
Wii remote circuit board, top

surface

Wii remote circuit board, bottom

surface

Wiimote

From WiiBrew

This may require cleanup

(http://en.wikipedia.org/wiki/Wikipedia:Cleanup) to meet WiiBrew's

quality standards

(http://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style) .

Reason: Make sections collapsable. Add a See Also section

Please improve this article (http://wiibrew.org/w/index.php?title=Wiimote&action=edit)

if you can. See also Category:Articles needing cleanup.

Please wikify (http://en.wikipedia.org/wiki/Wikipedia:WikiProject_Wikify)

this article or section.

Help improve this article (http://wiibrew.org/w/index.php?title=Wiimote&action=edit) by

adding relevant

(http://en.wikipedia.org/wiki/Wikipedia:Only_make_links_that_are_relevant_to_the_context)

internal links (http://en.wikipedia.org/wiki/Wikipedia:Build_the_web) .

This article is a technical guide to the Wii Remote. For a high-

level overview of the Wii Remote, see the Wikipedia entry

(http://en.wikipedia.org/wiki/Wii_Remote) .

The Wii Remote (informally known as the Wiimote) is the Wii's main input
device. It is a wireless device, using standard Bluetooth technology to

communicate with the Wii. It is built around a Broadcom BCM2042

(http://www.broadcom.com/products/Bluetooth/Bluetooth-RF-Silicon-and-

Software-Solutions/BCM2042) bluetooth System-on-a-chip, and contains

multiple peripherals that provide data to it, as well as an expansion port for

external add-ons. The Wii Remote uses (and, at times, abuses) the standard

Bluetooth HID protocol to communicate with the host, which is directly

based upon the USB HID (http://en.wikipedia.org/wiki/USB_human_interface_device_class) standard. As such, it

will appear as a standard input device to any Bluetooth host. However, the Wii Remote does not make use of the
standard data types and HID descriptor, and only describes its report format length, leaving the actual contents

undefined, which makes it useless with standard HID drivers (but some Wiimote Drivers exist). The Wii Remote

actually uses a fairly complex set of operations, transmitted through HID Output reports, and returns a number of

different data packets through its Input reports, which contain the data from its peripherals.

http://wiibrew.org/wiki/File:Wii-Remote-Top-surface.jpg
http://wiibrew.org/wiki/File:Wii_Remote_uncovered.jpg
http://wiibrew.org/wiki/File:Ambox_style.png
http://en.wikipedia.org/wiki/Wikipedia:Cleanup
http://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style
http://wiibrew.org/w/index.php?title=Wiimote&action=edit
http://wiibrew.org/wiki/Category:Articles_needing_cleanup
http://wiibrew.org/w/index.php?title=File:Wikitext.svg&page=1
http://en.wikipedia.org/wiki/Wikipedia:WikiProject_Wikify
http://wiibrew.org/w/index.php?title=Wiimote&action=edit
http://en.wikipedia.org/wiki/Wikipedia:Only_make_links_that_are_relevant_to_the_context
http://en.wikipedia.org/wiki/Wikipedia:Build_the_web
http://en.wikipedia.org/wiki/Wii_Remote
http://www.broadcom.com/products/Bluetooth/Bluetooth-RF-Silicon-and-Software-Solutions/BCM2042
http://en.wikipedia.org/wiki/USB_human_interface_device_class
http://wiibrew.org/wiki/Wiimote_Driver

Broadcom BCM2042 in a Wii

remote

Contents

1 Summary
2 Bluetooth Communication

2.1 Bluetooth Pairing
2.2 SDP information

2.3 HID Interface
2.3.1 Output Report common information

2.3.2 Input Report common information
3 Status Reporting

3.1 0x20: Status
3.2 0x21: Read Memory Data
3.3 0x22: Acknowledge output report, return function result

4 Data Reporting
4.1 0x30: Core Buttons

4.2 0x31: Core Buttons and Accelerometer
4.3 0x32: Core Buttons with 8 Extension bytes

4.4 0x33: Core Buttons and Accelerometer with 12 IR bytes
4.5 0x34: Core Buttons with 19 Extension bytes

4.6 0x35: Core Buttons and Accelerometer with 16 Extension Bytes
4.7 0x36: Core Buttons with 10 IR bytes and 9 Extension Bytes

4.8 0x37: Core Buttons and Accelerometer with 10 IR bytes and 6 Extension Bytes
4.9 0x3d: 21 Extension Bytes
4.10 0x3e / 0x3f: Interleaved Core Buttons and Accelerometer with 36 IR bytes

5 Memory and Registers
5.1 Reading and Writing

5.2 EEPROM Memory
5.3 Control Registers

6 Input Features
6.1 Buttons

http://wiibrew.org/wiki/File:Wii_Remote_Broadcom.jpg
http://wiibrew.org/wiki/Wiimote#Summary
http://wiibrew.org/wiki/Wiimote#Bluetooth_Communication
http://wiibrew.org/wiki/Wiimote#Bluetooth_Pairing
http://wiibrew.org/wiki/Wiimote#SDP_information
http://wiibrew.org/wiki/Wiimote#HID_Interface
http://wiibrew.org/wiki/Wiimote#Output_Report_common_information
http://wiibrew.org/wiki/Wiimote#Input_Report_common_information
http://wiibrew.org/wiki/Wiimote#Status_Reporting
http://wiibrew.org/wiki/Wiimote#0x20:_Status
http://wiibrew.org/wiki/Wiimote#0x21:_Read_Memory_Data
http://wiibrew.org/wiki/Wiimote#0x22:_Acknowledge_output_report.2C_return_function_result
http://wiibrew.org/wiki/Wiimote#Data_Reporting
http://wiibrew.org/wiki/Wiimote#0x30:_Core_Buttons
http://wiibrew.org/wiki/Wiimote#0x31:_Core_Buttons_and_Accelerometer
http://wiibrew.org/wiki/Wiimote#0x32:_Core_Buttons_with_8_Extension_bytes
http://wiibrew.org/wiki/Wiimote#0x33:_Core_Buttons_and_Accelerometer_with_12_IR_bytes
http://wiibrew.org/wiki/Wiimote#0x34:_Core_Buttons_with_19_Extension_bytes
http://wiibrew.org/wiki/Wiimote#0x35:_Core_Buttons_and_Accelerometer_with_16_Extension_Bytes
http://wiibrew.org/wiki/Wiimote#0x36:_Core_Buttons_with_10_IR_bytes_and_9_Extension_Bytes
http://wiibrew.org/wiki/Wiimote#0x37:_Core_Buttons_and_Accelerometer_with_10_IR_bytes_and_6_Extension_Bytes
http://wiibrew.org/wiki/Wiimote#0x3d:_21_Extension_Bytes
http://wiibrew.org/wiki/Wiimote#0x3e_.2F_0x3f:_Interleaved_Core_Buttons_and_Accelerometer_with_36_IR_bytes
http://wiibrew.org/wiki/Wiimote#Memory_and_Registers
http://wiibrew.org/wiki/Wiimote#Reading_and_Writing
http://wiibrew.org/wiki/Wiimote#EEPROM_Memory
http://wiibrew.org/wiki/Wiimote#Control_Registers
http://wiibrew.org/wiki/Wiimote#Input_Features
http://wiibrew.org/wiki/Wiimote#Buttons

6.1.1 Core Buttons

6.1.2 Power Button
6.1.3 Sync Button

6.1.4 Button Hardware
6.2 Accelerometer

6.2.1 Normal Accelerometer Reporting
6.2.2 Interleaved Accelerometer Reporting

6.3 IR Camera
6.3.1 Mechanical Characteristics

6.3.2 Optical Characteristics
6.3.3 Initialization
6.3.4 Sensitivity Settings

6.3.5 Data Formats
6.3.5.1 Basic Mode

6.3.5.2 Extended Mode
6.3.5.3 Full Mode

7 Feedback Features
7.1 Player LEDs

7.2 Rumble
7.3 Speaker

7.3.1 Initialization Sequence
7.3.2 Speaker Configuration
7.3.3 Sound Data Format

8 Extension Controllers
9 Notes

9.1 See Also
9.2 Acknowledgements

Summary

Reverse engineering and documenting all of the Wii Remote's features is a work in progress. Here are the known
features and their status:

Bluetooth Communication Connecting to the Wii Remote and listening for connections works.

