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Motivation
● Assume we have a chat application 

● Whatever written is reliably broadcast to group 
● If you get the following output, is it ok? 

● Cosmin’s message caused Lars’s message,  
● Lars’s message caused Paris’s message

[Paris] Are you sure, the lecture is not in room B? 
[Lars] Room C at Electrum 
[Cosmin] Does anyone know where is the lecture 
today?
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Motivation (2)

● Does uniform reliable broadcast remedy this? 
[d]
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Motivation (3)

● Causal reliable broadcast solves this 
● Deliveries in causal order!  

● Causality is same as happened-before 
relation by Lamport! 
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Cause-effect relations in message 
passing systems

● An event e1 may potentially have caused 
another event e2 if the following relation, 
called, happens-before and denoted by  
e1 → e2 holds
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Happens-before relation
● e1 and e2 occurs at the same process p, and e1 

occurs before e2 
● e1 is the transmission of a message m at process 

p and e2 is the reception of the same message at 
process q 

● There exist some event e’ such that e1→e’ and 
e’→e2
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Happens-before relation

e1 e2

e2

e1

e1

e’

e2
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Intuitions (1)
• So far, we did not consider ordering among 

messages; In particular, we considered 
messages to be independent 

• Two messages from the same process might 
not be delivered in the order they were 
broadcast 

• A message m1 that causes a message m2 
might be delivered by some process after m2
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Intuitions (2)
• Causal broadcast means 

• Causality between broadcast events is preserved by 
the corresponding delivery events 

• If broadcast(m1) happens-before broadcast(m2), any 
delivery(m2) cannot happen-before a delivery(m1) 
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Causality of Messages
● Let m1 and m2 be any two messages:  
 m1→m2  (m1 causally precedes m2) if 

● C1 (FIFO order).  
● Some process pi broadcasts m1 before broadcasting m2 

● C2 (Network order).  
● Some process pi delivers m1 and later broadcasts m2  

● C3 (Transitivity).  
● There is a message m’ such that m1 → m’ and m’ → m2
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Causality
● C1 (FIFO order).  

● Some process pi broadcasts m1 before broadcasting m2

p1

p2

p3

m1 m2 p1

p2

p3

m1 m2
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Causality (2) 
● C2 (Network order).  

● Some process pi delivers m1 and later broadcasts m2

p1

p2

p3

m1

m2

p1

p2

p3

m1

m2
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Causality (3) 
● C3 (Transitivity).  

● There is a message m’ such that m1 → m’ and m’ → m2

p1

p2

p3

m1

m2

m3

p1

p2

p3

m1

m2

m3
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Causal Broadcast Interface
● Module: 

● Name: CausalOrder (co) 

● Events 
●  Request: 〈co Broadcast | m〉 
●  Indication: 〈co Deliver | src, m〉 

● Property: 
● CB:  If node pi delivers m1, then pi must have delivered 

 every message causally preceding (→) m1 before m1
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Causal Broadcast Interface

● If node pi delivers m1, then pi must have delivered 
every message causally preceding (→) m1 before m1 

● Is this useful? How can it be satisfied? [d] 

● It is only safety. Satisfy it by never delivering!
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Different Causalities  
● Property: 

● CB:   If node pi delivers m1, then pi must deliver every 
  message causally preceding (→) m1 before m1 

● CB’:  If pj delivers m1 and m2, and m1→m2, then pj must 
  deliver m1 before m2 

● What is the difference? [d]
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Different Causalities  
● Property: 

● CB: If node pi delivers m1, then pi must deliver every message causally 
preceding (→) m1 before m1 

● CB’: If pj delivers m1 and m2, and m1→m2, then pj must deliver m1 before m2 
● What is the difference? [d] 

● Indeed, CB implies CB’

p1

p2

p3

m1

m2

m3

p1

p2

p3

m1

m2

m3

Violates CB and CB’ Violates CB, not CB’
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Reliable Causal Broadcast Interface
● Module: 

