ITMO UNIVERSITY

How to Win Coding Competitions: Secrets of Champions

Week 4: Algorithms on Graphs
Lecture 1: Introduction to graphs

Maxim Buzdalov
Saint Petersburg 2016

Roads and cities

Social networks

Even computer programs

Undirected graph: an ordered pair $G=\langle V, E\rangle$

- V - set of graph's vertices
- E - set of graph's edges, a multiset of unordered pairs of vertices
- $(u, v) \in E$ means that an edge connecting vertices u and v exists in the graph

Undirected graph: an ordered pair $G=\langle V, E\rangle$

- V - set of graph's vertices
- E - set of graph's edges, a multiset of unordered pairs of vertices
- $(u, v) \in E$ means that an edge connecting vertices u and v exists in the graph

Undirected graph: an ordered pair $G=\langle V, E\rangle$

- V - set of graph's vertices
- E - set of graph's edges, a multiset of unordered pairs of vertices
- $(u, v) \in E$ means that an edge connecting vertices u and v exists in the graph
- Degree of a vertex $v-\operatorname{deg}(v)$ - the number of edges in E which contain v

Undirected graph: an ordered pair $G=\langle V, E\rangle$

- V - set of graph's vertices
- E - set of graph's edges, a multiset of unordered pairs of vertices
- $(u, v) \in E$ means that an edge connecting vertices u and v exists in the graph
- Degree of a vertex $v-\operatorname{deg}(v)$ - the number of edges in E which contain v

Directed graph: an ordered pair $G=\langle V, E\rangle$

- V - set of graph's vertices
- E - set of graph's edges, a multiset of ordered pairs of vertices

Directed graph: an ordered pair $G=\langle V, E\rangle$

- V - set of graph's vertices
- E - set of graph's edges, a multiset of ordered pairs of vertices

Directed graph: an ordered pair $G=\langle V, E\rangle$

- V - set of graph's vertices
- E - set of graph's edges, a multiset of ordered pairs of vertices
- Incoming degree of a vertex $v-\operatorname{deg}^{-}(v)$ - the number of edges $(x, v) \in E$

Directed graph: an ordered pair $G=\langle V, E\rangle$

- V - set of graph's vertices
- E - set of graph's edges, a multiset of ordered pairs of vertices
- Incoming degree of a vertex $v-\operatorname{deg}^{-}(v)$ - the number of edges $(x, v) \in E$
- Outgoing degree of a vertex $v-\operatorname{deg}^{+}(v)$ - the number of edges $(v, x) \in E$

Weighted graph

- Can be either directed or undirected graph
- Has a function $W: E \rightarrow X$, where X is the set of weights
- X is typically integers or reals, can also be symbols or strings

Weighted graph

- Can be either directed or undirected graph
- Has a function $W: E \rightarrow X$, where X is the set of weights
- X is typically integers or reals, can also be symbols or strings

Weighted graph

- Can be either directed or undirected graph
- Has a function $W: E \rightarrow X$, where X is the set of weights
- X is typically integers or reals, can also be symbols or strings
- In some cases, an unweighted graph is the same as a weighted graph with $X=\{1\}$

Path in the graph $G=\langle V, E\rangle$

- A list of vertices $v_{1}, v_{2}, \ldots, v_{k}$, such that $\left(v_{i}, v_{i+1}\right) \in E$ for all $1 \leq i<k$

Path in the graph $G=\langle V, E\rangle$

- A list of vertices $v_{1}, v_{2}, \ldots, v_{k}$, such that $\left(v_{i}, v_{i+1}\right) \in E$ for all $1 \leq i<k$
- Example: $[A, B, F, D, C, G]$ is a path

Path in the graph $G=\langle V, E\rangle$

- A list of vertices $v_{1}, v_{2}, \ldots, v_{k}$, such that $\left(v_{i}, v_{i+1}\right) \in E$ for all $1 \leq i<k$
- Example: $[A, B, F, D, C, G]$ is a path