Core Buttons All working.

Accelerometer All working.

IR Camera All working.

Power Button All working.

Speaker All working.

Player LEDs All working.

Status Information Battery and extension info in Status Report

http://wiibrew.org/wiki/Wiimote#Core_Buttons
http://wiibrew.org/wiki/Wiimote#Power_Button
http://wiibrew.org/wiki/Wiimote#Sync_Button
http://wiibrew.org/wiki/Wiimote#Button_Hardware
http://wiibrew.org/wiki/Wiimote#Accelerometer
http://wiibrew.org/wiki/Wiimote#Normal_Accelerometer_Reporting
http://wiibrew.org/wiki/Wiimote#Interleaved_Accelerometer_Reporting
http://wiibrew.org/wiki/Wiimote#IR_Camera
http://wiibrew.org/wiki/Wiimote#Mechanical_Characteristics
http://wiibrew.org/wiki/Wiimote#Optical_Characteristics
http://wiibrew.org/wiki/Wiimote#Initialization
http://wiibrew.org/wiki/Wiimote#Sensitivity_Settings
http://wiibrew.org/wiki/Wiimote#Data_Formats
http://wiibrew.org/wiki/Wiimote#Basic_Mode
http://wiibrew.org/wiki/Wiimote#Extended_Mode
http://wiibrew.org/wiki/Wiimote#Full_Mode
http://wiibrew.org/wiki/Wiimote#Feedback_Features
http://wiibrew.org/wiki/Wiimote#Player_LEDs
http://wiibrew.org/wiki/Wiimote#Rumble
http://wiibrew.org/wiki/Wiimote#Speaker
http://wiibrew.org/wiki/Wiimote#Initialization_Sequence
http://wiibrew.org/wiki/Wiimote#Speaker_Configuration
http://wiibrew.org/wiki/Wiimote#Sound_Data_Format
http://wiibrew.org/wiki/Wiimote#Extension_Controllers
http://wiibrew.org/wiki/Wiimote#Notes
http://wiibrew.org/wiki/Wiimote#See_Also
http://wiibrew.org/wiki/Wiimote#Acknowledgements
http://wiibrew.org/wiki/Wiimote#Bluetooth_Communication
http://wiibrew.org/wiki/File:ButtonGreen.png
http://wiibrew.org/wiki/Wiimote#Core_Buttons
http://wiibrew.org/wiki/File:ButtonGreen.png
http://wiibrew.org/wiki/Wiimote#Accelerometer
http://wiibrew.org/wiki/File:ButtonGreen.png
http://wiibrew.org/wiki/Wiimote#IR_Camera
http://wiibrew.org/wiki/File:ButtonGreen.png
http://wiibrew.org/wiki/Wiimote#Power_Button
http://wiibrew.org/wiki/File:ButtonGreen.png
http://wiibrew.org/wiki/Wiimote#Speaker
http://wiibrew.org/wiki/File:ButtonGreen.png
http://wiibrew.org/wiki/Wiimote#Player_LEDs
http://wiibrew.org/wiki/File:ButtonGreen.png
http://wiibrew.org/wiki/Wiimote#Status_Information
http://wiibrew.org/wiki/File:ButtonGreen.png

Extension Controllers
Official extensions are supported, however many 3rd party extensions

are not understood. See Extension Controllers page

Legend Perfect or near-perfect Usable but not complete Unusable

Bluetooth Communication

The wiimote communicates with the host via standard bluetooth protocol. The wiimote can be placed into
discoverable mode for 20s by pressing the sync button on its back under the battery cover. Holding down the 1
and 2 button continuously will force the wiimote to stay in discoverable mode without turning off. This does not
work with the sync button, though. When in discoverable mode, a number of the player LEDs based on the battery
level will blink. With full battery all four LEDs will blink, the lower the battery the less LEDs will blink. During
device inquiry the host will find all discoverable nearby wiimotes. Now the host can establish a bluetooth baseband
connection to the wiimote, no bluetooth pairing is needed, however, if bluetooth pairing is performed, the
wiimote is able to reconnect to the host if disconnected. After a bluetooth baseband connection is established (with
or without pairing) the HID channels can be opened and used for reading and writing reports from/to the wiimote.

The newer Wiimote RVL-CNT-01-TR shuts down immediately upon receiving any HID output report if it has
been turned on using the 1 + 2 method, although it works using the sync button. It is possible that authentication is

now mandatory for the 1 + 2 temporary sync[check].

Bluetooth Pairing

The wiimote supports the legacy bluetooth pairing methods. This involves sending a PIN to the wiimote. Bluetooth
pairing is not required to use a wiimote and you can proceed by establishing a HID connection without pairing at all.
However, if the wiimote is paired, it will actively seek out for its last connected host on disconnection and
reestablish the connection. The following section explains the bluetooth device pairing, if no pairing is required, skip
this section.

Bluetooth pairing must be initiated by the host by sending a "Require Authentication" HCI command to its bluetooth
device. The bluetooth device will ask the host for a link key, which must be rejected so it will ask for a PIN-Code.
The PIN-Code is the binary bluetooth address of the wiimote backwards. Following a short piece of C code to
calculate the PIN:

Lets assume the Wiimote has the bluetooth address "00:1E:35:3B:7E:6D". If you want the PIN for bluetooth pairing in a simple string, do the following:

char pin[6];

pin[0] = 0x6D;

pin[1] = 0x7E;

pin[2] = 0x3B;

pin[3] = 0x35;

pin[4] = 0x1E;

pin[5] = 0x00;

Now "pin" contains your bluetooth pin that should be used for pairing your devices.

http://wiibrew.org/wiki/Wiimote#Extension_Controllers
http://wiibrew.org/wiki/File:ButtonYellow.png
http://wiibrew.org/wiki/Wiimote/Extension_Controllers
http://wiibrew.org/wiki/File:ButtonGreen.png
http://wiibrew.org/wiki/File:ButtonYellow.png
http://wiibrew.org/wiki/File:ButtonRed.png
http://wiibrew.org/wiki/Wiimote#HID_Interface
http://wiibrew.org/wiki/Template:Check
http://wiibrew.org/wiki/Wiimote#HID_Interface

If connecting by holding down the 1+2 buttons, the PIN is the bluetooth address of the wiimote backwards, if
connecting by pressing the "sync" button on the back of the wiimote, then the PIN is the bluetooth address of the
host backwards.

After sending the PIN to the bluetooth device via HCI commands, the wiimote will return a "Authentication
Accepted" command and the pairing is established (both devices are bonded now). After pairing you continue with
establishing the HID connection the same way as without pairing.

If the host successfully bonded with the wiimote and established an HID connection the wiimote will save the
bluetooth address of the host and enable single press reconnection. That means if the wiimote is now
disconnected from the host, it will actively seek out for the host if any button is pressed and establish a baseband
and HID connection. The wiimote will never actively send pairing requests since this is not needed. Also remember
that this works with any button not only the power-button. However, after establishing the connection, the wiimote
sends a button-input-report and this allows the host to see what button was pressed. So the host may reject the
new connection if any button except the power-button was pressed.

The new bluetooth pairing method SSP (Secure Simple Pairing) is not supported. Also it is not yet investigated
whether a link key has to be created (by sending a PIN) on every connection or whether the link key can be saved
and reused on new connections. Though, creating a new link key on every connection works fine.

The wiimote has space for several host addresses (at least 3 are known to work) so it can be paired with more than
one host (like PC or Wii) and it will try in reverse order to reconnect to the hosts. That is, the last paired host is
tried first and so one. If button 1 and 2 or the sync button on its back are pressed, the wiimote will not actively seek
out for its host but instead place itself in discoverable mode and wait for incoming connections so bluetooth pairing
does not conflict with normal host-side connections.

It is not known how to remove the hosts addresses from the wiimote, however, with some investigation it should be
possible to locate them in the EEPROM and manipulate them. If this is considered a security issue, then don't pair
your devices.

