
 
Causal Broadcast

Seif Haridi
haridi@kth.se

S. Haridi, KTHx ID2203.1x

Motivation
● Assume we have a chat application

● Whatever written is reliably broadcast to group
● If you get the following output, is it ok?

● Cosmin’s message caused Lars’s message,
● Lars’s message caused Paris’s message

[Paris] Are you sure, the lecture is not in room B?
[Lars] Room C at Electrum
[Cosmin] Does anyone know where is the lecture
today?

2

S. Haridi, KTHx ID2203.1x

Motivation (2)

● Does uniform reliable broadcast remedy this?
[d]

3

S. Haridi, KTHx ID2203.1x

Motivation (3)

● Causal reliable broadcast solves this
● Deliveries in causal order!

● Causality is same as happened-before
relation by Lamport!

4

S. Haridi, KTHx ID2203.1x

Cause-effect relations in message
passing systems

● An event e1 may potentially have caused
another event e2 if the following relation,
called, happens-before and denoted by  
e1 → e2 holds

5

S. Haridi, KTHx ID2203.1x

Happens-before relation
● e1 and e2 occurs at the same process p, and e1

occurs before e2
● e1 is the transmission of a message m at process

p and e2 is the reception of the same message at
process q

● There exist some event e’ such that e1→e’ and
e’→e2

6

S. Haridi, KTHx ID2203.1x

Happens-before relation

e1 e2

e2

e1

e1

e’

e2

7

S. Haridi, KTHx ID2203.1x

Intuitions (1)
• So far, we did not consider ordering among

messages; In particular, we considered
messages to be independent

• Two messages from the same process might
not be delivered in the order they were
broadcast

• A message m1 that causes a message m2
might be delivered by some process after m2

8

S. Haridi, KTHx ID2203.1x

Intuitions (2)
• Causal broadcast means

• Causality between broadcast events is preserved by
the corresponding delivery events

• If broadcast(m1) happens-before broadcast(m2), any
delivery(m2) cannot happen-before a delivery(m1)

9

S. Haridi, KTHx ID2203.1x

Causality of Messages
● Let m1 and m2 be any two messages:
 m1→m2 (m1 causally precedes m2) if

● C1 (FIFO order).
● Some process pi broadcasts m1 before broadcasting m2

● C2 (Network order).
● Some process pi delivers m1 and later broadcasts m2

● C3 (Transitivity).
● There is a message m’ such that m1 → m’ and m’ → m2

10

S. Haridi, KTHx ID2203.1x

Causality
● C1 (FIFO order).

● Some process pi broadcasts m1 before broadcasting m2

p1

p2

p3

m1 m2 p1

p2

p3

m1 m2

11

S. Haridi, KTHx ID2203.1x

Causality (2)
● C2 (Network order).

● Some process pi delivers m1 and later broadcasts m2

p1

p2

p3

m1

m2

p1

p2

p3

m1

m2

12

S. Haridi, KTHx ID2203.1x

Causality (3)
● C3 (Transitivity).

● There is a message m’ such that m1 → m’ and m’ → m2

p1

p2

p3

m1

m2

m3

p1

p2

p3

m1

m2

m3

13

Specification of causal
reliable broadcast

S. Haridi, KTHx ID2203.1x

Causal Broadcast Interface
● Module:

● Name: CausalOrder (co)

● Events
● Request: 〈co Broadcast | m〉
● Indication: 〈co Deliver | src, m〉

● Property:
● CB: If node pi delivers m1, then pi must have delivered

 every message causally preceding (→) m1 before m1

15

S. Haridi, KTHx ID2203.1x

Causal Broadcast Interface

● If node pi delivers m1, then pi must have delivered
every message causally preceding (→) m1 before m1

● Is this useful? How can it be satisfied? [d]

● It is only safety. Satisfy it by never delivering!

16

S. Haridi, KTHx ID2203.1x

Different Causalities
● Property:

● CB: If node pi delivers m1, then pi must deliver every
 message causally preceding (→) m1 before m1

● CB’: If pj delivers m1 and m2, and m1→m2, then pj must
 deliver m1 before m2

● What is the difference? [d]

17

S. Haridi, KTHx ID2203.1x

Different Causalities
● Property:

● CB: If node pi delivers m1, then pi must deliver every message causally
preceding (→) m1 before m1

● CB’: If pj delivers m1 and m2, and m1→m2, then pj must deliver m1 before m2
● What is the difference? [d]

● Indeed, CB implies CB’

p1

p2

p3

m1

m2

m3

p1

p2

p3

m1

m2

m3

Violates CB and CB’ Violates CB, not CB’

18

S. Haridi, KTHx ID2203.1x

Reliable Causal Broadcast Interface
● Module:

