
Raft for Consistent
Replicated Log

Seif Haridi

S. Haridi, KTHx ID2203.2x

Outline
● Sequence Paxos
● Fail-Recovery Model
● Session-based FIFO links

● The Raft algorithm
● A functional restructuring of leader-based Sequence

Paxos with some innovations
● Does not assume FIFO links
● Tolerates arbitrary message losses

2

 
Sequence Paxos

Fail Recovery Model

S. Haridi, KTHx ID2203.2x

Leader Based Sequence Paxos

prepare

follower/crash

〈Leader, L, n〉

〈Prepare … 〉

〈Promise …〉

〈AcceptSync … 〉

〈Accept … 〉
〈Accepted …〉
〈Decide … 〉

〈Promise …〉

replica q

4

▪ Once leader L is elected
▪ Sends prepare to collect a majority of

promises and forms its accepted
sequence va

▪ va at Lhas the longest chosen sequence
at a prefix

▪ AcceptSync synchronizes va at q for a
majority of follower replicas

▪ The leader and those followers move
to the accept phase

▪ va is extended incrementally as well
as the decided sequence prefix(va, 𝑙d)

〈AcceptSync … 〉

prepare

accept
accept

follower

leader/crash

S. Haridi, KTHx ID2203.2x

Leader Based Sequence Paxos

prepare

follower/crash

〈Leader, L, n〉

〈Prepare … 〉

〈Accept … 〉
〈Accepted …〉
〈Decide … 〉

〈Promise …〉

replica q

5

▪ Once leader L is elected
▪ Sends prepare to collect a majority of promises

and forms its accepted sequence va

▪ va at L has the longest chosen sequence at a
prefix

▪ Late replicas q sends its promise while
leader is at the accept phase

▪ AcceptSync synchronizes the state of
va at q for the replicas q

▪ va at q is extended incrementally as well
as the decided sequence prefix(va, 𝑙d)

〈AcceptSync … 〉

prepare

accept

accept

follower

leader/crash

S. Haridi, KTHx ID2203.2x

Fail-Recovery in Sequence Paxos

prepare

follower/crash

〈Leader, L, n〉

〈Prepare … 〉

〈Accept … 〉
〈Accepted …〉
〈Decide … 〉

〈Promise …〉

6

▪ In the fail-recovery model a process is
correct as long as it fails (by crashing)
and recovers finite number of times

▪ By crashing and restarting a process p
loses any arbitrary suffixes of most
recent messages in each FIFO link

▪ Once a process restart: it joins the
leader-election algorithm in a recover
state

〈AcceptSync … 〉

prepareaccept

accept

follower

leader/crash

recover recover

〈PrepareReq … 〉

S. Haridi, KTHx ID2203.2x

Fail-Recovery in Sequence Paxos

prepare

follower/crash

〈Leader, L, n〉

〈Prepare … 〉

〈Accept … 〉
〈Accepted …〉
〈Decide … 〉

〈Promise …〉

7

▪ In the fail-recovery model a process is
correct as long as it fails (by crashing)
and recovers finite number of times

▪ By crashing and restarting a process p
loses any arbitrary suffixes of
messages in each FIFO link

▪ Once a process restart it joins the
leader-election algorithm in a recover
state

〈AcceptSync … 〉

prepare

accept accept

follower

leader/crash

recover recover

〈PrepareReq … 〉

S. Haridi, KTHx ID2203.2x

Fail Recovery persistent variables
● The algorithm needs to store the following variables in a

persistent store for each process
● nprom Promise not to accept in lower rounds
● na Round number in which last command is accepted
● va Accepted sequence

● 𝑙d Length of decided sequence

● A recovered process resets its ballotmax to nprom in BLE
● The leader election guarantees that a leader with higher ballot is

elected if the leader crashed and recovered
8

S. Haridi, KTHx ID2203.2x

Fail Recovery
● A recovered process p starts in the

state (follower, recovered)
● Restores the persistent variables  
nprom, na, va , 𝑙d

● Waits for leader event 〈Leader, L, n〉
● p = L: p is the leader

● Moves to state (leader, prepare)
● Runs normal prepare phase

9

prepare

follower/crash

〈Leader, L, n〉

〈Prepare … 〉

〈Accept … 〉
〈Accepted …〉
〈Decide … 〉

〈Promise …〉
〈AcceptSync … 〉

prepare

accept accept

follower

leader/crash

recover recover

〈PrepareReq … 〉

S. Haridi, KTHx ID2203.2x

Fail Recovery
● A recovered process p starts in the state

(follower, recovered)
● Restores the persistent variables nprom, na,

va , 𝑙d
● Waits for leader event 〈Leader, L, n〉

● p ≠ L: p is a follower
● Request a prepare message for the leader L
● send 〈PrepareReq〉 to L
● When it received a prepare message it

moves to (follower, prepare)
● Runs as normal

10

prepare

follower/crash

〈Leader, L, n〉

〈Prepare … 〉

〈Accept … 〉
〈Accepted …〉
〈Decide … 〉

〈Promise …〉
〈AcceptSync … 〉

prepare

accept accept

follower

leader/crash

recover recover

〈PrepareReq … 〉

S. Haridi, KTHx ID2203.2x

 Why the need for PrepareReq

● If the leader L is still in the prepare
phase the recovered process needs
to know the length of decided
sequence 𝑙d at L