● Name: ReliableCausalOrder (rco) 
● Events 

●  Request: 〈rco Broadcast | m〉 
●  Indication: 〈rco Deliver | src, m〉 

● Property: 
● RB1-RB4 from regular reliable broadcast 
● CB:  If node pi delivers m, then pi must deliver every  

message causally preceding (→) m before m
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Uniform Reliable Causal Broadcast
● Module: 

● Name: UniformReliableCausalOrder (urco) 
● Events 

●  Request: 〈urco Broadcast | m〉 
●  Indication: 〈urco Deliver | src, m〉 

● Property: 
● URB1-URB4 from uniform reliable broadcast 
● CB:  If node pi delivers m, then pi must deliver every  

message causally preceding (→) m before m
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Idea reuse…
● Reuse RB for CB  

● Use reliable broadcast abstraction to implement 
reliable causal broadcast 

● Use uniform reliable broadcast abstraction to 
implement uniform causal broadcast
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Towards an implementation

● Main idea 
● Each  broadcasted message carries a history 
● Before delivery, ensure causality 

● First algorithm 
● History is set of all causally preceding messages
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Fail-Silent No-Waiting Causal Broadcast

● Each message m carries ordered list of 
causally preceding messages in pastm  

● Whenever a node rb-Delivers m 
● co-Deliver causally preceding messages in pastm 

● co-Delivers m  
● Avoid duplicates using delivered
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p1

p2

p3

m1[]

coB(m1) coD(m1)

coD(m1)

coB(m2)

 m2 [m1]

coD(m2)

rbD(m2)

 m2 [m1]

coD(m2)

coD(m1) coD(m2)

m1[]

Execution (direct override)
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p1

p2

p3

m1[]

coB(m1) coD(m1)

coD(m1)

coB(m2)
 m2 [m1]

coD(m2)

rbD(m2)

 m2 [m1]

coD(m2)

coD(m1) coD(m2)

m1[]

Execution (indirect override)
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Fail-silent Causal Broadcast Impl
● Implements:  

● ReliableCausalOrderBroadcast (rco) 
● Uses:  ReliableBroadcast (rb) 
● upon event 〈Init〉 do  

●  delivered := ∅; past := nil 
● upon event 〈rco Broadcast | m〉 do  

● trigger 〈rb Broadcast | (DATA, past, m)〉 
● past := append(past, (pi, m))

Append this 
message to past 

history
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Fail-silent Causal Broadcast Impl (2)
● upon event 〈rb Deliver | pi,(DATA, pastm , m)〉 do  

●  if m∉delivered then  
●   forall (sn,n)∈pastm do 
●    if n∉delivered then 
●     trigger 〈rco Deliver|sn, n〉 
●     delivered := delivered∪{n} 
●     past := append(past, (sn,n)) 
●   trigger 〈rco Deliver|pi,m〉 
●   delivered := delivered∪{m} 
●   past := append(past, (pi,m))

in ascending order

deliver preceding 
messages

append to history
deliver current message

append to history
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Correctness

● RB1-RB4 follow from use of RB 
● No creation and no duplication still satisfied 
● Validity still satisfied 

● Some messages might be delivered earlier, never later 
● Agreement directly from RB

29
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Correctness
● RB1-RB4 follow from use of RB 

● No creation and no duplication still satisfied 
● Validity still satisfied 

● Some messages might be delivered earlier, never later

30
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Correctness
● RB1-RB4 follow from use of RB 
● Agreement directly from RB 
● If correct process pk delivers all correct processes 

deliver 
● all processes will deliver because of RB 

agreement either immediately or included in the 
pastm of previous message m  

31



S. Haridi, KTHx ID2203.1x 

Correctness of CB
● If process pi delivers m, then pi must deliver every message 

causally preceding (→) m before m 
● This property is an invariant of each execution (or prefix of) 
● P is an invariant if P(E) holds for all executions E 
● If P(E) is an invariant, 

● P hold for all s0 in the set of initial states 
● If P holds in execution (prefix) E with final state sn then P 

holds  after extending E with any transition step  
(sn, en+1, sn+1) 
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Correctness CB
● Each message carries its causal past 
● Each delivery of a message m makes sure that its 

causal past is delivered before m 
● CO by induction on prefixes of executions 
● It is true for empty executions (initial state s0) 
● Assume it is true for all deliveries of a prefix 