● Name: ReliableCausalOrder (rco)
● Events

● Request: 〈rco Broadcast | m〉
● Indication: 〈rco Deliver | src, m〉

● Property:
● RB1-RB4 from regular reliable broadcast
● CB: If node pi delivers m, then pi must deliver every

message causally preceding (→) m before m

19

S. Haridi, KTHx ID2203.1x

Uniform Reliable Causal Broadcast
● Module:

● Name: UniformReliableCausalOrder (urco)
● Events

● Request: 〈urco Broadcast | m〉
● Indication: 〈urco Deliver | src, m〉

● Property:
● URB1-URB4 from uniform reliable broadcast
● CB: If node pi delivers m, then pi must deliver every

message causally preceding (→) m before m

20

S. Haridi, KTHx ID2203.1x

Idea reuse…
● Reuse RB for CB

● Use reliable broadcast abstraction to implement
reliable causal broadcast

● Use uniform reliable broadcast abstraction to
implement uniform causal broadcast

21

Implementation of causal
reliable broadcast

S. Haridi, KTHx ID2203.1x

Towards an implementation

● Main idea
● Each broadcasted message carries a history
● Before delivery, ensure causality

● First algorithm
● History is set of all causally preceding messages

23

S. Haridi, KTHx ID2203.1x

Fail-Silent No-Waiting Causal Broadcast

● Each message m carries ordered list of
causally preceding messages in pastm

● Whenever a node rb-Delivers m
● co-Deliver causally preceding messages in pastm

● co-Delivers m
● Avoid duplicates using delivered

24

S. Haridi, KTHx ID2203.1x

p1

p2

p3

m1[]

coB(m1) coD(m1)

coD(m1)

coB(m2)

 m2 [m1]

coD(m2)

rbD(m2)

 m2 [m1]

coD(m2)

coD(m1) coD(m2)

m1[]

Execution (direct override)

25

S. Haridi, KTHx ID2203.1x

p1

p2

p3

m1[]

coB(m1) coD(m1)

coD(m1)

coB(m2)
 m2 [m1]

coD(m2)

rbD(m2)

 m2 [m1]

coD(m2)

coD(m1) coD(m2)

m1[]

Execution (indirect override)

26

S. Haridi, KTHx ID2203.1x

Fail-silent Causal Broadcast Impl
● Implements:

● ReliableCausalOrderBroadcast (rco)
● Uses: ReliableBroadcast (rb)
● upon event 〈Init〉 do

● delivered := ∅; past := nil
● upon event 〈rco Broadcast | m〉 do

● trigger 〈rb Broadcast | (DATA, past, m)〉
● past := append(past, (pi, m))

Append this
message to past

history

27

S. Haridi, KTHx ID2203.1x

Fail-silent Causal Broadcast Impl (2)
● upon event 〈rb Deliver | pi,(DATA, pastm , m)〉 do

● if m∉delivered then
● forall (sn,n)∈pastm do
● if n∉delivered then
● trigger 〈rco Deliver|sn, n〉
● delivered := delivered∪{n}
● past := append(past, (sn,n))
● trigger 〈rco Deliver|pi,m〉
● delivered := delivered∪{m}
● past := append(past, (pi,m))

in ascending order

deliver preceding
messages

append to history
deliver current message

append to history

28

S. Haridi, KTHx ID2203.1x

Correctness

● RB1-RB4 follow from use of RB
● No creation and no duplication still satisfied
● Validity still satisfied

● Some messages might be delivered earlier, never later
● Agreement directly from RB

29

S. Haridi, KTHx ID2203.1x

Correctness
● RB1-RB4 follow from use of RB

● No creation and no duplication still satisfied
● Validity still satisfied

● Some messages might be delivered earlier, never later

30

rb-b(m1)

rb-d(p1,m1) rb-b(m2)

rb-d(p1,m1)
p1

p2

S. Haridi, KTHx ID2203.1x

Correctness
● RB1-RB4 follow from use of RB
● Agreement directly from RB
● If correct process pk delivers all correct processes

deliver
● all processes will deliver because of RB

agreement either immediately or included in the
pastm of previous message m

31

S. Haridi, KTHx ID2203.1x

Correctness of CB
● If process pi delivers m, then pi must deliver every message

causally preceding (→) m before m
● This property is an invariant of each execution (or prefix of)
● P is an invariant if P(E) holds for all executions E
● If P(E) is an invariant,

● P hold for all s0 in the set of initial states
● If P holds in execution (prefix) E with final state sn then P

holds after extending E with any transition step  
(sn, en+1, sn+1)

