Natural Response of an RC Circuit

Consider the circuit below. Assume we know that the capacitor, C , has an initial voltage $\mathrm{v}(\mathrm{O})$ across it. What is the voltage, v, across C, for $t \geq 0$?

Applying KVL, we can write:

$$
R i+v=0
$$

Substituting the i-v relation for a capacitor, we obtain:

$$
R C \frac{d v}{d t}+v=0
$$

We can clean this up a bit by dividing by RC:

$$
\frac{d v}{d t}+a v=0
$$

Where:

$$
a=\frac{1}{R C} .
$$

This is a differential equation. It turns out the solution to the differential equation in the blue box above is:

$$
v(t)=v(0) e^{-t / \tau}
$$

where:

$$
\begin{equation*}
\tau=R C \tag{s}
\end{equation*}
$$

Once we know the voltage, v, we can also determine:

- the current, i (since $\mathrm{i}=\mathrm{C}^{*} \mathrm{dv} / \mathrm{dt}$ for a capacitor)
- the power being absorbed or injected by the capacitor (since $P=i^{*} v$)
- the energy stored in the capacitor at any time (since $U=\int P$ or $1 / 2 *{ }^{*} \mathrm{Cv}^{2}$)

All four variables are plotted below for this circuit.

What does the time constant, τ, tell us?

The magnitude of the time constant τ is a measure of how fast or how slowly a circuit responds to a sudden change.

- Notice that the units of τ are seconds (that is ohms * farads = seconds).
- Notice in figure (a) above, that after 1 t , the capacitor has discharged to 0.37 of the initial value.
- After about $5 \tau, v(t)$ has dropped to $<1 \%$ of its original value. Engineers assume 5τ is long enough for particular RC circuit to charge or discharge to its final value.