● Then it is true for any extension with one more event
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Improving the algorithm
● Disadvantage of algorithm is that the message size (bit 

complexity) grows 
● Useful idea 

● Garbage collect old messages 
● Implementation of GC 

● Acknowledge causal delivery of every message m to all processes 
● Use perfect failure detector P 

● Determine with P when all correct nodes got message m 
● Delete m from past when all correct processes got m
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Improving the algorithm

● We use P  
● Use FIFO reliable broadcast 
● It is possible to trim Past ?
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Causal Broadcast Interface
● Module: 

● Name: FIFO-ReliableBroadcast (frb) 

● Events 
●  Request: 〈frb Broadcast | m〉 
●  Indication: 〈frb Deliver | src, m〉 

● Property: 
● FIFO delivery:  if pi broadcasts message m1 before it broadcasts 

message m2, then no correct process delivers m2 unless it has 
already delivered m1

● RB1-RB4
37



Idea of using FIFO reliable broadcast
● Assume we use fifo-rb instead rb 
● In the no-waiting algorithm 

● Each process pi rb-broadcasts the message append(pastm, m) 
● Assume two consecutive broadcasts by pi 

● append(pastm1, m1)=𝑙1 and then append(pastm2, m2)=𝑙2 
● Each correct process delivers 𝑙1 before 𝑙2 by FIFO delivery 

● But 𝑙1 is a prefix of 𝑙2 so pi needs to only broadcast 𝑙2 - 𝑙1 

● Each pi needs to keep track only of messages between to 
consecutive broadcasts
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Fail-silent Causal Broadcast Impl
● Implements:  

● ReliableCausalOrderBroadcast (rco) 
● Uses:  FIFO-ReliableBroadcast (frb) 
● upon event 〈Init〉 do  

●  delivered := ∅; 𝑙 := nil 
● upon event 〈rco Broadcast | m〉 do  

● trigger 〈frb Broadcast | (DATA, append(𝑙, m)〉 
● 𝑙 := nil reset 𝑙 to store only 

new deliveries
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Fail-silent Causal Broadcast Impl (2)
● upon event 〈frb Deliver | pi,(DATA, 𝑙m)〉 do  

● forall (sn,n) ∈ 𝑙m do 
● if n  ∉ delivered then 

●  trigger 〈rco Deliver| sn, n〉 
●  delivered := delivered ∪ {n} 
●  if (sn,n) ∉ 𝑙 then 
●   append(𝑙, (sn,n))

in ascending order

append to local 𝑙

deliver message

40
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Towards another implementation
● Main idea 

● Each  broadcasted message carries a history 
● Before delivery, ensure causality 

● First & Second algorithms 
● History is set of all causally preceding messages 

● Third algorithm [d] 
● History is a vector timestamp 
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Fail-Silent Waiting Causal Broadcast
● Represent past history by vector clock (VC)  

● Slightly modify the VC implementation 
● At process pi 

● VC[i]: number of messages pi coBroadcasted  

● VC[j], j≠i:  number of messages pi coDelivered from pj
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Fail-Silent Waiting Causal Broadcast
● Upon CO broadcast m 

● Piggyback VC and RB-broadcast m 
● VCm[r] is the number messages causally preceding m from r 

● Upon RB delivery of m with attached VCm 

 compare VCm with local VCi 

● Only deliver m once VCm ≤ VCi 

● Do Not deliver if VCm > VCi or VCm ≠ VCi 
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Fail-Silent Waiting Causal Broadcast
● Upon RB delivery of m with attached VCm 

 compare VCm with local VCi 

● Only deliver m once VCm ≤ VCi 

● Do Not deliver if VCm > VCi or VCm ≠ VCi 
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p1

p2

p3

b(m1) d(m1) b(m2) d(m2)

d(m1) d(m2)

d(m2)d(m1)

(0,0,0) (1,0,0)

m1(0,0,0)

m1(0,0,0)

(2,0,0)

m2(1,0,0)

m2(1,0,0)

(1,0,0)(0,0,0)

(0,0,0) (1,0,0) (2,0,0)

(2,0,0)

