NATIONAL
INSTRUMENTS

Developing Applications with the NI LabVIEW Statechart Module

Publish Date: Feb 13, 2012 | 9 Ratings | 4.22 out of 5

Overview

This document explains the definition of statechart diagrams and demonstrates the basics of the LabVIEW Statechart Module.

Table of Contents

. Introduction

. Using LabVIEW Statecharts
. Benefits of Statecharts

. Conclusion

. Related Links

a A W N =

1. Introduction

With the NI LabVIEW Statechart Module, you can create statecharts in LabVIEW software for developing event-based control and test systems. The statechart programming model complements the
LabVIEW models for data flow, textual math, dynamic system modeling, and configuration-based development. You can choose the right model or combination of models to develop your system
based on your application requirements.

High-Level Design Tools
Textual Math Simulation Statechart

Configuration

c=0.285 +0.013;,
2[X Y] = meshgrid(x, y);
32=X+ 1,

‘for k=1:30

Control Honitor

E E - G‘Kj __, Filng Acquire

= A

onaining | | oo

Graphical Programming

Macintosh Windows Real-Time

Desktop Platform Embedded Platform

Figure 1. LabVIEW Graphical Development Environment

The National Instruments graphical system design platform combines the programming models in LabVIEW with off-the-shelf desktop and embedded controllers and measurement 1/0. With this
combination, you have an integrated development toolchain for designing, prototyping, and deploying systems. LabVIEW statecharts offer a high-level design tool with powerful scalability through
programming concepts such as hierarchy, concurrency, and events. Because statecharts provide a system-level view, you can use LabVIEW statecharts as executable specifications. The statechart
programming model is especially useful for developing complex systems that must respond to a variety of events such as embedded control systems and communications systems. With the
LabVIEW Statechart Module, you can deploy designs to a variety of hardware platforms ranging from desktop PCs to field-programmable gate arrays (FPGAs).

Note: For complete LabVIEW Statechart Module documentation, refer to the shipping documentation.
History of Statecharts

The statechart diagram was invented by David Harel of the Weizmann Institute of Science in the 1980s. According to Harel, the purpose of the statechart diagram was to “extend conventional
state-transition diagrams with ... the notions of hierarchy, concurrency, and communication.” Harel invented the diagram while he helped design a complex avionics system, presumably finding the
existing tools for such a system lacking. In the 1990s, statecharts were adopted as a behavior diagram within the Unified Modeling Language (UML) specification, which is widely used for modeling
embedded systems.

How Statecharts Work

To begin understanding statecharts, it is best to start with the classic state diagram and then add the notions of hierarchy, concurrency, and events. The classic state diagram consists of two main
constructs: states and transitions. In Figure 2, the state diagram describes a simple soda vending machine with five states and seven transitions to illustrate how the machine operates. The machine
starts in the “idle” state and transitions to the “count coins” state when coins are inserted. The state diagram shows additional states and transitions when the machine waits for a selection, dispenses
a soda, and gives change.

1/4 WWW.hi.com

http://www.uml.org/
http://www.ni.com/

default

Cain Inserted
not enough caing

default

Enough Coins

no zelection

Dispense
Selecked

Figure 2. State Diagram Describing a Simple Soda Vending Machine

Figure 3 shows a statechart that describes the behavior of the same machine. Notice how the notion of hierarchy and events reduces the number of states and transitions. In the statechart, you can
nest the “count coins” and “dispense” states within a superstate. You have to define only one transition (T3) from either of these two states to the “give change” state. You can configure the T3
transition to respond to three events: soda dispensed, change requested, or coins rejected. Additionally, you can eliminate the “select soda” state in the classic state diagram by introducing a “guard”
condition to transition T2. Guard conditions must evaluate to “true” for the transition to occur. If the result of the guard condition is “false,” the event is ignored and the transition does not take place.