SDP information

When queried with the Bluetooth Service Discovery Protocol (SDP
(http://www.palowireless.com/infotooth/tutorial/sdp.asp)), the Wii Remote reports back a great deal of
information. In particular, it reports:

Wii Remote/old Wii Remote Plus new Wii Remote Plus

Name Nintendo RVL-CNT-01 Nintendo RVL-CNT-01-TR

Vendor ID 0x057e 0x057e

Product ID 0x0306 0x0330

Major Device Class 1280 ?

Minor Device Class 4 ?

Service Class 0 ?

(Summary of all Class Values) 0x002504 0x000508

http://wiibrew.org/wiki/Wiimote#HID_Interface
http://wiibrew.org/wiki/Wiimote#Data_Reporting
http://www.palowireless.com/infotooth/tutorial/sdp.asp

HID Interface

Establishing a HID connection with the Wii Remote can be done on PSM 0x11 for the control pipe and PSM 0x13
for the data pipe using the Bluetooth L2CAP protocol. On Windows you don't need to deal with L2CAP yourself,
and can use high-level windows HID functions.

The HID standard allows devices to be self-describing, using a HID descriptor block. This block includes an
enumeration of reports that the device understands. A report can be thought of similar to a network port assigned
to a particular service. Reports are unidirectional however, and the HID descriptor lists for each port the direction
(Input or Output) and the payload size for each port. Like all Bluetooth HID devices, the Wii Remote reports its
HID descriptor block when queried using the SDP protocol. However, no information regarding the actual data
units within each report is returned, only the length in bytes.

Note: An "Input" report is sent by the Wii Remote to the host. An "Output" report is sent by the host to the Wii
Remote. When using a Wii Remote, all input reports are prepended with 0xa1 and all output reports are prepended
with 0xa2; this is the "(a2)" in many example reports below. Output reports are sent over the data pipe, which is
also used to read input reports (thus, the control pipe is essentially unused).

The original Wiimotes (RVL-CNT-01) allowed sending commands using SET REPORT (0x52) over the control
pipe, instead of using the data pipe; however, this form does not work on the newer RVL-CNT-01-TR, and as
such is not recommended.

These are the reports the Wii Remote uses, and their use:

I/O ID(s) Size Function

O 0x10 1 Unknown

O 0x11 1 Player LEDs

O 0x12 2 Data Reporting mode

O 0x13 1 IR Camera Enable

O 0x14 1 Speaker Enable

O 0x15 1 Status Information Request

O 0x16 21 Write Memory and Registers

O 0x17 6 Read Memory and Registers

O 0x18 21 Speaker Data

O 0x19 1 Speaker Mute

O 0x1a 1 IR Camera Enable 2

I 0x20 6 Status Information

I 0x21 21 Read Memory and Registers Data

I 0x22 4 Acknowledge output report, return function result

I 0x30-0x3f 2-21 Data reports

http://wiibrew.org/wiki/Wiimote#Player_LEDs
http://wiibrew.org/wiki/Wiimote#Data_Reporting
http://wiibrew.org/wiki/Wiimote#IR_Camera
http://wiibrew.org/wiki/Wiimote#Speaker
http://wiibrew.org/wiki/Wiimote#Status_Information
http://wiibrew.org/wiki/Wiimote#Memory_and_Registers
http://wiibrew.org/wiki/Wiimote#Memory_and_Registers
http://wiibrew.org/wiki/Wiimote#Speaker
http://wiibrew.org/wiki/Wiimote#Speaker
http://wiibrew.org/wiki/Wiimote#IR_Camera
http://wiibrew.org/wiki/Wiimote#Status_Information
http://wiibrew.org/wiki/Wiimote#Memory_and_Registers
http://wiibrew.org/wiki/Wiimote#0x22:_Acknowledge_output_report.2C_return_function_result
http://wiibrew.org/wiki/Wiimote#Data_Reporting

For clarity, the convention in this document is to show packets including the Bluetooth-HID command (in
parentheses), report ID, and payload, as described in sections 7.3 and 7.4 of the Bluetooth HID specification
(http://www.bluetooth.com/SiteCollectionDocuments/HID_SPEC_V10.pdf) . Each byte is written out in
hexadecimal, without the 0x prefix, separated by spaces. For example,

(a1) 30 00 00

is a DATA input packet (0xa1), on channel 0x30, with the two byte payload 0x00, 0x00. When using higher level
HID functions rather than Bluetooth functions, the bytes in parentheses will never be present.

Force Feedback is accessible through the first byte of ALL output reports in the same way. This is not included
above to avoid clutter.

Output Report common information

The first byte in many Output reports has a similar meaning. In every single Output Report, bit 0 (0x01) of the first
byte controls the Rumble feature. Additionally, bit 2 (0x04) is used in several Output Reports as the ON/OFF flag
for the specific feature controlled by it. For example, sending 0x04 to Report 0x19 (Speaker Mute) will mute the
speaker:

(a2) 19 04

Sending 0x00 will unmute it:

(a2) 19 00

These Output Reports share the above behavior: Data Reporting Mode (0x12), IR Camera Enable (0x13),
Speaker Enable (0x14), Speaker Mute (0x19), IR Enable 2 (0x1a).

Input Report common information

The first two bytes of ALL input reports, except 0x3d, contain the Core Buttons (BB BB). This includes all the
0x2~ status reports, not just the 0x3~ data reports. 0x3d is an exception, since it only returns expansion
information.

Status Reporting

0x20: Status

To request the status report, send anything to Output Report 0x15. The Status Report will also be automatically
sent when an Extension Controller is connected or disconnected.

This will request the status report (and turn off rumble):

http://www.bluetooth.com/SiteCollectionDocuments/HID_SPEC_V10.pdf
http://wiibrew.org/wiki/Wiimote#Extension_Controllers
http://wiibrew.org/wiki/Wiimote#Rumble

(a2) 15 00

This report is sent either on request (in response to report 0x15), or in response to an expansion being plugged in
or unplugged (or synced if wireless). If this report is received when not requested, the application 'MUST' send
report 0x12 to change the data reporting mode, otherwise no further data reports will be received.

(a1) 20 BB BB LF 00 00 VV

BBBB is the core Buttons data. VV is the current battery level, L is the LED state, and F is a bitmask of flags
indicating, whether the battery is flat, whether an expansion is currently connected, etc.

The Wii Remote can report its status, which includes the state of a few basic settings, the status of the Extension
Controller (connected or disconnected), and the battery level.

VV is the current battery level, and LF is a bitmask of flags:

Bit Mask Meaning

0 0x01 Battery is nearly empty

1 0x02 An Extension Controller is connected

2 0x04 Speaker enabled

3 0x08 IR camera enabled

4 0x10 LED 1

5 0x20 LED 2

6 0x40 LED 3

7 0x80 LED 4

0x21: Read Memory Data

This report is sent when a read memory request is made. It returns 1 to 16 bytes of data at a time.

(a1) 21 BB BB SE AA AA DD DD DD DD DD DD DD DD DD DD DD DD DD DD DD DD

BBBB is the core Buttons data.

S (high nybble of SE) is the size in bytes, minus one, for the current data packet. This is 0xf (16 bytes) for all but
the last packet, where it might be less if the requested number of bytes is not a multiple of 16.

E (low nybble of SE) is the error flag. Known error values are 0 for no error, 7 when attempting to read from a
write-only register or an expansion that is not connected, and 8 when attempting to read from nonexistant memory
addresses.

http://wiibrew.org/wiki/Wiimote#Buttons
http://wiibrew.org/wiki/Wiimote#Extension_Controllers
http://wiibrew.org/wiki/Wiimote#Extension_Controllers
http://wiibrew.org/wiki/Wiimote#Speaker
http://wiibrew.org/wiki/Wiimote#Player_LEDs
http://wiibrew.org/wiki/Wiimote#Player_LEDs
http://wiibrew.org/wiki/Wiimote#Player_LEDs
http://wiibrew.org/wiki/Wiimote#Player_LEDs
http://wiibrew.org/wiki/Wiimote#Buttons

AA AA are the 2 least significant bytes of the absolute memory address of the first byte of data returned (the high
byte of the offset is not returned, and neither is whether it is a register or memory that is being used. Thus, this must
be known from the read request).