32

S. Haridi, KTHx ID2203.1x

Correctness CB
● Each message carries its causal past
● Each delivery of a message m makes sure that its

causal past is delivered before m
● CO by induction on prefixes of executions
● It is true for empty executions (initial state s0)
● Assume it is true for all deliveries of a prefix

● Then it is true for any extension with one more event

33

S. Haridi, KTHx ID2203.1x

Improving the algorithm
● Disadvantage of algorithm is that the message size (bit

complexity) grows
● Useful idea

● Garbage collect old messages
● Implementation of GC

● Acknowledge causal delivery of every message m to all processes
● Use perfect failure detector P

● Determine with P when all correct nodes got message m
● Delete m from past when all correct processes got m

34

S. Haridi, KTHx ID2203.1x

Improving the algorithm

● We use P
● Use FIFO reliable broadcast
● It is possible to trim Past ?

35

Causal Broadcast Algorithm using
FIFO Broadcast

S. Haridi, KTHx ID2203.1x

Causal Broadcast Interface
● Module:

● Name: FIFO-ReliableBroadcast (frb)

● Events
● Request: 〈frb Broadcast | m〉
● Indication: 〈frb Deliver | src, m〉

● Property:
● FIFO delivery: if pi broadcasts message m1 before it broadcasts

message m2, then no correct process delivers m2 unless it has
already delivered m1

● RB1-RB4
37

Idea of using FIFO reliable broadcast
● Assume we use fifo-rb instead rb
● In the no-waiting algorithm

● Each process pi rb-broadcasts the message append(pastm, m)
● Assume two consecutive broadcasts by pi

● append(pastm1, m1)=𝑙1 and then append(pastm2, m2)=𝑙2
● Each correct process delivers 𝑙1 before 𝑙2 by FIFO delivery

● But 𝑙1 is a prefix of 𝑙2 so pi needs to only broadcast 𝑙2 - 𝑙1

● Each pi needs to keep track only of messages between to
consecutive broadcasts

38

S. Haridi, KTHx ID2203.1x

Fail-silent Causal Broadcast Impl
● Implements:

● ReliableCausalOrderBroadcast (rco)
● Uses: FIFO-ReliableBroadcast (frb)
● upon event 〈Init〉 do

● delivered := ∅; 𝑙 := nil
● upon event 〈rco Broadcast | m〉 do

● trigger 〈frb Broadcast | (DATA, append(𝑙, m)〉
● 𝑙 := nil reset 𝑙 to store only

new deliveries
39

S. Haridi, KTHx ID2203.1x

Fail-silent Causal Broadcast Impl (2)
● upon event 〈frb Deliver | pi,(DATA, 𝑙m)〉 do

● forall (sn,n) ∈ 𝑙m do
● if n ∉ delivered then

● trigger 〈rco Deliver| sn, n〉
● delivered := delivered ∪ {n}
● if (sn,n) ∉ 𝑙 then
● append(𝑙, (sn,n))

in ascending order

append to local 𝑙

deliver message

40

• Can we trim the delivered set? [d]

Fail-Silent Waiting Algorithm

S. Haridi, KTHx ID2203.1x

Towards another implementation
● Main idea

● Each broadcasted message carries a history
● Before delivery, ensure causality

● First & Second algorithms
● History is set of all causally preceding messages

● Third algorithm [d]
● History is a vector timestamp

42

S. Haridi, KTHx ID2203.1x

Fail-Silent Waiting Causal Broadcast
● Represent past history by vector clock (VC)

● Slightly modify the VC implementation
● At process pi

● VC[i]: number of messages pi coBroadcasted

● VC[j], j≠i: number of messages pi coDelivered from pj

43

S. Haridi, KTHx ID2203.1x

Fail-Silent Waiting Causal Broadcast
● Upon CO broadcast m

● Piggyback VC and RB-broadcast m
● VCm[r] is the number messages causally preceding m from r

● Upon RB delivery of m with attached VCm

 compare VCm with local VCi

● Only deliver m once VCm ≤ VCi

● Do Not deliver if VCm > VCi or VCm ≠ VCi

44

S. Haridi, KTHx ID2203.1x

Fail-Silent Waiting Causal Broadcast
● Upon RB delivery of m with attached VCm

 compare VCm with local VCi

● Only deliver m once VCm ≤ VCi

● Do Not deliver if VCm > VCi or VCm ≠ VCi

45

S. Haridi, KTHx ID2203.1x

p1

p2

p3

b(m1) d(m1) b(m2) d(m2)

d(m1) d(m2)

d(m2)d(m1)

(0,0,0) (1,0,0)

m1(0,0,0)

m1(0,0,0)

(2,0,0)

m2(1,0,0)

m2(1,0,0)

(1,0,0)(0,0,0)

(0,0,0) (1,0,0) (2,0,0)