Vending Machine Statechart

Initial

T1 /_ \

Event: Coin Deposited Vending Superstate

nitial
e [Ty
ount Coins
LT+
H Ewent: Change)
b Reeturned f
TZ

B
H Ewvent: Selection
Guard: Coins > $1.00

T3
Events; Dispensed or
hange Requested

. /

Figure 3. Statechart Describing a Simple Soda Vending Machine

At this point, you can expand the statechart to demonstrate the notion of concurrency by adding a temperature control element to the software within the vending machine. Figure 4 shows how you

can encapsulate the dispensing logic and the temperature control into an and-state. And-states describe a system that is simultaneously in two states that are independent of each other. The T7
transition shows how statecharts can define an exit that applies to both sub-statecharts.

Om-'l Vending Machine Statechart
Y R

Vending substate Temperature control
substate

Initial

- N

T
Event: Coin Depasked Vending Superstate

Intial
T}

Count Cains

B Tz
Event: Selection s E
Guard: Coins > $1.00 Guard: T <33F

T3
Events: Dispensed or

Dispense
Change Requested

Give Change

Figure 4. Encapsulating the Dispensing Logic and the Temperature Control into an And-State

17
Events: Empky o
Temp Control Failure

iE]
Evert: Reset

Error State

In addition to hierarchy and concurrency, statecharts have features that make them valuable for complex systems. Statecharts have a concept of history, allowing a superstate to “remember” which
substate within it was previously active. For example, consider a superstate that describes a machine that pours a substance and then heats it. A halt event may pause the execution of the machine
while it is pouring. When a resume event occurs, the machine remembers to resume pouring.

2/4 WWW.hi.com

2. Using LabVIEW Statecharts

With the LabVIEW Statechart Module, you can design software components with a statechart diagram and define the behavior of the states and transition logic with dataflow graphical programming.
Use the LabVIEW Project Explorer to fully integrate statecharts into the LabVIEW environment. Each LabVIEW statechart has several components that you can use to configure the context of the
design. Figure 5 shows an example statechart called LVStatechart 1.lvsc. You can create triggers that correspond to transitions and state reactions as well as edit the list of input and output data

variables that the statechart uses.

(ﬂ Project Explorer - Tank Statechart.lvpr... E]@

File Edit Yiew Project Operate Tools

Window Help

=L IR R ECTER S

Items | Files

= E';I, Project: Tank Statechart.lvproj
2 B My Computer

@[10 Simulation

- |mel, TankFiller.vi

= E; LYStatechart 1.lvsc

Inputs.ctl
CQutputs.ctl
StateData,ctl
CustomDatabisplay vi
Diagrann.vi

- _"!q_‘ Dependencies

"‘_ Build Specifications

Edit Triggers and Groups...

Figure 5. An Example Statechart Called LV Statechart 1.lvsc

The Diagram.vi file contains the actual statechart diagram. Within this diagram, you create the states of the system and the transitions between them. One of the main benefits of statecharts is how
they visually represent the behavior of the system and, therefore, self-document the software. Figure 6 shows a statechart that describes a packaging machine. You can easily see the different states
of a machine and the transitions between each state.

3 PackilL Machine

e Di

BE)|

Flo €at e Boct Qpeate Tods Wrdow Hob

AEerE= [

T

.-m)+ STARTING

& /
— conplte
prepare y

e

[Py Compwer

>
READY J
:—%i
rt
start
Y

corcee
st

— s

. ety
ston STOPPING = | PRODUCING STANDB}

i]
e
e old

HELD
fI3 Canfigure State
. T
ABORTED ABORTING - e
L J
]
vl

|

Figure 6. Statechart That Describes a Packaging Machine

Statecharts are useful to describe reactive systems. You can design each state with multiple reactions that correspond to a variety of triggers, or events, that are sent to the statechart from a
hardware device or user interface. The reactions are implemented with LabVIEW graphical programming. Figure 6 demonstrates the LabVIEW code that executes when the system is in the
“Producing” state and the trigger “Materials Low” occurs. The triggers can also cause transitions to execute between states. An alternative way to determine transitions is to use LabVIEW code that
evaluates a guard. Guards describe conditions that have to be met to execute a transition. Figure 7 shows the guard code for the transition labeled “Materials Runout.” The LabVIEW code ensures
that the level has to be less than 35.5 to execute the transition from the “Producing” state to the “Standby” state.