The DD bytes are the data, padded with zeroes to 16 bytes. If more than 16 bytes are requested, multiple packets
will be received, with AA AA addresses increasing by 16 each time.

0x22: Acknowledge output report, return function result

This input report is sent to the host to report an error related to an output report, or the function result from that
output report. It is sent when bit 1 of the first byte of any output report is set.

(a1) 22 BB BB RR EE

BBBB is the core Buttons data.

RR is the output report number that the Wii remote is acknowledging it received.

EE is the error code or function result. 00 = success. 03 = error. 04 = unknown (possibly returned by report 16H,
17H or 18H) 05 = unknown (possibly returned by report 12H). 08 = unknown (possibly returned bt report 16H).

Data Reporting

The Wii Remote has a number of different data reporting modes. Each of these modes combines certain Core data
features with data from external peripherals, and sends it to the host through one of the report IDs, determined by
the mode. The data format from the peripherals is determined by the peripherals themselves, all the Wii Remote
controller does is pull bytes from them and send them out to the host. Due to this, certain feature combinations are
not available, as there are not enough bytes for them in any of the output modes.

The Data Reporting Mode is set by sending a two-byte command to Report 0x12:

(a2) 12 TT MM

Bit 2 of TT specifies whether continuous reporting is desired. If bit 2 (0x04) is set, the Wii Remote will send reports
whether there has been any change to the data or not. Otherwise, the Wii Remote will only send an output report
when the data has changed.

MM specifies the Reporting Mode. Each Mode is specified by the Output Report ID that the data will be sent to.
For example, this will set mode to 0x33:

(a2) 12 00 33

Data will then arrive through Input Report 0x33.

http://wiibrew.org/wiki/Wiimote#Buttons

Upon powerup, the Data Reporting Mode defaults to 0x30. Following a connection or disconnection event on the
Extension Port, data reporting is disabled and the Data Reporting Mode must be reset before new data can arrive.

Modes which include Accelerometer data also embed part of it in the unused Buttons bits. In all modes except for
0x3e/0x3f, the Buttons data includes the LSBs of the Accelerometer data. In mode 0x3e/0x3f, the interleaved
Buttons data includes the Z-axis Accelerometer data.

0x30: Core Buttons

This mode returns data from the buttons in the Wii Remote:

(a1) 30 BB BB

BBBB is the core Buttons data.

0x31: Core Buttons and Accelerometer

This mode returns data from the buttons and the accelerometer in the Wii Remote:

(a1) 31 BB BB AA AA AA

BBBB is the core Buttons data. AA AA AA is the Accelerometer data.

0x32: Core Buttons with 8 Extension bytes

This mode returns data from the buttons in the Wii Remote, and data from an extension controller connected to it:

(a1) 32 BB BB EE EE EE EE EE EE EE EE

BBBB is the core Buttons data. The 8 EE bytes are from the Extension Controller currently connected to the Wii
Remote.

0x33: Core Buttons and Accelerometer with 12 IR bytes

This mode returns data from the buttons, accelerometer, and IR Camera in the Wii Remote:

(a1) 33 BB BB AA AA AA II II II II II II II II II II II II

BBBB is the core Buttons data. AA AA AA is the Accelerometer data. The 12 II bytes are from the built-in IR
Camera.

0x34: Core Buttons with 19 Extension bytes

http://wiibrew.org/wiki/Wiimote#Buttons
http://wiibrew.org/wiki/Wiimote#Buttons
http://wiibrew.org/wiki/Wiimote#Accelerometer
http://wiibrew.org/wiki/Wiimote#Buttons
http://wiibrew.org/wiki/Wiimote#Extension_Controllers
http://wiibrew.org/wiki/Wiimote#Buttons
http://wiibrew.org/wiki/Wiimote#Accelerometer
http://wiibrew.org/wiki/Wiimote#IR_Camera

This mode returns data from the buttons in the Wii Remote, and data from an extension controller connected to it:

(a1) 34 BB BB EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE

BBBB is the core Buttons data. The 19 EE bytes are from the Extension Controller currently connected to the Wii
Remote.

0x35: Core Buttons and Accelerometer with 16 Extension Bytes

This mode returns data from the buttons and accelerometer in the Wii Remote, and data from an extension
controller connected to it:

(a1) 35 BB BB AA AA AA EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE

BBBB is the core Buttons data. AA AA AA is the Accelerometer data. The 16 EE bytes are from the Extension
Controller currently connected to the Wii Remote.

0x36: Core Buttons with 10 IR bytes and 9 Extension Bytes

This mode returns data from the buttons and IR camera in the Wii Remote, and data from an extension controller
connected to it:

(a1) 36 BB BB II II II II II II II II II II EE EE EE EE EE EE EE EE EE

BBBB is the core Buttons data. The 10 II bytes are from the built-in IR Camera, and the 9 EE bytes are from the
Extension Controller currently connected to the Wii Remote.

0x37: Core Buttons and Accelerometer with 10 IR bytes and 6
Extension Bytes

This mode returns data from the buttons, accelerometer, and IR camera in the Wii Remote, and data from an
extension controller connected to it:

(a1) 37 BB BB AA AA AA II II II II II II II II II II EE EE EE EE EE EE

BBBB is the core Buttons data. AA AA AA is the Accelerometer data. The 10 II bytes are from the built-in IR
Camera, and the 6 EE bytes are from the Extension Controller currently connected to the Wii Remote.

0x3d: 21 Extension Bytes

This mode returns data from an extension controller connected to the Wii Remote. It is the only input report that
does not include core buttons.

http://wiibrew.org/wiki/Wiimote#Buttons
http://wiibrew.org/wiki/Wiimote#Extension_Controllers
http://wiibrew.org/wiki/Wiimote#Buttons
http://wiibrew.org/wiki/Wiimote#Accelerometer
http://wiibrew.org/wiki/Wiimote#Extension_Controllers
http://wiibrew.org/wiki/Wiimote#Buttons
http://wiibrew.org/wiki/Wiimote#IR_Camera
http://wiibrew.org/wiki/Wiimote#Extension_Controllers
http://wiibrew.org/wiki/Wiimote#Buttons
http://wiibrew.org/wiki/Wiimote#Accelerometer
http://wiibrew.org/wiki/Wiimote#IR_Camera
http://wiibrew.org/wiki/Wiimote#Extension_Controllers

(a1) 3d EE

The 21 EE bytes are from the Extension Controller currently connected to the Wii Remote.

0x3e / 0x3f: Interleaved Core Buttons and Accelerometer with 36
IR bytes

Both 0x3e and 0x3f are equivalent, and return data alternately through report IDs 0x3e and 0x3f. The data is
interleaved, and is returned at half the speed of other modes (as two reports are needed for a single data unit). This
mode returns data from the buttons, accelerometer, and IR camera in the Wii Remote:

(a1) 3e BB BB AA II II II II II II II II II II II II II II II II II II

(a1) 3f BB BB AA II II II II II II II II II II II II II II II II II II

BBBB is the core button data, as specified in the Buttons section. AA AA is the Accelerometer data, in a format
specific to this mode described in the Interleaved Accelerometer Reporting section. The 36 II bytes are from the
built-in IR Camera.

Memory and Registers

The Wii Remote includes a built-in EEPROM memory, part of which is accessible to the user to store that. This
user part is used to store calibration constants, as well as the Mii Data. Additionally, many peripherals on the Wii
Remote have registers which are accessible through a portion of the address space.

Both built-in memory and peripheral registers are accessed using the same reports, where a flag is used to select
between the two.

Reading and Writing

To read data, commands are sent to Output Report 0x17:

(a2) 17 MM FF FF FF SS SS

FF FF FF is the offset, and SS SS is the size to read in bytes (both in big-endian format). Bit 2 (0x04) of MM
selects the address space. Clearing this bit results in reading from EEPROM Memory, while setting it results in
reading from the control registers. Setting bit 3 (0x08) also works to access registers, but setting both results in
errors. As with all other reports, it also includes the Rumble flag, which must be set to the current rumble state to
avoid affecting it.