Path in the graph $G=\langle V, E\rangle$

- A list of vertices $v_{1}, v_{2}, \ldots, v_{k}$, such that $\left(v_{i}, v_{i+1}\right) \in E$ for all $1 \leq i<k$
- Example: $[A, B, F, D, C, G]$ is a path

Path in the graph $G=\langle V, E\rangle$

- A list of vertices $v_{1}, v_{2}, \ldots, v_{k}$, such that $\left(v_{i}, v_{i+1}\right) \in E$ for all $1 \leq i<k$
- Example: $[A, B, F, D, C, G]$ is a path

Path in the graph $G=\langle V, E\rangle$

- A list of vertices $v_{1}, v_{2}, \ldots, v_{k}$, such that $\left(v_{i}, v_{i+1}\right) \in E$ for all $1 \leq i<k$
- Example: $[A, B, F, D, C, G]$ is a path

Path in the graph $G=\langle V, E\rangle$

- A list of vertices $v_{1}, v_{2}, \ldots, v_{k}$, such that $\left(v_{i}, v_{i+1}\right) \in E$ for all $1 \leq i<k$
- Example: $[A, B, F, D, C, G]$ is a path

Path in the graph $G=\langle V, E\rangle$

- A list of vertices $v_{1}, v_{2}, \ldots, v_{k}$, such that $\left(v_{i}, v_{i+1}\right) \in E$ for all $1 \leq i<k$
- Example: $[A, B, F, D, C, G]$ is a path

Path in the graph $G=\langle V, E\rangle$

- A list of vertices $v_{1}, v_{2}, \ldots, v_{k}$, such that $\left(v_{i}, v_{i+1}\right) \in E$ for all $1 \leq i<k$
- Example: $[A, B, F, D, C, G]$ is a path

Path in the graph $G=\langle V, E\rangle$

- A list of vertices $v_{1}, v_{2}, \ldots, v_{k}$, such that $\left(v_{i}, v_{i+1}\right) \in E$ for all $1 \leq i<k$
- Example: $[A, B, F, D, C, G]$ is a path
- Simple path: no vertex appears twice in the path

Cycle in the graph $G=\langle V, E\rangle$

- A path $v_{1}, v_{2}, \ldots, v_{k}$, such that $v_{k}=v_{1}$

Cycle in the graph $G=\langle V, E\rangle$

- A path $v_{1}, v_{2}, \ldots, v_{k}$, such that $v_{k}=v_{1}$
- Example: $[C, G, H, D]$ is a cycle

Cycle in the graph $G=\langle V, E\rangle$

- A path $v_{1}, v_{2}, \ldots, v_{k}$, such that $v_{k}=v_{1}$
- Example: $[C, G, H, D]$ is a cycle

Cycle in the graph $G=\langle V, E\rangle$

- A path $v_{1}, v_{2}, \ldots, v_{k}$, such that $v_{k}=v_{1}$
- Example: $[C, G, H, D]$ is a cycle

Cycle in the graph $G=\langle V, E\rangle$

- A path $v_{1}, v_{2}, \ldots, v_{k}$, such that $v_{k}=v_{1}$
- Example: $[C, G, H, D]$ is a cycle

Cycle in the graph $G=\langle V, E\rangle$

- A path $v_{1}, v_{2}, \ldots, v_{k}$, such that $v_{k}=v_{1}$
- Example: $[C, G, H, D]$ is a cycle

Cycle in the graph $G=\langle V, E\rangle$

- A path $v_{1}, v_{2}, \ldots, v_{k}$, such that $v_{k}=v_{1}$
- Example: $[C, G, H, D]$ is a cycle

Cycle in the graph $G=\langle V, E\rangle$

- A path $v_{1}, v_{2}, \ldots, v_{k}$, such that $v_{k}=v_{1}$
- Example: $[C, G, H, D]$ is a cycle
- Simple cycle: no vertex appears twice in the path, except for $v_{1}=v_{k}$

Loop is an edge which connects a vertex to itself
Multiedge is an edge which appears multiple times in E

Loop is an edge which connects a vertex to itself
Multiedge is an edge which appears multiple times in E

An undirected graph is connected if there exists a path between any two vertices

An undirected graph is connected if there exists a path between any two vertices Example of connected graph

