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Reinforcement Learning

Reinforcement Learning

� Basic idea:

� Receive feedback in the form of rewards

� Agent’s utility is defined by the reward function

� Must (learn to) act so as to maximize expected rewards

� All learning is based on observed samples of outcomes!

Environment

Agent

Actions: a
State: s

Reward: r

Example: Learning to Walk

Before Learning A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

The Crawler!

[You, in Project 3]

Reinforcement Learning

� Still assume a Markov decision process (MDP):

� A set of states s ∈ S

� A set of actions (per state) A

� A model T(s,a,s’)

� A reward function R(s,a,s’)

� Still looking for a policy π(s)

� New twist: don’t know T or R

� I.e. we don’t know which states are good or what the actions do

� Must actually try actions and states out to learn
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Offline (MDPs) vs. Online (RL)

Offline Solution Online Learning

Passive Reinforcement Learning

Passive Reinforcement Learning

� Simplified task: policy evaluation

� Input: a fixed policy π(s)

� You don’t know the transitions T(s,a,s’)

� You don’t know the rewards R(s,a,s’)

� Goal: learn the state values

� In this case:

� Learner is “along for the ride”

� No choice about what actions to take

� Just execute the policy and learn from experience

� This is NOT offline planning!  You actually take actions in the world.

Direct Evaluation

� Goal: Compute values for each state under π

� Idea: Average together observed sample values

� Act according to π
� Every time you visit a state, write down what the 

sum of discounted rewards turned out to be

� Average those samples

� This is called direct evaluation

Example: Direct Evaluation

Input Policy π

Assume: γ = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1

C, east, D, -1

D, exit,  x, +10

B, east, C, -1

C, east, D, -1

D, exit,  x, +10

E, north, C, -1

C, east,   A, -1

A, exit,    x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1

C, east,   D, -1

D, exit,    x, +10

A

B C D

E

+8 +4 +10

-10

-2

Problems with Direct Evaluation

� What’s good about direct evaluation?

� It’s easy to understand

� It doesn’t require any knowledge of T, R

� It eventually computes the correct average values, 

using just sample transitions

� What bad about it?

� It wastes information about state connections

� Each state must be learned separately

� So, it takes a long time to learn

Output Values

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go to C 

under this policy, how can 

their values be different?
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Why Not Use Policy Evaluation?

� Simplified Bellman updates calculate V for a fixed policy:
� Each round, replace V with a one-step-look-ahead layer over V

� This approach fully exploited the connections between the states

� Unfortunately, we need T and R to do it!

� Key question: how can we do this update to V without knowing T and R?
� In other words, how to we take a weighted average without knowing the weights?

π(s)

s

s, π(s)

s, π(s),s’
s’

Example: Expected Age

Goal: Compute expected age of cs188 students

Unknown P(A): “Model Based” Unknown P(A): “Model Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Why does this 

work?  Because 

samples appear 

with the right 

frequencies.

Why does this 

work?  Because 

eventually you 

learn the right 

model.

Model-Based Learning Model-Based Learning

� Model-Based Idea:
� Learn an approximate model based on experiences

� Solve for values as if the learned model were correct

� Step 1: Learn empirical MDP model
� Count outcomes s’ for each s, a

� Normalize to give an estimate of

� Discover each when we experience (s, a, s’)

� Step 2: Solve the learned MDP
� For example, use policy evaluation

Example: Model-Based Learning

Input Policy π

Assume: γ = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1

C, east, D, -1

D, exit,  x, +10

B, east, C, -1

C, east, D, -1

D, exit,  x, +10

E, north, C, -1

C, east,   A, -1

A, exit,    x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1

C, east,   D, -1

D, exit,    x, +10

T(s,a,s’).
T(B, east, C) = 1.00

T(C, east, D) = 0.75

T(C, east, A) = 0.25

…

R(s,a,s’).
R(B, east, C) = -1

R(C, east, D) = -1

R(D, exit, x) = +10

…

Model-Free Learning
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Sample-Based Policy Evaluation?

� We want to improve our estimate of V by computing these averages:

� Idea: Take samples of outcomes s’ (by doing the action!) and average

π(s)

s

s, π(s)

s1's2' s3'

s, π(s),s’

s'

Almost!  But we can’t 

rewind time to get sample 

after sample from state s.

