processor number: Always 0 with single processor systems.

− host name: Name as needed.

− file name: The VxWorks image to boot.

− inet on ethernet (e): The IP internet address of the target. If there is no network
interface, then this field can be left blank.

− host inet (h): The IP internet address of the host. If there is no network interface, then
this field can be left blank.

− user (u): User name of your choice for host file system access. Your FTP server must
be setup to allow this user access to the host file system.

− ftp password (pw): Password of your choice for host file system access. Your FTP
server must be setup to allow this user access to the host file system.

− flags (f): For a list of options, enter the help command at the [VxWorks Boot]:
prompt.

− target name (tn): Name as needed. Set per network requirements.

http://www.xilinx.com

UG705 September 21, 2010 www.xilinx.com 15

Booting VxWorks

− other (o): This field is useful when you have a non-ethernet device as the boot device.
When this is the case, VxWorks will not start the network when it boots. Specifying an
Ethernet device here will enable that device at boot time with the network parameters
specified in the other bootline fields.

− inet on backplane (b): Typically left blank if the target system is not on a VME or PCI
backplane.

− gateway inet (g): Enter an IP address here if you have to go through a gateway to
reach the host computer. Otherwise leave blank.

− startup script (s): Path to a file on the host computer containing shell commands to
execute once bootup is complete. Leave blank if not using a script. Examples:

Host resident script: c:/temp/myscript.txt

Bootrom with Local Link Tri-mode Ethernet (LLTEMAC) as the Boot Device

SDK will generate a BSP that is capable of being built as a bootrom using the LLTEMAC as a
boot device. Very little user configuration is required. The MAC address is hard coded in the
source file hwconf.c. The BSP can be used with the default MAC as long as the target is on a
private network and there is no more than one target on that network with the same default
MAC address. Otherwise the designer should replace this MAC with a function to retrieve one
from a non-volatile memory device on their target board.

To specify the LLTEMAC as the boot device in the bootrom, change the boot device field in the
bootline to lltemac. If there is a single LLTEMAC, set the unit number to 0.

The following example boots from the ethernet using the Xilinx lltemac as the boot device.
The image booted is on the host file system on drive C.

boot device : lltemac
unit number : 0
processor number : 0
host name : host
file name : c:/WindRiver/vxworks-6.7/target/config/ml507/vxWorks
inet on ethernet (e) : 192.168.0.2
host inet (h) : 192.168.0.1
user (u) : xemhost
ftp password (pw) : whatever
flags (f) : 0x0
target name (tn) : vxtarget
other (o) :

Caches

The instruction and data caches are managed by VxWorks proprietary libraries. They are
enabled by modifying the following constants in config.h or by using the Workbench Project
facility to change the constants of the same name:

• INCLUDE_CACHE_SUPPORT: If defined, the VxWorks cache libraries are linked into the
image. If caching is not desired, then #undef this constant.

• USER_I_CACHE_ENABLE: If defined, VxWorks will enable the instruction cache at boot time.
Requires INCLUDE_CACHE_SUPPORT be defined to have any effect.

• USER_D_CACHE_ENABLE: If defined, VxWorks will enable the data cache at boot time.
Requires INCLUDE_CACHE_SUPPORT be defined to have any effect.

http://www.xilinx.com

UG705 September 21, 2010 www.xilinx.com 16

Booting VxWorks

MMU

If the MMU is enabled, then the cache control discussed in the previous section may not have
any effect. The MMU is managed by VxWorks proprietary libraries but the initial setup is
defined in the BSP. To enable the MMU, the constant INCLUDE_MMU_BASIC should be defined in
config.h or by using the Project Facility. The constant USER_D_MMU_ENABLE and
USER_I_MMU_ENABLE control whether the instruction and/or data MMU is utilized.

VxWorks initializes the MMU based on data in the sysPhysMemDesc structure defined in
sysCache.c. User reserved memory and ED&R (when INCLUDE_EDR_PM is enabled)
reserved memory is included in this table. Amongst other things, this table configures memory
areas with the following attributes:

• Whether instruction execution is allowed

• Whether data writes are allowed

• Instruction and data cache attributes

• Translation offsets used to form virtual addresses

When VxWorks initializes the MMU, it takes the definitions from sysPhysMemDesc and creates
page table entries (PTEs) in RAM. Each PTE describes 4KB of memory area (even though the
processor is capable of representing up to 16MB per PTE.) Beware that specifying large areas
of memory uses substantial amounts of RAM to store the PTEs. To map 4MB of contiguous
memory space takes 8KB of RAM to store the PTEs.

To increase performance with the VxWorks basic MMU package for the PowerPC 440
processor, it may be beneficial to not enable the instruction MMU and rely on the cache control
settings in the ICCR register. This strategy can dramatically reduce the number of page faults
while still keeping instructions in cache. The initial setting of the ICCR is defined in the
bspname.h header file.