$9 / 17$

An undirected graph is connected if there exists a path between any two vertices Example of graph which is not connected

$9 / 17$

An undirected graph is connected if there exists a path between any two vertices Example of graph which is not connected - three connected components

A directed graph is strongly connected if, for any two vertices u and v, there exists a path from u to v, and a path from v to u

A directed graph is strongly connected if, for any two vertices u and v, there exists a path from u to v, and a path from v to u Example of strongly connected graph

A directed graph is strongly connected if, for any two vertices u and v, there exists a path from u to v, and a path from v to u Example of graph which is not strongly connected

A directed graph is strongly connected if, for any two vertices u and v, there exists a path from u to v, and a path from v to u
Example of graph which is not strongly connected - two strongly connected components

There exist several important types of graphs. Some of these frequently appear in programming competitions. Here they are:

- Trees, rooted trees and forests
- Cactuses
- Complete graphs and tournaments
- Bipartite graphs
- Planar graphs

Tree: an undirected graph in which any two vertices are connected by exactly one path

Tree: an undirected graph in which any two vertices are connected by exactly one path

- A tree does not contain any cycles. Graphs without cycles are called acyclic

Tree: an undirected graph in which any two vertices are connected by exactly one path

- A tree does not contain any cycles. Graphs without cycles are called acyclic
- In any tree, $|E|=|V|-1$

Tree: an undirected graph in which any two vertices are connected by exactly one path

- A tree does not contain any cycles. Graphs without cycles are called acyclic
- In any tree, $|E|=|V|-1$

Forest: a disjoint union of trees

Tree: an undirected graph in which any two vertices are connected by exactly one path

- A tree does not contain any cycles. Graphs without cycles are called acyclic
- In any tree, $|E|=|V|-1$

Forest: a disjoint union of trees
Rooted tree: a tree where one of the vertices is a root. All edges have direction either from or towards root

Spanning tree: a subgraph of an undirected graph G, which is a tree and contains all vertices of G

Spanning tree: a subgraph of an undirected graph G, which is a tree and contains all vertices of G

- A graph $G^{\prime}=\left\langle V^{\prime}, E^{\prime}\right\rangle$ is a subgraph of $G=\langle V, E\rangle$ if:
- $V^{\prime} \subseteq V, E^{\prime} \subseteq E$
- For all $(u, v) \in E^{\prime}, u \in V^{\prime}$ and $v \in V^{\prime}$

Spanning tree: a subgraph of an undirected graph G, which is a tree and contains all vertices of G

- A graph $G^{\prime}=\left\langle V^{\prime}, E^{\prime}\right\rangle$ is a subgraph of $G=\langle V, E\rangle$ if:
- $V^{\prime} \subseteq V, E^{\prime} \subseteq E$
- For all $(u, v) \in E^{\prime}, u \in V^{\prime}$ and $v \in V^{\prime}$

Spanning tree: a subgraph of an undirected graph G, which is a tree and contains all vertices of G

- A graph $G^{\prime}=\left\langle V^{\prime}, E^{\prime}\right\rangle$ is a subgraph of $G=\langle V, E\rangle$ if:
- $V^{\prime} \subseteq V, E^{\prime} \subseteq E$
- For all $(u, v) \in E^{\prime}, u \in V^{\prime}$ and $v \in V^{\prime}$

Fix a spanning tree T of graph G. Every edge of G not in T forms a cycle with T. These are the fundamental cycles with regards to T.

Fix a spanning tree T of graph G. Every edge of G not in T forms a cycle with T. These are the fundamental cycles with regards to T.

Fix a spanning tree T of graph G. Every edge of G not in T forms a cycle with T. These are the fundamental cycles with regards to T.

Fix a spanning tree T of graph G. Every edge of G not in T forms a cycle with T. These are the fundamental cycles with regards to T.

Fix a spanning tree T of graph G. Every edge of G not in T forms a cycle with T. These are the fundamental cycles with regards to T.

Fix a spanning tree T of graph G. Every edge of G not in T forms a cycle with T. These are the fundamental cycles with regards to T.