Temporal Difference Learning

� Big idea: learn from every experience!

� Update V(s) each time we experience a transition (s, a, s’, r)

� Likely outcomes s’ will contribute updates more often

� Temporal difference learning of values

� Policy still fixed, still doing evaluation!

� Move values toward value of whatever successor occurs: running average

π(s)

s

s, π(s)

s’

Sample of V(s):

Update to V(s):

Same update:

Exponential Moving Average

� Exponential moving average 

� The running interpolation update:

� Makes recent samples more important:

� Forgets about the past (distant past values were wrong anyway)

� Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Learning

Assume: γ = 1, α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States

Problems with TD Value Learning

� TD value leaning is a model-free way to do policy evaluation, mimicking 

Bellman updates with running sample averages

� However, if we want to turn values into a (new) policy, we’re sunk:

� Idea: learn Q-values, not values

� Makes action selection model-free too!

a

s

s, a

s,a,s’
s’

Active Reinforcement Learning
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Active Reinforcement Learning

� Full reinforcement learning: optimal policies (like value iteration)

� You don’t know the transitions T(s,a,s’)

� You don’t know the rewards R(s,a,s’)

� You choose the actions now

� Goal: learn the optimal policy / values

� In this case:

� Learner makes choices!

� Fundamental tradeoff: exploration vs. exploitation

� This is NOT offline planning!  You actually take actions in the world and 
find out what happens…

Detour: Q-Value Iteration

� Value iteration: find successive (depth-limited) values
� Start with V0(s) = 0, which we know is right

� Given Vk, calculate the depth k+1 values for all states:

� But Q-values are more useful, so compute them instead
� Start with Q0(s,a) = 0, which we know is right

� Given Qk, calculate the depth k+1 q-values for all q-states:

Q-Learning

� Q-Learning: sample-based Q-value iteration

� Learn Q(s,a) values as you go

� Receive a sample (s,a,s’,r)

� Consider your old estimate:

� Consider your new sample estimate:

� Incorporate the new estimate into a running average:

[demo – grid, crawler Q’s]

Q-Learning Properties

� Amazing result: Q-learning converges to optimal policy -- even 

if you’re acting suboptimally!

� This is called off-policy learning

� Caveats:

� You have to explore enough

� You have to eventually make the learning rate

small enough

� … but not decrease it too quickly

� Basically, in the limit, it doesn’t matter how you select actions (!)

CS 188: Artificial Intelligence
Reinforcement Learning II

Dan Klein, Pieter Abbeel

University of California, Berkeley

Reinforcement Learning

� We still assume an MDP:

� A set of states s ∈ S

� A set of actions (per state) A

� A model T(s,a,s’)

� A reward function R(s,a,s’)

� Still looking for a policy π(s)

� New twist: don’t know T or R

� I.e. don’t know which states are good or what the actions do

� Must actually try actions and states out to learn
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The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, π* Value / policy iteration

Evaluate a fixed policy π Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, π* VI/PI on approx. MDP

Evaluate a fixed policy π PE on approx. MDP

Goal Technique

Compute V*, Q*, π* Q-learning

Evaluate a fixed policy π Value Learning

Model-Free Learning

� Model-free (temporal difference) learning

� Experience world through episodes

� Update estimates each transition

� Over time, updates will mimic Bellman updates

� Q-Value Iteration (model-based, requires known MDP)

� Q-Learning (model-free, requires only experienced transitions)

r

a

s

s, a

s’

a’

s’, a’

s’’

Q-Learning

� We’d like to do Q-value updates to each Q-state:

� But can’t compute this update without knowing T, R

� Instead, compute average as we go

� Receive a sample transition (s,a,r,s’)

� This sample suggests

� But we want to average over results from (s,a)  (Why?)

� So keep a running average

Q-Learning Properties

� Amazing result: Q-learning converges to optimal policy -- even 

if you’re acting suboptimally!

� This is called off-policy learning

� Caveats:

� You have to explore enough

� You have to eventually make the learning rate

small enough

� … but not decrease it too quickly

� Basically, in the limit, it doesn’t matter how you select actions (!)

[demo – off policy]

Exploration vs. Exploitation How to Explore?