For PowerPC 440 processors, caches and MMU are enabled by default.

Without the MMU enabled, the following rules apply to configuring memory access attributes
and caching:

• There is no address translation, all effective addresses are physical.

• Cache control granularity is 128MB.

FPU

Hard Floating-Point Unit (FPU) is supported for PowerPC 440 processor systems. To enable
hard floating-point unit, please select diab or gnu in generated BSP Makefile TOOLS. To
disable hard floating-point unit, select sfdiab or sfgnu in the TOOLS make variable of the
Makefile.

http://www.xilinx.com

	OS and Libraries Document Collection
	Summary
	About the Libraries
	Library Organization

	LibXil Standard C Libraries
	Summary
	Overview
	Additional Resources
	Standard C Library (libc.a)
	Xilinx C Library (libxil.a)
	Input/Output Functions
	Memory Management Functions
	Arithmetic Operations
	MicroBlaze Processor
	Integer Arithmetic
	Floating Point Arithmetic

	PowerPC Processor
	Integer Arithmetic
	Floating Point Arithmetic

	Thread Safety

	Standalone (v.3.00.a)
	Summary
	Additional Resources
	MicroBlaze Processor API
	MicroBlaze Processor Interrupt Handling
	MicroBlaze Processor Interrupt Handling Function Summary
	MicroBlaze Processor Interrupt Handling Function Descriptions

	MicroBlaze Processor Exception Handling
	MicroBlaze Processor Exception Handling Function Summary
	MicroBlaze Processor Exception Handler Function Descriptions

	MicroBlaze Processor Instruction Cache Handling
	MicroBlaze Processor Instruction Cache Handling Function Summary
	MicroBlaze Processor Instruction Cache Handling Function Descriptions

	MicroBlaze Processor Data Cache Handling
	MicroBlaze Processor Data Cache Handling Function Summary
	Data Cache Handling Functions

	Software Sequence for Initializing Instruction and Data Caches
	MicroBlaze Processor Fast Simplex Link (FSL) Interface Macros
	MicroBlaze Processor Fast Simplex Link (FSL) Interface Macro Summary
	MicroBlaze Processor FSL Macro Descriptions
	MicroBlaze Processor FSL Macro Flags
	Deprecated MicroBlaze Processor Fast Simplex Link (FSL) Macros

	MicroBlaze Processor Pseudo-asm Macros
	MicroBlaze Processor Pseudo-asm Macro Summary
	MicroBlaze Processor Pseudo-asm Macro Descriptions

	MicroBlaze Processor Version Register (PVR) Access Routine and Macros
	PVR Access Routine
	PVR Macros

	MicroBlaze Processor File Handling
	MicroBlaze Processor Errno

	PowerPC 405 Processor API
	PowerPC 405 Processor Boot Code
	PowerPC 405 Processor Cache Functions
	PowerPC 405 Processor Cache Function Summary

	PowerPC 405 Processor Exception Handling
	PowerPC 405 Processor Exception Handling Function Summary
	PowerPC 405 Processor Exception Handling Function Descriptions
	PowerPC 405 Processor Files

	PowerPC 405 Processor Errno
	PowerPC 405 Processor Memory Management
	PowerPC 405 Processing Functions
	PowerPC 405 Processor-Specific Include Files
	PowerPC 405 Processor Time Functions
	PowerPC 405 Processor Time Function Summary
	PowerPC 405 Processor Time Function Descriptions

	PowerPC 405 Processor Fast Simplex Link Interface Macros
	PowerPC 405 Processor Fast Simplex Link Interface Macro Summary
	PowerPC 405 Processor FSL Interface Macro Descriptions

	PowerPC 405 Processor Pseudo-asm Macro
	PowerPC 405 Processor Pseudo-asm Macro Summary
	PowerPC 405 Processor Pseudo-asm Macro Descriptions

	PowerPC 405 Macros for APU FCM User-Defined Instructions

	PowerPC 440 Processor API
	PowerPC 440 Processor Boot Code
	PowerPC 440 Processor Cache Functions
	PowerPC 440 Processor Cache Function Summary
	PowerPC 440 Processor Cache Function Descriptions

	PowerPC 440 Processor Exception Handling
	PowerPC 440 Processor Exception Handling Function Summary
	PowerPC 440 Processor Exception Handling Function Descriptions

	PowerPC 440 Processor File Support
	PowerPC 440 Processor File Support Function Descriptions

	PowerPC 440 Processor Errno Function
	PowerPC 440 Processor Memory Management
	PowerPC 440 Process Functions
	PowerPC 440 Processor-Specific Include Files
	PowerPC 440 Processor Time Functions
	PowerPC 440 Processor Time Function Summary
	PowerPC 440 Processor Time Function Descriptions