● Necessary to compute the longest
chosen sequence at the leader

11

prepare

follower/crash

〈Leader, L, n〉

〈Prepare … 〉

〈Accept … 〉
〈Accepted …〉
〈Decide … 〉

〈Promise …〉
〈AcceptSync … 〉

prepare

accept accept

follower

leader/crash

recover recover

〈PrepareReq … 〉

S. Haridi, KTHx ID2203.2x

Session based FIFO links
● Dropping a session between processes p1 and p2 means the

links between the two processes are broken and an arbitrary
suffix of messages are lost. Restarting a connection means
new links are established between p1 and p2

● Session failure is normally due to process crashes or network
partition

● In our algorithm if a session is dropped
● If a follower p1 drops the session, it tries to reconnect in recovery state
● If a leader p1 drops a session it just ignore it until a new connection

request from the follower. Leader continues as normal

12

 
 Raft 

An algorithm for Replicated Log

S. Haridi, KTHx ID2203.2x

Raft Consensus Algorithm

● Based on a presentation by the designers of Raft:
“Designing for Understandability: the Raft Consensus Algorithm”

● Diego Ongaro and John Ousterhout
● Some slides are borrowed from this presentation

● We relate to Sequence Paxos

14

S. Haridi, KTHx ID2203.2x

● Sequence Paxos
● va The accepted sequence

● The Decided sequence
● Round/ballot number
● Process
● nprom , nL
● Element in a sequence

15

● Raft
● The Log
● The committed prefix of Log
● Term
● Server
● Highest Term
● Entry

S. Haridi, KTHx ID2203.2x

Raft Decomposition
● Leader election

● Select one server to act as leader (BLE)
● Detect crashes, choose new leader (BLE)
● Only servers with up-to-date logs can become leader

● The leader election and Raft consensus are fused in
one component

● Incorporates the prepare phase in the leader-election algorithm
● In election a leader with highest term (round number) and

highest entry index (longest sequence) is elected

16

S. Haridi, KTHx ID2203.2x

Raft Decomposition
● Log replication (normal operation)
● Leader accepts commands from clients, appends to its

log
● Leader replicates its log to other servers (overwrites

inconsistencies)
● Keep logs consistent
● Consistent replication is done differently from sequence

Paxos by some form of log reconciliation

17

S. Haridi, KTHx ID2203.2x

Server States and RPCs

18

● Raft uses a request/reply pattern for
sending messages RPCs

Passive (but expects regular
heartbeats)

Issues RequestVote RPCs to get
elected as leader

Issues AppendEntries RPCs:
•Replicate its log
•Heartbeats to maintain leadership

S. Haridi, KTHx ID2203.2x

Terms (rounds)

19

● At most 1 leader per term (some terms might fail to elect a leader)
● Each server maintains current term value (maintaining nprom)

● Exchanged in every RPC
● Server has higher term? Update term, leader revert to follower
● Incoming RPC has lower term? Reply with error

S. Haridi, KTHx ID2203.2x

 
Terms (rounds) vs. Ballot Array

20

Round Accepted by p1 Accepted by p2 Accepted by p3

Term 5 a⊕b⊕c⊕d
Term 4

Term 3 a⊕b⊕c a⊕b⊕c

Term 2 a a⊕b a⊕b

Term 1 a a 〈〉

a b c d

 
The Election

S. Haridi, KTHx ID2203.2x

Leader Election
● Randomized starts
● Each server gives only one

vote per term
● Majority required to win

election

● Server p rejects candidate q
● If highest log entry of q has

a lower term or same term
but lower index

22

S. Haridi, KTHx ID2203.2x

 
Normal Operation

● Client sends command to leader
● Leader appends command to its log
● Leader sends AppendEntries RPCs to all followers (similar to

accept messages in Sequence Paxos)
● Entry is committed if

● Replicated on majority of servers by leader of its term
● Once committed Leader executes command in its state machine,

returns result to client
● Notifies followers in subsequent AppendEntries(similar to decide

messages)
23

 
Log structure and Log

reconciliation

S. Haridi, KTHx ID2203.2x 25

S. Haridi, KTHx ID2203.2x

● Crashes and network partitions my results in inconsistent logs

26

S. Haridi, KTHx ID2203.2x

● If log entries on different servers have same index and term
● They store the same command
● The logs are identical in all preceding entries

● If a given entry is committed, all preceding entries are also
committed

27

S. Haridi, KTHx ID2203.2x

Log reconciliation
● AppendEntries RPCs include <index, term> of entry preceding new

one(s)
● Follower must contain matching entry; otherwise it rejects request

● Leader retries with lower log index

28

S. Haridi, KTHx ID2203.2x

Summary
● Raft as Sequence Paxos have the same basic Paxos idea

● The longest chosen sequence is the decided (committed)
sequence

● Leaders must have a higher round (term) number
● Raft differs from Sequence Paxos on

● Leader election algorithm
● Incorporating the prepare phase as part of electing a leader
● Log (Accepted Sequence) reconciliation between leaders

and followers
29