Data read is returned through Input Report 0x21:

(a1) 21 BB BB SE FF FF DD DD DD DD DD DD DD DD DD DD DD DD DD DD DD DD

http://wiibrew.org/wiki/Wiimote#Extension_Controllers
http://wiibrew.org/wiki/Wiimote#Buttons
http://wiibrew.org/wiki/Wiimote#Accelerometer
http://wiibrew.org/wiki/Wiimote#Interleaved_Accelerometer_Reporting
http://wiibrew.org/wiki/Wiimote#IR_Camera
http://wiibrew.org/wiki/Wiimote#EEPROM_Memory
http://wiibrew.org/wiki/Wiimote#Control_Registers
http://wiibrew.org/wiki/Wiimote#EEPROM_Memory
http://wiibrew.org/wiki/Wiimote#Control_Registers

BB BB is the state of the buttons on the Wii Remote. During data reads, regular input reporting is temporarily
suspended. Button data is available through the data input reports, but no other input data can be collected while
the transfer lasts. FF FF is the offset expressed in absolute memory address of the Wii remote memory for the first
byte of data returned (the high byte of the offset is not returned, and neither is which data memory is being used.
Thus, this must be known from the read request). E (low nybble of SE) is the error flag. Known error values are 0
for no error, 7 when attempting to read from a write-only register, and 8 when attempting to read from nonexistant
memory. S (high nybble of SE) is the size in bytes, minus one, for the current data packet. This is 0xf (16 bytes) for
all but the last packet, where it might be less if the requested number of bytes is not a multiple of 16. The DD bytes
are the data, padded with zeroes to 16 bytes. If more than 16 bytes are requested, multiple packets will be
received, with FF FF offsets increasing by 16 each time.

To write data, commands are sent to Output Report 0x16:

(a2) 16 MM FF FF FF SS DD DD DD DD DD DD DD DD DD DD DD DD DD DD DD DD

The meaning of the bytes is the same as during reads, except that size can be a maximum of 16 bytes (as there is
only space for that much data), and the actual data to write follows (the DD bytes), padded out to 16 bytes.

Some kind of acknowledgement is received on Input Report 0x22. This has not been investigated yet.

EEPROM Memory

There is a 128kbit (= 16kB) EEPROM chip (Data Sheet

(http://www.st.com/stonline/products/literature/ds/4578/m24128-bw.pdf) / Full
EEPROM dump from a sample Wii Remote

(http://www.sparkfun.com/tutorial/WiiRemote/NintendoWii-I2C-Data.zip)) in
the Wii Remote. Part of its contents include code for the built-in

microcontroller, and a generic section which can be freely read and written by
the host. This section is 0x1700 bytes long, and part of this memory is used to

store the Mii Data. It can be accessed by reading from/writing to addresses
0x0000-0x16FF in the Wii Remote's virtual memory space; in the actual
EEPROM chip, the data is located at 0x0070-0x176F.

The firmware stored in the Wiimote has been disassembled.

The BCM2042 (http://www.broadcom.com/products/Bluetooth/Bluetooth-RF-Silicon-and-Software-
Solutions/BCM2042) microcontroller built into the Wii Remote includes a large 108kb on-chip ROM section for
storing firmware. If the EEPROM chip really contains code for the BCM2042 then this was probably done to
make firmware updates possible, so there might be a way of accessing the other parts of the EEPROM via
Bluetooth as well. From the BCM2042 Product Brief (http://www.broadcom.com/collateral/pb/2042-PB03-
R.pdf) : "ROM-based design eliminates external flash memories; Flash option offered to support feature
development".

On a virgin Wii Remote, acquired separately (not bundled with a Wii), that has never communicated with any
device (except the PC used to dump the memory contents), most of the memory is blank (0x00). However, the first
few bytes contain some information:

http://wiibrew.org/wiki/File:Wii_Remote_Flash.jpg
http://www.st.com/stonline/products/literature/ds/4578/m24128-bw.pdf
http://www.sparkfun.com/tutorial/WiiRemote/NintendoWii-I2C-Data.zip
http://wiibrew.org/wiki/Wiimote/Mii_Data
http://wiibrew.org/wiki/Wiimote/Firmware
http://www.broadcom.com/products/Bluetooth/Bluetooth-RF-Silicon-and-Software-Solutions/BCM2042
http://www.broadcom.com/collateral/pb/2042-PB03-R.pdf

0000: A1 AA 8B 99 AE 9E 78 30 A7 74 D3 A1 AA 8B 99 AE

0010: 9E 78 30 A7 74 D3 82 82 82 15 9C 9C 9E 38 40 3E

0020: 82 82 82 15 9C 9C 9E 38 40 3E 00 00 00 00 00 00

0030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

This can be better visualized as two sequences, each one repeated twice:

0000: A1 AA 8B 99 AE 9E 78 30 A7 74 D3

000B: A1 AA 8B 99 AE 9E 78 30 A7 74 D3

0016: 82 82 82 15 9C 9C 9E 38 40 3E

0020: 82 82 82 15 9C 9C 9E 38 40 3E

It is not yet clear why these sentences are repeated; but since at least the second one is known to be calibration
data, maybe one version contains the calibration data that is actually being used, while the other version is meant for
backup purposes (for example a "Return to factory settings" option) in case there will be a way of recalibrating the
Wii Remote with future Wii firmware updates.

The four bytes starting at 0x0016 and 0x0020 store the calibrated zero offsets for the accelerometer (high 8 bits of
X,Y,Z in the first three bytes, low 2 bits packed in the fourth byte as --XXYYZZ). Apparently, the four bytes at
0x001A and 0x24 store the force of gravity on those axes. The function of other data bytes is not known, and most
of them differ between Wii Remotes. Some or all of these bytes might not be used by the Wii. However, there has
been a case of a Wii Remote where Extension functionality was lost following a battery change, and restoring these
bytes (which had been previously overwritten) fixed the problem. The Extension controllers did not work with a PC
either (which did not explicitly use these bytes), suggesting some of these might be used by the Wii Remote itself.
This is unconfirmed, but it is advised that these never be overwritten, and recommended that they be backed up,
just in case.

At 0x16D0, there is some more unknown data:

16D0: 00 00 00 FF 11 EE 00 00 33 CC 44 BB 00 00 66 99

16E0: 77 88 00 00 2B 01 E8 13 00 00 00 00 00 00 00 00

16F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

In contrast to the data at 0x0000, this data seems to differ in only a few bytes between different Wii Remotes.

Known memory ranges are listed below. Note that the "user data" area is 0x0FA0 = 4000 bytes long, which seems
to confirm the 4kB figure that has been mentioned (meaning 4000 bytes, that is, using the SI prefix meaning instead
of the binary meaning).

Start End Length Initial Value Use

0x0000 0x0029 0x002A See above Calibration values / pre-set data

0x002A 0x0FC9 0x0FA0 Zeroed User data / Unknown uses

0x0FCA 0x12B9 0x02f0 Zeroed Mii Data block 1

0x12BA 0x15A9 0x02f0 Zeroed Mii Data block 2

0x15AA 0x16CF 0x0126 Zeroed Unknown / Unused

http://wiibrew.org/wiki/Wiimote/Mii_Data
http://wiibrew.org/wiki/Wiimote/Mii_Data

0x16D0 0x16FF 0x0030 See above Unknown data

The top byte of the address is unused, which means memory is mirrored every 0x10000 bytes. Reading from
unused addresses where the low 16 bits are >= 0x1700 will result in error returns.

Control Registers

The Wii Remote has several memory mapped register spaces corresponding to different peripherals in it. These
include the Speaker, Extension Controllers, and the IR Camera.

Reminder
Remember to set bit 2 (0x04) on the first byte of the Output Report, otherwise

you'll overwrite EEPROM memory!