Fix a spanning tree T of graph G. Every edge of G not in T forms a cycle with T. These are the fundamental cycles with regards to T.

Fix a spanning tree T of graph G. Every edge of G not in T forms a cycle with T. These are the fundamental cycles with regards to T.
Any cycle can be uniquely expressed as a combination of fundamental cycles

Edge-cactus: connected, undirected, any two simple cycles share at most one vertex

Edge-cactus: connected, undirected, any two simple cycles share at most one vertex

- Each edge belongs to at most one cycle

Edge-cactus: connected, undirected, any two simple cycles share at most one vertex - Each edge belongs to at most one cycle

Edge-cactus: connected, undirected, any two simple cycles share at most one vertex - Each edge belongs to at most one cycle

Vertex-cactus: any two simple cycles share no common vertices

Edge-cactus: connected, undirected, any two simple cycles share at most one vertex

- Each edge belongs to at most one cycle

Vertex-cactus: any two simple cycles share no common vertices

- Each vertex belongs to at most one cycle

Edge-cactus: connected, undirected, any two simple cycles share at most one vertex

- Each edge belongs to at most one cycle

Vertex-cactus: any two simple cycles share no common vertices

- Each vertex belongs to at most one cycle

Bipartite graph: a undirected graph where $V=L \cup R, L \cap R=\emptyset$, such that for any edge (u, v) it holds that $u \in L, v \in R$

Bipartite graph: a undirected graph where $V=L \cup R, L \cap R=\emptyset$, such that for any edge (u, v) it holds that $u \in L, v \in R$

Bipartite graph: a undirected graph where $V=L \cup R, L \cap R=\emptyset$, such that for any edge (u, v) it holds that $u \in L, v \in R$

- In any bipartite graph, every loop has an even length

Complete graph K_{n} : an undirected graph with edges between all pairs of vertices

Complete graph K_{n} : an undirected graph with edges between all pairs of vertices

Complete graph K_{n} : an undirected graph with edges between all pairs of vertices Tournament T_{n} : a directed graph with either (u, v) or (v, u) for all u and v

Complete graph K_{n} : an undirected graph with edges between all pairs of vertices Tournament T_{n} : a directed graph with either (u, v) or (v, u) for all u and v

Complete graph K_{n} : an undirected graph with edges between all pairs of vertices Tournament T_{n} : a directed graph with either (u, v) or (v, u) for all u and v Complete bipartite graph $K_{n, m}$: an undirected graph with edges between all pairs of vertices from different parts

Complete graph K_{n} : an undirected graph with edges between all pairs of vertices Tournament T_{n} : a directed graph with either (u, v) or (v, u) for all u and v Complete bipartite graph $K_{n, m}$: an undirected graph with edges between all pairs of vertices from different parts

Planar graph: a graph which can be laid out on the plane without edges intersections

Planar graph: a graph which can be laid out on the plane without edges intersections

Planar graph: a graph which can be laid out on the plane without edges intersections - Face: a piece of plane bounded by a loop in the graph never intersected by edges

Planar graph: a graph which can be laid out on the plane without edges intersections

- Face: a piece of plane bounded by a loop in the graph never intersected by edges
- Fact 1 (Euler characteristic): $|V|-|E|+|F|=2$.

Planar graph: a graph which can be laid out on the plane without edges intersections

- Face: a piece of plane bounded by a loop in the graph never intersected by edges
- Fact 1 (Euler characteristic): $|V|-|E|+|F|=2$.
- Fact 2: If $|V| \geq 3$ then $|E|<3|V|-6$

Planar graph: a graph which can be laid out on the plane without edges intersections

- Face: a piece of plane bounded by a loop in the graph never intersected by edges
- Fact 1 (Euler characteristic): $|V|-|E|+|F|=2$.
- Fact 2: If $|V| \geq 3$ then $|E|<3|V|-6$
- Fact 3 (Kuratowski): The graph is planar if and only if it doesn't contain subgraphs which are subdivision of K_{5} or $K_{3,3}$. Subdivision of the graph is introducing some number of vertices in each edge.