� Several schemes for forcing exploration

� Simplest: random actions (ε-greedy)

� Every time step, flip a coin

� With (small) probability ε, act randomly

� With (large) probability 1-ε, act on current policy

� Problems with random actions?

� You do eventually explore the space, but keep 
thrashing around once learning is done

� One solution: lower ε over time

� Another solution: exploration functions

[demo – crawler]
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Exploration Functions

� When to explore?

� Random actions: explore a fixed amount

� Better idea: explore areas whose badness is not

(yet) established, eventually stop exploring

� Exploration function

� Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g.

� Note: this propagates the “bonus” back to states that lead to unknown states as well!

Modified Q-Update:

Regular Q-Update:

[demo – crawler]

Regret

� Even if you learn the optimal policy, 

you still make mistakes along the way!

� Regret is a measure of your total 

mistake cost: the difference between 

your (expected) rewards, including 

youthful suboptimality, and optimal 

(expected) rewards

� Minimizing regret goes beyond 

learning to be optimal – it requires 

optimally learning to be optimal

� Example: random exploration and 

exploration functions both end up 

optimal, but random exploration has 

higher regret

Approximate Q-Learning Generalizing Across States

� Basic Q-Learning keeps a table of all q-values

� In realistic situations, we cannot possibly learn 
about every single state!

� Too many states to visit them all in training

� Too many states to hold the q-tables in memory

� Instead, we want to generalize:

� Learn about some small number of training states from 
experience

� Generalize that experience to new, similar situations

� This is a fundamental idea in machine learning, and we’ll 
see it over and over again

Example: Pacman

[demo – RL pacman]

Let’s say we discover 
through experience 

that this state is bad:

In naïve q-learning, 
we know nothing 
about this state:

Or even this one!

Feature-Based Representations

� Solution: describe a state using a vector of 
features (properties)
� Features are functions from states to real numbers 

(often 0/1) that capture important properties of the 
state

� Example features:
� Distance to closest ghost

� Distance to closest dot

� Number of ghosts

� 1 / (dist to dot)2

� Is Pacman in a tunnel? (0/1)

� …… etc.

� Is it the exact state on this slide?

� Can also describe a q-state (s, a) with features (e.g. 
action moves closer to food)
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Linear Value Functions

� Using a feature representation, we can write a q function (or value function) for any 
state using a few weights:

� Advantage: our experience is summed up in a few powerful numbers

� Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

� Q-learning with linear Q-functions:

� Intuitive interpretation:
� Adjust weights of active features

� E.g., if something unexpectedly bad happens, blame the features that were on: 
disprefer all states with that state’s features

� Formal justification: online least squares

Exact Q’s

Approximate Q’s

Example: Q-Pacman

[demo – RL pacman]

Q-Learning and Least Squares

0 20
0

20

40

0
10

20
30

40

0

10

20

30

20

22

24

26

Linear Approximation: Regression*

Prediction: Prediction:

Optimization: Least Squares*

0 20
0

Error or “residual”

Prediction

Observation
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Minimizing Error*

Approximate q update explained:

Imagine we had only one point x, with features f(x), target value y, and weights w:

“target” “prediction”
0 2 4 6 8 10 12 14 16 18 20

-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Overfitting: Why Limiting Capacity Can Help*

Policy Search Policy Search

� Problem: often the feature-based policies that work well (win games, maximize 
utilities) aren’t the ones that approximate V / Q best

� E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they 
still produced good decisions

� Q-learning’s priority: get Q-values close (modeling)

� Action selection priority: get ordering of Q-values right (prediction)

� We’ll see this distinction between modeling and prediction again later in the course

� Solution: learn policies that maximize rewards, not the values that predict them

� Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing 
on feature weights

Policy Search

� Simplest policy search:

� Start with an initial linear value function or Q-function

� Nudge each feature weight up and down and see if your policy is better than before

� Problems:

� How do we tell the policy got better?

� Need to run many sample episodes!

� If there are a lot of features, this can be impractical

� Better methods exploit lookahead structure, sample wisely, change 

multiple parameters…

Conclusion

� We’re done with Part I: Search and Planning!

� We’ve seen how AI methods can solve 
problems in:

� Search

� Constraint Satisfaction Problems

� Games

� Markov Decision Problems

� Reinforcement Learning

� Next up: Part II: Uncertainty and Learning!