The peripheral to access is selected by the first byte of the address, and the lower 16 bits specify the register to
access within that peripheral. The lowest bit of the high byte is ignored, which means every peripheral is mirrored at
its address + 0x10000. Known peripherals are listed below:

Start End Use

0xA20000 0xA20009 Speaker settings

0xA40000 0xA400FF Extension Controller settings and data

0xA60000 0xA600FF Wii Motion Plus settings and data

0xB00000 0xB00033 IR Camera settings

Most of these are also mirrored across the high bits of the individual peripheral. For example, the second byte of
the address is ignored in the Extension controller address, which means any address of the form 0xA4xx00 will
work (as will 0xA5xx00).

Input Features

The Wii Remote has two input features that are controlled directly by the Broadcom chip: a Three-Axis
Accelerometer and 11 Buttons. Additionally, it has an IR Camera with an object tracking processor, and an
expansion port that allows for external input features such as those contained in the Nunchuk and the Classic
Controller (see Extension Controllers).

Buttons

The Wii Remote has 11 buttons on its front face, and one trigger-style button on the back. Of these, the Power
button is special and is treated differently by the Wii Remote. All the other buttons are independantly accessible
through a two-byte bitmask which is transmitted first in most Input Reports. A button will report a 1-bit if pressed,
or a 0-bit otherwise. By default, these are sent only when the state of any button changes, in Data Reporting Mode
0x30. However, the Wii Remote may be configured to report the state of the buttons continuously; see Data
Reporting.

http://wiibrew.org/wiki/Wiimote#Speaker
http://wiibrew.org/wiki/Wiimote#Extension_Controllers
http://wiibrew.org/wiki/Wiimote#IR_Camera
http://wiibrew.org/wiki/Wiimote#Speaker
http://wiibrew.org/wiki/Wiimote#Extension_Controllers
http://wiibrew.org/wiki/Wiimote#Extension_Controllers
http://wiibrew.org/wiki/Wiimote#IR_Camera
http://wiibrew.org/wiki/Wiimote#Accelerometer
http://wiibrew.org/wiki/Wiimote#Buttons
http://wiibrew.org/wiki/Wiimote#IR_Camera
http://wiibrew.org/wiki/Wiimote#Extension_Controllers
http://wiibrew.org/wiki/Wiimote#0x30:_Core_Buttons
http://wiibrew.org/wiki/Wiimote#Data_Reporting

Core Buttons

The Wii Remote has 11 buttons that are used as regular input devices: A, B (trigger), a 4-directional D-Pad, +, -,
Home, 1, and 2. These are reported as bits in a two-byte bitmask. These are the assignments, in big-endian order:

Bit Mask First Byte Second Byte

0 0x01 D-Pad Left Two

1 0x02 D-Pad Right One

2 0x04 D-Pad Down B

3 0x08 D-Pad Up A

4 0x10 Plus Minus

5 0x20 Other uses Other uses

6 0x40 Other uses Other uses

7 0x80 Unknown Home

Power Button

When the Wii Remote is turned off, pressing the Power button will attempt to wake up the Wii that is synchronized
to it. The mechanism for this is unknown, and it is handled entirely within the Wii's bluetooth module. When the Wii
Remote is turned on and connected to a host, pressing and holding the Power button for a few seconds will turn the
Wii Remote off and request disconnection from the host. The disconnection reason included with the Baseband
(ACL) disconnection request indicates that the power button was pressed: REMOTE DEVICE TERMINATED
CONNECTION DUE TO POWER OFF (0x15). Another possible value is REMOTE DEVICE TERMINATED
CONNECTION DUE TO LOW RESOURCES (0x14), which indicates that the Wii Remote performed a
controlled shut down due to a low battery condition.

Sync Button

The sync button is hidden under the battery cover. When the Sync button is pressed, the Wii remote will disconnect
from whatever it is currently connected to, make itself discoverable, and accept pairing or connection requests for
exactly 20 seconds (regardless of how long the button is held down for).

The "syncing" of a Wii Remote involves standard Bluetooth pairing. When the Sync button is pressed on the
remote, it will accept pairing requests. The required PIN is the hosts's Bluetooth address, backwards (last byte
first), in binary (6 bytes). Most current Bluetooth implementations don't deal with this correctly, as they usually
consider the PIN to be a regular null-terminated ASCII string (no 00 bytes, etc) and most Bluetooth addresses will
contain null bytes. Any further steps that need to be taken after the Wii Remote is paired have not been reverse
engineered yet.

Once the Wii Remote is synced, when a button is pressed, it will actively seek out its paired host and try to connect
to it, instead of the other way around. Establishing a connection can be done on PSM 0x11 for writing and PSM
0x13 for reading using the Bluetooth L2CAP protocol.

Button Hardware

ADXL330 in a Wii remote

The physical hardware of the buttons varies: there are membrane switches and microswitch click buttons. There has
been some success soldering wires to the membrane switch contacts and actuating the switch through an external
switch. The following table describes the physical hardware for each input.

Function Switch type Circuit board surface

A membrane (http://en.wikipedia.org/wiki/Membrane_switch) top, SW9

B membrane bottom, SW8

- microswitch (http://en.wikipedia.org/wiki/Microswitch) top, SW10

Home microswitch top, SW11

+ microswitch top, SW5

1 membrane top, SW7

2 membrane top, SW6

Up membrane top, SW4

Down membrane top, SW3

Left membrane top, SW1

Right membrane top, SW2

Sync bottom, SW12

Power top, SW13

Accelerometer

The Wii Remote includes a three-axis linear accelerometer located on the
top suface of the circuit board, slightly left of the large A button. The
integrated circuit is the ADXL330
(http://www.seekic.com/icdata/%20ADXL330.html) (data sheet
(http://www.analog.com/UploadedFiles/Data_Sheets/ADXL330.pdf)),
manufactured by Analog Devices. This device is physically rated to measure
accelerations over a range of at least +/- 3g with 10% sensitivity.

Since the accelerometer actually measures the force exerted by a set of small
proof masses inside of it with respect to its enclosure, the accelerometer
measures linear acceleration in a free fall frame of reference. If the Wii
Remote is in free fall, it will report zero acceleration. At rest, it will report an
upward acceleration (+Z, when horizontal) equal to the acceleration due to
gravity, g (approximately 9.8 m/s²) but in the opposite direction. This fact
can be used to derive tilt from the acceleration outputs when the Wii Remote is reasonably still.

Normal Accelerometer Reporting

In all Data Reporting Modes which include Accelerometer data except for mode 0x3e/0x3f, the accelerometer data
is reported as three consecutive bytes:

http://wiibrew.org/wiki/File:Wii-Remote-Accel.jpg
http://en.wikipedia.org/wiki/Membrane_switch
http://en.wikipedia.org/wiki/Microswitch
http://www.seekic.com/icdata/%20ADXL330.html
http://www.analog.com/UploadedFiles/Data_Sheets/ADXL330.pdf
http://wiibrew.org/wiki/Wiimote#Data_Reporting
http://wiibrew.org/wiki/Wiimote#0x3e_.2F_0x3f:_Interleaved_Core_Buttons_and_Accelerometer_with_36_IR_bytes

Coordinate system used by Wii

Remote

(a1) RR BB BB XX YY ZZ [...]

XX, YY, and ZZ are unsigned bytes representing the acceleration in each of the three axis, where zero acceleration
is approximately 0x80. The coordinate system is shown in the diagram above (note that this is different from the
coordinate system used by GlovePIE). Additionally, the BB BB Buttons bytes also include the LSBs of the
acceleration values in the unused bits, according to the following table:

 Bit

Byte 7 6 5 4 3 2 1 0

0 X<1:0>

1 Z<1> Y<1>

Note that X has 10 bits of precision, while Y and Z only have 9. For
consistency, they are assumed all to have a 10-bit range and the LSB is
always set to zero for Y and Z.

Interleaved Accelerometer Reporting

In Data Reporting Mode 0x3e/0x3f, the accelerometer data is spread over two reports:

(a1) 3e BB BB XX [...]

(a1) 3f BB BB YY [...]