Execution

hold m2 
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Fail-Silent Waiting Causal Implementation
● Uses:  ReliableBroadcast (rb) 
● upon event 〈Init〉 do  

● forall pi ∈ Π do VC[pi] := 0 
● sn := 0 
● Pending := ∅ 

● upon event 〈rco Broadcast|m〉 do 
● W = copy(VC) 
● W[self] := sn 
● trigger 〈rbBroadcast|(DATA, W, m)〉 
● sn := sn + 1

send m with VC
Increase sn for next 

broadcast
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Fail-Silent Waiting Causal Impl. (2)
● upon event 〈rbDeliver|pj, (DATA, VCm , m)〉 do 

●  pending := pending ∪ (pj, (DATA, VCm, m)) 
●  deliver-pending() 

● proc deliver-pending() 
● while exists x=(sm,(DATA,VCm,m)) ∈ pending s.t. VCm ≤ VC do 

● pending := pending \ (sm, (DATA, VCm, m)) 
● VC[ sm ] := VC[ sm ] + 1 
● trigger 〈rcoDeliver | sm, m〉

put on hold

for every message 
whose VC precedes 

local VC

Remove on hold         
deliver and increase 

local VC
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Correctness
● Validity 

● m is co-cast by a correct pi with VCm equal 
VCi at send time or higher only at VCi[i] by 
outstanding earlier co-cast not delivered yet 

● By rb-cast validity m is eventually rb-delived 
at pi as well as earlier co-casts  

● At delivery time VCi can only increase, so 
● Eventually VCm ≤ VCi and m is co-delived

49

upon event 〈rco Broadcast|m〉 do 
W = copy(VC) 
W[self] := sn 
trigger 〈rbBroadcast|(DATA, W, 
m)〉 
sn := sn + 1
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Correctness
● Agreement 

● Assume m is co-delivered at correct pi 
● pi co-delivered all message causally before m  
● Every correct process rb-delivered m and all causally 

preceding messages (agreement of RB)  
● Hence every correct process co-deliver m
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Correctness
● Causal Order 

● Assume p rb-delivers m, VCm from q 
● VCm[r] is the number messages causally preceding m from r 
● VC at p stores the number of messages co-delivered from each 

process  
● For some r, VCm[r] > VC[r] implies there is at least one message 

from r that is causally before m, which is not co-delivered at p 
● P waits to deliver m until VCm [r] ≤ VCi [r], for all r 
● Hence m is not delivered until all causally preceding messages 

are delivered
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• Delivery order isn’t same! 
❑ What is wrong? [d] 

p1

p2

b(m1) d(m1) d(m2)

d(m2) d(m1)

m1(0,0)

m2(0,0)

b(m2)

Possible execution?
(1,0) (1,1)

(0,1) (1,1)

(0,0)

(0,0)

Nothing, there is no causality.
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Other possible orderings
● Other common orderings 
● Single-source FIFO order 

● Total order 

● Causal order
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Single-Source FIFO order
● Intuitively 

● Msgs from same node delivered in order sent 
● For all messages m1 and m2 and all pi and pj,  

● if pi broadcasts m1 before m2, and if pj delivers m2, 
then pj delivers m1 before m2 

● Caveat  
● This formulation doesn’t require delivery of both 

messages
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Total Order
● Intuitively 

● Everyone delivers everything in exact same order 

● For all messages m1 and m2 and all pi and pj,  
● if both pi and pj deliver both messages, then they deliver them in 

the same order 

● Caveat 
● This formulation doesn’t require delivery of both messages 
● Everyone delivers same order, maybe not send order!
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a

Execution Example (1)

b

single-source FIFO?
totally ordered?
causally ordered?

yes
no
yes
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Execution Example (2)
a b

single-source FIFO?
totally ordered?
causally ordered?

no
yes
no
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Execution Example (3)
a

b

single-source FIFO?
totally ordered?
causally ordered?

yes
no
no
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Hierarchy of Orderings

● Stronger implies weaker ordering (→)
best-effort

reliable

uniform reliable

FIFO best-effort

reliable FIFO

uniform reliable 
FIFO

causal best-
effort

reliable causal

uniform reliable 
causal
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