3/4

WWW.hi.com

{3 Configure Transition g L
File Edit ‘iew

Label

Materials Runouk

Triggers/Groups Guard Ackion Propetties EI

Under Level Threshold ?

:I i Execute?

Threshald
39,5

StateData

[Disable?

(o] 4] [Cancel] [Help]

Figure 7. The Guard Code for the Transition Labeled “Materials Runout”

To meet the needs of different use cases, LabVIEW statecharts generate code for two execution modes: synchronous and asynchronous. The synchronous mode is designed to describe the
behavior of a controller with different states that react to a set of I/O inputs that are updated at a constant rate. This mode is applicable to embedded control systems such as engine control units
(ECUs), motion controllers, and environmental controllers. The asynchronous mode is designed to address applications with external events from an application. This is useful to program human
machine interfaces (HMIs) and model event-based systems and algorithms.

Demo: Example of a Synchronous Statechart

When you have determined the right execution mode for your statechart, you can generate executable code in the form of a modular subVI, or function call. You can then call the subVI from within a
LabVIEW dataflow diagram as shown in Figure 7. You can visually debug the statechart through LabVIEW execution highlighting and through standard debugging elements such as breakpoints,
probes (variable watch windows), and single-stepping.

Demo: Statechart Debugging

You can generate statechart code for a variety of hardware platforms, including desktop systems, HMIs, programmable automation controllers (PACs) such as NI CompactRIO and PXI, FPGAs on NI
hardware, and any 32-bit microprocessor. The ability to deploy statecharts to many hardware platforms makes the LabVIEW Statechart Module an excellent design tool for the development and
deployment of embedded systems. You also can use statecharts with the LabVIEW Control Design and Simulation Module to model and evaluate hybrid systems using dynamic system simulation.

Learn More about Using LabVIEW Statecharts to Program FPGAs
3. Benefits of Statecharts

Using LabVIEW statecharts for system design provides several benefits for software developers. Statecharts offer a system-level view that describes the complete function of a system or application
because a statechart diagram captures each possible state of the system. Therefore, the use of statecharts helps reduce the possibility of software “hangs” and other unexpected behavior because
you are forced to consider every alternative to which the software needs to respond. As this paper has discussed, the statechart programming model is especially useful for reactive systems, which
are characterized by how they respond to inputs. You can design a system so that it scales to handle multiple state reactions and transitions based on any combination of events. Statecharts are
similar to graphical dataflow programs in that they are self-documenting and promote the easy transfer of knowledge between developers. A new member of a design team can look at a statechart
diagram and quickly grasp the elements of a system.

4. Conclusion

The statechart model of computation offers a sophisticated way to tackle complex application development. Statecharts are especially useful for programming event-response applications such as
intricate user interfaces and advanced state machines used to implement dynamic system controllers, machine control logic, and digital communication protocols. With the new LabVIEW Statechart
Module, you achieve the rapid development and tight hardware integration of the LabVIEW platform. You can now add the statechart to your tool chest for programming complex applications.

5. Related Links
® LabVIEW Statechart Resource Page
® White Paper: Using LabVIEW Statecharts to Program FPGAs
® White Paper: Hybrid Control Systems with LabVIEW Statecharts and Control Design and Simulation Tools
® OMG UML Resource Page
References

® David Harel, Statecharts: A Visual Formalism for Complex Systems, Department of Applied Mathematics, The Weizmann Institute of Science, 1986.

4/4 WWW.hi.com

http://www.ni.com/labview/statechart/
https://lumen.ni.com/nicif/us/demolvstatecharts/content.xhtml
http://zone.ni.com/devzone/cda/tut/p/id/6221
http://ni.com/labview/statechart
http://zone.ni.com/devzone/cda/tut/p/id/6221
http://zone.ni.com/devzone/cda/tut/p/id/6163
http://www.uml.org/