In this mode, the LSBs are not available. Instead, X and Y acceleration is reported as a single byte, and the Z value
is encoded in the unused bits of the BB BB Buttons data as follows:

 Bit

Report
ID

Byte 7 6 5 4 3 2 1 0

0x3e 0 Z<5:4>

0x3e 1 Z<7:6>

0x3f 0 Z<1:0>

0x3f 1 Z<3:2>

IR Camera

The Wii Remote includes a 128x96 monochrome camera with built-in image processing. The camera looks through

an infrared pass filter in the remote's plastic casing. The camera's built-in image processing is capable of tracking up
to 4 moving objects, and these data are the only data available to the host. Raw pixel data is not available to the

host, so the camera cannot be used to take a conventional picture. The built-in processor uses 8x subpixel analysis
to provide 1024x768 resolution for the tracked points. The Sensor Bar that comes with the Wii includes two IR

LED clusters at each end, which are tracked by the Wii Remote to provide pointing information. The distance

http://wiibrew.org/wiki/File:Wiimote_axis2.png
http://wiibrew.org/wiki/Wiimote#Buttons
http://wiibrew.org/wiki/Wiimote#0x3e_.2F_0x3f:_Interleaved_Core_Buttons_and_Accelerometer_with_36_IR_bytes
http://wiibrew.org/wiki/Wiimote#Buttons

Wii remote camera

between the centers of the LED clusters is 20 cm (as measured on one unit).

The IR Camera is enabled by setting bit 2 on output reports 0x13 and 0x1a:

(a2) 13 04

(a2) 1a 04

The first enables a 24MHz pixel clock on pin 7 of the camera. The second pulls pin 4 low - probably an active-low
enable.

Mechanical Characteristics

The camera component is mounted on the bottom surface of the circuit board. The camera module itself is mounted
in a socket perpendicular to the circuit board; to remove just the camera module, no desoldering is required. The
process is as follows:

First, orient the camera so that you are looking into the lens with the PCB horizontal and below the lens.. There are
four metal clips, two on each of the vertical sides of the socket. Use something tiny to slide between each metal clip
and the camera module: maybe wire wrap wire? Then look at the back of the camera module, opposite the lens.
There is a small rectangular hole in the middle of each vertical side of the socket. Use a pin or something to
pry/press the camera module out.

Once the camera module is free of its socket, it may be further disassembled by gently prising up the tiny PCB with
gold contacts; this is gently glued to the module's structure, but will come loose without damage. At this point you
have three pieces: the camera socket, still attached to the Wiimote PCB, the camera module housing, complete with
lens and dichroic filter (of unknown optical properties), and a tiny PCB with the camera chip and eight gold
contacts on the bottom.

Optical Characteristics

The IR camera has an effective field of view is about 33 degrees horizontally and 23 degrees vertically (as
measured on one unit). With the IR-pass filter intact, 940nm sources are detected with approximately twice the
intensity of equivalent 850nm sources, but are not resolved as well at close distances. If the filter is removed, it can

http://wiibrew.org/wiki/File:Wii-Remote-Camera.jpg

track any bright object. However, the IR filter referred to here is not only the dark plastic window of the wiimote
but also a teensy slab of dichroic-coated glass inside the camera module. One may operate the wiimote having
installed neither, one or the other, or both filters.

Initialization

Reminder

Remember to set bit 2 (0x04) on the first byte of the Output Reports to write to
registers!

The following procedure should be followed to turn on the IR Camera:

1. Enable IR Camera (Send 0x04 to Output Report 0x13)

2. Enable IR Camera 2 (Send 0x04 to Output Report 0x1a)
3. Write 0x08 to register 0xb00030

4. Write Sensitivity Block 1 to registers at 0xb00000
5. Write Sensitivity Block 2 to registers at 0xb0001a
6. Write Mode Number to register 0xb00033

7. Write 0x08 to register 0xb00030 (again)

After these steps, the Wii Remote will be in one of 3 states: IR camera on but not taking data, IR camera on and
taking data and half sensitivity, IR camera on and taking data at full sensitivity. Which state you end up in appears to
be pretty much random. Repeat the steps until you're in the desired state. To avoid the random state put a delay of
at least 50ms between every single byte transmission.

The Wii preforms these steps slightly different, differences in bold:

1. Enable IR Pixel Clock (send 0x06 to Output Report 0x13)
2. Enable IR Logic (send 0x06 to Output Report 0x1A)

3. Write 0x01 to register 0xb00030
4. Write Sensitivity Block 1 to registers at 0xb00000
5. Write Sensitivity Block 2 to registers at 0xb0001a

6. Write Mode Number to register 0xb00033
7. Write 0x08 to register 0xb00030 (again)

Adding bit 0x02 to reports 0x13 and 0x1a is a request for acknowledgement (if set, wiimote will respond with
report 0x22).

Sensitivity Settings

Sensitivity is controlled by two configuration blocks, 9 bytes and 2 bytes long. The following settings are known to
work:

Block 1 Block 2 Notes

00 00 00 00 00 00 90 00 C0 40 00 Suggested by Marcan

00 00 00 00 00 00 FF 00 0C 00 00 Suggested by Kestrel (max sensitivity)

http://wiibrew.org/wiki/User:Marcan

00 00 00 00 00 00 90 00 41 40 00 Suggested by inio (high sensitivity)

02 00 00 71 01 00 64 00 fe fd 05 Wii level 1

02 00 00 71 01 00 96 00 b4 b3 04 Wii level 2

02 00 00 71 01 00 aa 00 64 63 03 Wii level 3 (Suggested by Cliff)

02 00 00 71 01 00 c8 00 36 35 03 Wii level 4

07 00 00 71 01 00 72 00 20 1f 03 Wii level 5

The last byte of Block 1 determines the intensity sensitivity, with increasing values reducing the sensitivity. Both
bytes of Block 2 must be zero for the full sensitivity range to be available. Setting the sensitivity as high as possible,
without unwanted light being tracked, is recommended to achieve the highest subpixel resolution. As the sensitivity
is reduced, the subpixel resolution also reduces, approaching the true sensor resolution of 128x96.

Data Formats

The IR Camera can return different sets of data describing the objects it is tracking. When the IR camera identifies
an object, it assigns it to the first available object slot. If an object moves out of view, its slot is marked as empty
(returns 0xFF data), but other objects retain their slots. For example, if the camera is tracking two objects and the
first moves out of view, the data returned will be [empty, second object, empty, empty]. With more than four
objects visible, the camera is prone to rapidly switching between some of them. This could allow perception of
more than four objects, at a reduced response speed and reliability.

Mode Mode Number

Basic 1

Extended 3

Full 5

The data format MUST match the number of bytes available in the Reporting Mode selected. Even choosing a
mode with space for more bytes than necessary will not work, it has to be an exact match.

Basic Mode

In Basic Mode, the IR Camera returns 10 bytes of data corresponding to the X and Y locations of each of the four
dots. Each location is encoded in 10 bits and has a range of 0-1023 for the X dimension, and 0-767 for the Y
dimension. Each pair of dots is packed into 5 bytes, and two of these are transmitted for a total of 4 dots and 10
bytes.

This is the data format for a pair of objects:

 Bit

Byte 7 6 5 4 3 2 1 0

0 X1<7:0>

1 Y1<7:0>

http://wiibrew.org/wiki/Wiimote#Basic_Mode
http://wiibrew.org/wiki/Wiimote#Extended_Mode
http://wiibrew.org/wiki/Wiimote#Full_Mode
http://wiibrew.org/wiki/Wiimote#Data_Reporting

2 Y1<9:8> X1<9:8> Y2<9:8> X2<9:8>

3 X2<7:0>

4 Y2<7:0>

Extended Mode

In Extended Mode, the IR Camera returns the same data as it does in Basic Mode, plus a rough size value for each
object. The data is returned as 12 bytes, three bytes per object. Size has a range of 0-15.