(2,0,0)

Execution

hold m2

46

S. Haridi, KTHx ID2203.1x

Fail-Silent Waiting Causal Implementation
● Uses: ReliableBroadcast (rb)
● upon event 〈Init〉 do

● forall pi ∈ Π do VC[pi] := 0
● sn := 0
● Pending := ∅

● upon event 〈rco Broadcast|m〉 do
● W = copy(VC)
● W[self] := sn
● trigger 〈rbBroadcast|(DATA, W, m)〉
● sn := sn + 1

send m with VC
Increase sn for next

broadcast

47

S. Haridi, KTHx ID2203.1x

Fail-Silent Waiting Causal Impl. (2)
● upon event 〈rbDeliver|pj, (DATA, VCm , m)〉 do

● pending := pending ∪ (pj, (DATA, VCm, m))
● deliver-pending()

● proc deliver-pending()
● while exists x=(sm,(DATA,VCm,m)) ∈ pending s.t. VCm ≤ VC do

● pending := pending \ (sm, (DATA, VCm, m))
● VC[sm] := VC[sm] + 1
● trigger 〈rcoDeliver | sm, m〉

put on hold

for every message
whose VC precedes

local VC

Remove on hold
deliver and increase

local VC

48

S. Haridi, KTHx ID2203.1x

Correctness
● Validity

● m is co-cast by a correct pi with VCm equal
VCi at send time or higher only at VCi[i] by
outstanding earlier co-cast not delivered yet

● By rb-cast validity m is eventually rb-delived
at pi as well as earlier co-casts

● At delivery time VCi can only increase, so
● Eventually VCm ≤ VCi and m is co-delived

49

upon event 〈rco Broadcast|m〉 do
W = copy(VC)
W[self] := sn
trigger 〈rbBroadcast|(DATA, W,
m)〉
sn := sn + 1

S. Haridi, KTHx ID2203.1x

Correctness
● Agreement

● Assume m is co-delivered at correct pi
● pi co-delivered all message causally before m
● Every correct process rb-delivered m and all causally

preceding messages (agreement of RB)
● Hence every correct process co-deliver m

50

S. Haridi, KTHx ID2203.1x

Correctness
● Causal Order

● Assume p rb-delivers m, VCm from q
● VCm[r] is the number messages causally preceding m from r
● VC at p stores the number of messages co-delivered from each

process
● For some r, VCm[r] > VC[r] implies there is at least one message

from r that is causally before m, which is not co-delivered at p
● P waits to deliver m until VCm [r] ≤ VCi [r], for all r
● Hence m is not delivered until all causally preceding messages

are delivered

51

Orderings of Broadcast

S. Haridi, KTHx ID2203.1x

• Delivery order isn’t same!
❑ What is wrong? [d]

p1

p2

b(m1) d(m1) d(m2)

d(m2) d(m1)

m1(0,0)

m2(0,0)

b(m2)

Possible execution?
(1,0) (1,1)

(0,1) (1,1)

(0,0)

(0,0)

Nothing, there is no causality.
53

S. Haridi, KTHx ID2203.1x

Other possible orderings
● Other common orderings
● Single-source FIFO order

● Total order

● Causal order

54

S. Haridi, KTHx ID2203.1x

Single-Source FIFO order
● Intuitively

● Msgs from same node delivered in order sent
● For all messages m1 and m2 and all pi and pj,

● if pi broadcasts m1 before m2, and if pj delivers m2,
then pj delivers m1 before m2

● Caveat
● This formulation doesn’t require delivery of both

messages

55

S. Haridi, KTHx ID2203.1x

Total Order
● Intuitively

● Everyone delivers everything in exact same order

● For all messages m1 and m2 and all pi and pj,
● if both pi and pj deliver both messages, then they deliver them in

the same order

● Caveat
● This formulation doesn’t require delivery of both messages
● Everyone delivers same order, maybe not send order!

56

S. Haridi, KTHx ID2203.1x

a

Execution Example (1)

b

single-source FIFO?
totally ordered?
causally ordered?

yes
no
yes

57

S. Haridi, KTHx ID2203.1x

Execution Example (2)
a b

single-source FIFO?
totally ordered?
causally ordered?

no
yes
no

58

S. Haridi, KTHx ID2203.1x

Execution Example (3)
a

b

single-source FIFO?
totally ordered?
causally ordered?

yes
no
no

59

S. Haridi, KTHx ID2203.1x

Hierarchy of Orderings

● Stronger implies weaker ordering (→)
best-effort

reliable

uniform reliable

FIFO best-effort

reliable FIFO

uniform reliable
FIFO

causal best-
effort

reliable causal

uniform reliable
causal

60