	Xilinx Hardware Abstraction Layer
	Types (xil_types)
	Header File
	Typedef
	Macros

	Register IO (xil_io)
	Header File
	Common API

	Exception (xil_exception)
	Header File
	Typedef
	Common API
	Common Macro
	MicroBlaze Processor-Specific Macros
	PowerPC 405 Processor-Specific Functions and Macros
	PowerPC 440 Processor-Specific Functions and Macros

	Cache (xil_cache)
	Header File
	Common API
	PowerPC 405 Processor-Specific Functions and Macros
	PowerPC 440 Processor-Specific Functions and Macros

	Assert (xil_assert)
	Header File
	Typedef
	Common API

	Extra Header File
	Test Memory (xil_testmem)
	Description
	Subtest Descriptions
	Header File
	Common API

	Test Register IO (xil_testio)
	Header File
	Common API

	Test Cache (xil_testcache)
	Header File
	Common API

	Hardware Abstraction Layer Migration Tips
	Mapping Header Files to HAL Header Files
	Mapping Functions to HAL Functions

	Program Profiling
	Profiling Requirements
	Profiling Functions

	Configuring the Standalone OS
	MicroBlaze MMU Example

	Xilkernel (v5.00.a)
	Summary
	Overview
	Why Use a Kernel?
	Key Features
	Additional Resources
	Xilkernel Organization
	Building Xilkernel Applications
	Xilkernel Process Model
	Xilkernel Scheduling Model
	POSIX Interface
	Xilkernel Functions
	Xilkernel API
	Thread Management
	Thread Management Function Summary
	Thread Management Function Descriptions

	Semaphores
	Semaphore Function Summary
	Semaphore Function Descriptions

	Message Queues
	Message Queue Function Summary
	Message Queue Function Descriptions

	Shared Memory
	Shared Memory Function Summary
	Shared Memory Function Descriptions

	Mutex Locks
	Mutex Lock Function Summary
	Mutex Lock Function Descriptions

	Dynamic Buffer Memory Management
	Dynamic Buffer Memory Management Function Summary
	Dynamic Buffer Memory Management Function Descriptions

	Software Timers

	Interrupt Handling
	User-Level Interrupt Handling APIs Function Summary
	User-Level Interrupt Handling APIs Function Descriptions

	Exception Handling
	Memory Protection
	Memory Protection Overview
	User-specified Protection
	Fixed Unified Translation Look-aside Buffer (TLB) Support on the MicroBlaze Processor

	Other Interfaces
	Hardware Requirements
	System Initialization
	Thread Safety and Re- Entrancy
	Restrictions
	Kernel Customization
	Configuring STDIN and STDOUT
	Configuring Scheduling
	Configuring Thread Management
	Configuring Semaphores
	Configuring Message Queues
	Configuring Shared Memory
	Configuring Pthread Mutex Locks
	Configuring Buffer Memory Allocation
	Configuring Software Timers
	Configuring Enhanced Interfaces
	Configuring System Timer
	Configuring Interrupt Handling
	Configuring Debug Messages
	Coping Kernel Source Files

	Debugging Xilkernel
	Memory Footprint
	Xilkernel File Organization
	Modifying Xilkernel

	Deprecated Features
	Configuring ELF Process Management (Deprecated)

	LibXil FATFile System (FATFS) (v1.00.a)
	Summary
	Overview
	Additional Resources
	XilFATFS Function Summary
	XilFATFS Function Descriptions
	Libgen Customization

	LibXil Memory File System (MFS) (v1.00.a)
	Summary
	Overview
	MFS Functions
	MFS Function Summary
	MFS Function Descriptions

	Utility Functions
	Utility Function Summary
	Utility Function Descriptions

	Additional Utilities
	Libgen Customization

	lwIP 1.3.0 Library (v3.00.a)
	Summary
	Overview
	Features
	Additional Resources
	Using lwIP
	Setting up the Hardware System
	Setting up the Software System
	Configuring lwIP Options
	Customizing lwIP API Mode
	Configuring Xilinx Adapter Options
	Ethernetlite Adapter Options
	TEMAC Adapter Options

	Configuring Memory Options
	Configuring Socket Memory Options
	Configuring Packet Buffer (Pbuf) Memory Options
	Configuring ARP Options
	Configuring IP Options
	Configuring ICMP Options
	Configuring UDP Options
	Configuring TCP Options
	Configuring Debug Options
	Configuring the Stats Option
	Software APIs
	Raw API
	Socket API

	Using Xilinx Adapter Helper Functions

	lwIP Performance
	Known Issues and Restrictions
	Migrating from lwip_v3_00_a to lwip130_v3_00_a
	API Examples
	RAW API
	Socket API

	LibXil Flash (v2.02.a)
	Summary
	Overview
	XilFlash Library APIs
	API Summary
	XilFlash Library API Descriptions