This is the data format for each object:

 Bit

Byte 7 6 5 4 3 2 1 0

0 X<7:0>

1 Y<7:0>

2 Y<9:8> X<9:8> S<3:0>

Full Mode

In Full Mode, the IR Camera returns even more data, 9 bytes per object for a total of 36 bytes for all four. The
data is split up between two input reports of 18 bytes each (see Data Reporting Mode 0x3e/0x3f). The first three
bytes of each object are the same as the extended mode, and are followed by the bounding box of the pixels
included in the blob along with a deeper intensity value. The data format of each object is:

 Bit

Byte 7 6 5 4 3 2 1 0

0 X<7:0>

1 Y<7:0>

2 Y<9:8> X<9:8> S<3:0>

3 0 X min<6:0>

4 0 Y min<6:0>

5 0 X max<6:0>

6 0 Y max<6:0>

7 0

8 Intensity<7:0>

Feedback Features

http://wiibrew.org/wiki/Wiimote#0x3e_.2F_0x3f:_Interleaved_Core_Buttons_and_Accelerometer_with_36_IR_bytes

Wii remote player LEDs

Wii remote rumble motor

The Wii Remote sports three feedback features: Player LEDs, Rumble, and the Speaker.

Player LEDs

There are four blue LEDs on the front face of the Wii Remote. During

discovery and before initialization, these LEDs blink at a fixed rate. The
number of blinking LEDs is proportional to the battery voltage, indicating
battery charge (all four are lit for newly charged batteries, and only the first is

lit if the batteries are low and should be replaced).

During gameplay with the Wii, one LED is lit to indicate the player number
assigned to the Wii Remote. However, the LEDs are independently controllable by the host, and can be set to
display any pattern. They can also be modulated at a moderately high speed, enabling some brightness control at
the cost of a lot of Bluetooth bandwidth. Sigma-delta modulation works reasonably well for this.

The LEDs can be controlled by sending a report with ID 0x11:

(a2) 11 LL

The high nybble of LL controls the four LEDs. Bit 4 of LL controls the first LED, and bit 7 controls the last:

Bit Mask LEDs

4 0x10 ·
■

··
■

···
■

····
■

5 0x20 ·
■

··
■

···
■

····
■

6 0x40 ·■ ··■ ···■ ····■

7 0x80 ·■ ··■ ···■ ····■

Turning off all LEDs for an extended period of time is discouraged, as it might lead the user to believe the Wii
Remote is turned off and disconnected, when in fact it is active.

The LEDs are surface mount parts, driven at 2.66 VDC.

Rumble

The Wii Remote includes a rumble feature, which is implemented as a small
motor attached to an off-center weight. It will cause the controller to vibrate

when activated.

The rumble motor can be turned on or off through any of the Output
Reports. Setting the LSB (bit 0) of the first byte of any output report will
activate the rumble motor, and unsetting it will deactivate it. For example, the
following report will turn the rumble motor on:

(a2) 11 01

http://wiibrew.org/wiki/File:Wii-Remote-LEDs.jpg
http://wiibrew.org/wiki/File:Wii_Remote_Rumble.jpg
http://wiibrew.org/wiki/Wiimote#Player_LEDs
http://wiibrew.org/wiki/Wiimote#Rumble
http://wiibrew.org/wiki/Wiimote#Speaker

However, this will also have the side-effect of turning off all LEDs. Since there is no output report that only affects
the rumble motor, and all of them do affect it, an implementation might need to store both the rumble and LED
values locally (for example), and use the same Output Report for both. Another possibility would be using the status
request report (0x15). The rumble bit needs to be set properly with every single report sent, to avoid inadvertently
turning the rumble motor off.

Different photos of the rumble motor hardware show different markings. One example is SEM 8728DA. The Wii
Remote drives it at 3.3 VDC and it draws 35 mA. It would be reasonable to think that the rumble motor could be
removed and the motor replaced with another device with equal voltage and equal or less current draw.

Speaker

The Wii Remote has a small low-quality 21mm piezo-electric speaker, used for short sound effects during
gameplay. The sound is streamed directly from the host, and the speaker has some adjustable parameters.

The speaker is controlled by using three output reports, together with a section of the register address space of the
Wii Remote.

Report 0x14 is used to enable or disable the speaker. Setting bit 2 will enable the speaker, and clearing it will
disable it. For example, to enable the speaker, send:

(a2) 14 04

Report 0x19 is used to mute or unmute the speaker, and works identically to report 0x14. 0x04 will mute the
speaker, and 0x00 will unmute it.

Report 0x18 is used to send speaker data. 1-20 bytes may be sent at once:

(a2) 18 LL DD

LL specifies the data length, shifted left by three bits. The DD bytes are the speaker data. To fullfill the report length
requirements, the data must be padded if it is less than 20 bytes long. Sound data must be sent at the proper rate.

Initialization Sequence

Reminder
Remember to set bit 2 (0x04) on the first byte of the Output Reports to write to

registers!

The following sequence will initialize the speaker:

1. Enable speaker (Send 0x04 to Output Report 0x14)
2. Mute speaker (Send 0x04 to Output Report 0x19)
3. Write 0x01 to register 0xa20009

4. Write 0x08 to register 0xa20001
5. Write 7-byte configuration to registers 0xa20001-0xa20008
6. Write 0x01 to register 0xa20008
7. Unmute speaker (Send 0x00 to Output Report 0x19)

Speaker Configuration

7 bytes control the speaker settings, including volume. The full purpose of these bytes is not known, but the
following values seem to produce some sound:

00 FF RR RR VV 00 00

RR RR specify the sample rate (little-endian format), using the following formulae:

pcm_sample_rate = 12000000 / rate_value adpcm_sample_rate = 6000000 / rate_value

The standard value is 0x7d0, for 3000Hz 4-bit PCM

FF configures the data format. Setting it to 0x40 configures the speaker to use signed 8-bit PCM, while setting it to
0x00 configures it to use 4-bit Yamaha ADPCM. VV specifies the volume, which has a range of 0x00-0xFF for 8-
bit mode, and 0x00-0x40 for 4-bit mode.

This configuration can be used to play 4-bit ADPCM sound at 3000Hz:

00 00 D0 07 40 00 00

This configuration can be used to play 8-bit PCM sound at 1500Hz sample rate:

00 40 40 1f 40 00 00

It looks like the best compromise between sample rate and slow bluetooth chipsets / drivers is playing 8-bit PCM
at 2000Hz, so a new 20-byte chunk of audio data is sent every 10 milliseconds.

00 40 70 17 60 00 00

Sound Data Format

The Wii Remote can use multiple sound formats at multiple sampling rates. PC drivers currently seem unable to
keep up with the higher rates.

The 4-bit ADPCM is Yamaha ADPCM (for example, as implemented in ffmpeg).

8-bit signed PCM mode works, but when in 8-bit mode the sampling frequency must be made so low that the
audio quality is pretty bad.

http://wiibrew.org/wiki/Wiimote#Speaker_Configuration

Extension Controllers

Wiimote/Extension Controllers

Notes

See Also

Disassembled Firmware shows raw firmware dumps from several wiimotes.
Extension Controllers explains the protocol used by the wiimote extensions.
Motion analysis gives hints how to implement accelerometer parsers.

Pointing shows how to create a pointing device with IR data.
Library lists several wiimote library implementations.
Mii Data shows raw wiimote data dumps.

Acknowledgements

Some of the information here is based on the documentation at Wiili

Retrieved from "http://wiibrew.org/w/index.php?title=Wiimote&oldid=100866"

Categories: All pages with information that needs checking Hardware

This page was last modified on 3 October 2012, at 18:38.

http://wiibrew.org/wiki/Category:All_pages_with_information_that_needs_checking
http://wiibrew.org/wiki/Category:Hardware
http://wiibrew.org/wiki/Wiimote/Extension_Controllers
http://wiibrew.org/wiki/Wiimote/Firmware
http://wiibrew.org/wiki/Wiimote/Extension_Controllers
http://wiibrew.org/wiki/Wiimote/Motion_analysis
http://wiibrew.org/wiki/Wiimote/Pointing
http://wiibrew.org/wiki/Wiimote/Library
http://wiibrew.org/wiki/Wiimote/Mii_Data
http://wiibrew.org/w/index.php?title=Wiimote&oldid=100866
http://wiibrew.org/wiki/Special:Categories