	Libgen Customization

	LibXil Isf (v2.01.a)
	Summary
	LibXil Isf Library Overview
	LibXil Isf Library APIs
	API Summary
	LibXil Isf API Descriptions

	Libgen Customization
	Additional Resources

	Automatic Generation of Linux 2.6 Board Support Packages
	Summary
	Overview
	Getting Started with Linux 2.6
	Creating a Working Kernel Tree
	MontaVista Linux
	Wind River Linux

	Creating a BSP from SDK
	Creating a Board Support Package Project
	Configuring the Board Support Package
	linux distribution (required)
	memory size (required)
	UART16550 bus clock freq (optional)
	target directory (optional)
	rootfs type (optional)
	ramdisk size (optional)
	NFS info source (optional)
	NFS server (optional)
	NFS share (optional)
	sysace partition (optional)
	IP Address (optional)
	Additional kernel command line items (optional)
	powerdown Parameters (optional)
	IIC Parameters (optional)
	PCI Board (optional)
	connected_periphs (required)

	Generating the BSP

	Directory Structures
	Copying the BSP to the Linux Kernel Source Tree

	Configuring the Linux Kernel
	Manually Configuring the Kernel
	Booting From a Compact Flash Card (using System ACE™)
	Setting Up Ethernet
	Linux Root Filesystem Setup
	Using the Root Filesystem on a Compact Flash Card
	Using the Root Filesystem in a RAM disk
	Configuring an NFS Root Filesystem

	Configuring a Serial/UART Main Console
	Configuring PCI and Related Peripherals

	Linux Devices Reference
	Driver Configuration and the Platform Bus

	Related Information

	Automatic Generation of Wind River VxWorks 6.3 Board Support Packages
	Summary
	Overview
	Requirements
	Microprocessor Library Definition
	Template-Based Approach
	Device Drivers

	Generating the VxWorks 6.3 BSP
	Using SDK
	Backups

	The VxWorks 6.3 BSP
	Driver Organization
	Device Driver Location

	Configuration
	Command-Line Driver Inclusion/Exclusion
	Project Facility Driver Inclusion/Exclusion
	Building VxWorks
	Command-Line BSP Build Extensions
	Project BSP Build Extensions

	Device Integration
	Deviations
	Limitations

	Booting VxWorks
	VxWorks Bootup Sequence
	VxWorks Boot Sequence
	"bootrom_uncmp" Boot Sequence
	"bootrom_uncmp" Boot Sequence with SystemACE

	Bootroms
	Creating Bootroms
	Bootrom Display
	Bootline
	Bootrom with SystemACE as the Boot Device
	Bootrom with 10/100 Ethernet (EMAC) as the Boot Device
	Bootrom with 1 Gigabit Ethernet (GEMAC) as the Boot Device
	Bootline Examples

	Caches
	MMU
	FPU

	Automatic Generation of Wind River VxWorks 6.5 Board Support Packages
	Summary
	Overview
	Requirements
	Microprocessor Library Definition
	Template-Based Approach
	Device Drivers

	Generating the VxWorks 6.5 BSP
	Using SDK
	Backups

	The VxWorks 6.5 BSP
	Driver Organization
	Device Driver Location

	Configuration
	Command-Line Driver Inclusion/Exclusion
	Project Facility Driver Inclusion/Exclusion

	Building VxWorks
	Command-Line BSP Build Extensions
	Project BSP Build Extensions

	Device Integration
	Deviations
	Limitations

	Booting VxWorks
	VxWorks Bootup Sequence
	VxWorks Boot Sequence
	"bootrom_uncmp" Boot Sequence

	Bootroms
	Creating Bootroms
	Bootrom Display
	Bootline
	Bootrom with Local Link Tri-mode Ethernet (LLTEMAC) as the Boot Device
	Bootline Examples

	Caches
	MMU
	FPU

	Automatic Generation of Wind River VxWorks 6.7 Board Support Packages
	Summary
	Overview
	Requirements
	Microprocessor Library Definition
	Template-Based Approach
	Device Drivers

	Generating the VxWorks 6.7 BSP
	Using SDK
	Backups

	The VxWorks BSP
	Driver Organization
	Device Driver Location

	Configuration
	Command-Line Driver Inclusion/Exclusion
	Project Facility Driver Inclusion/Exclusion

	Building VxWorks
	Command-Line BSP Build Extensions
	Project BSP Build Extensions
	Device Integration

	Deviations
	Limitations

	Booting VxWorks
	VxWorks Bootup Sequence
	VxWorks Boot Sequence
	"bootrom_uncmp" Boot Sequence

	Bootroms
	Creating Bootroms
	Bootrom Display
	Bootline
	Bootrom with Local Link Tri-mode Ethernet (LLTEMAC) as the Boot Device

	Caches
	MMU
	FPU

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

