
Chapter 8: DNA Sequencing: Identification of 
Novel Viral Pathogens 
Chapter Overview 

In addition to the value of DNA sequencing for identifying genes and examining whole 
genomes, new technologies now permit "deep sequencing" of transcriptomes, 
metagenomes, and environmental samples. Bioinformatics is essential for assembly of 
short sequences into complete gene or genome sequences and for applications that 
use the short sequences themselves. By completing the projects in this chapter, 
students will understand how sequence data are read, some uses of sequences 
produced by high-throughput next-generation sequencing methods, the problem of 
sequence assembly, algorithmic approaches to constructing a full-length sequence from 
an array of short sequences, and the use of coverage as a measure of assembly 
quality. Additionally, students in programming courses will write programs to create test 
sequence data with a desired level of coverage and write a miniassembler program. 

• Biological problem: Identification of unknown causes of viral disease 
• Bioinformatics skills: Manipulating and mapping short sequence reads, 

assembling sequences into contigs, measures of quality 
• Bioinformatics software: Galaxy, Megablast, SRA and Trace databases, CAP 

assembler 
• Programming skills: Generating random string fragments, Overlapping strings, 

Traveling Salesperson Problem 
	  
Understanding the Problem: Deep Sequencing of Clinical Samples 
It might surprise you to know that diarrhea is the second most common cause of death 
in children under age 5, killing an estimated 2 million children worldwide each year. 
Although many people in countries with access to clean drinking water and reliable 
sanitation may consider this disease a mere annoyance, globally, billions of people lack 
these basic services. Indeed, diarrhea is third among causes of death for both children 
and adults in low-income countries, accounting for nearly 7% of fatalities. Most deaths 
from diarrheal disease result from dehydration, and the chronic or recurrent diarrhea 
common in many parts of the world is also an important cause of malnutrition. In recent 
years, several new causes of diarrhea havebeen identified, including cosavirus, 
klassevirus, and an entirely new genus of parvoviruses. Importantly, these new viruses 
have been identified not by traditional culture methods but by metagenomics (see 
References and Supplemental Reading). New "deep sequencing" methods (Figure 
8.1) applied to any and all DNA found in a human clinical sample not only tell us about 
what bacteria and viruses are present but have led to the identification of previously 
uncharacterized species, including novel pathogens. 



 
Figure 8.1: Automated sequencing of shotgun sequences and high-throughput next-
generation techniques have enabled advances in genome and metagenome 
sequencing. A computer-generated image of automated sequencing output is shown 
here. © The Biochemist Artist/ShutterStock, Inc. 

Identification of the specific microbe responsible for a given disease has been a difficult 
problem ever since Robert Koch and Louis Pasteur pioneered the germ theory of 
disease in the late 1800s. Indeed, given an uncomplicated case of diarrheal disease, it 
is more efficient for a physician to simply treat dehydration and determine whether 
antibiotic intervention is warranted than to pursue time-consuming and expensive 
procedures to identify a specific causative organism. The same is true for many other 
common diseases—upper respiratory syndromes, fevers, skin problems, and so on. 
Thus, the full spectrum of pathogens that can cause these diseases remains 
undetermined, and this is particularly true for viral pathogens because of the difficulty of 
isolating and culturing unknown viruses. Unexpectedly, DNA sequencing has become 
an unexpected resource for solving problems of this kind and for examining genomes, 
measuring gene expression, characterizing ecosystems, and more. 

Initially, sequencing was limited by technology and cost to individual genes of interest 
cloned into plasmid vectors but quickly progressed to sequencing of entire genomes, 
potentially allowing researchers to define all the functions of a cell and even an entire 
organism in terms of its genes and their interactions with the environment. The publicly 
funded International Human Genome Project (IHGP) began in 1990 with a plan to 
obtain the complete sequence of the human genome—3,000,000,000 nucleotides of 
information—by mapping and sequencing an ordered set of genome segments. Eight 
years later, a competitor, Celera Genomics, a private company headed by Dr. Craig 
Venter, entered what became an acrimonious race. Despite the IHGP's sizeable head 



start, both groups announced draft genome sequences in 2000. The key to Celera's 
success was to eliminate the time required to develop orderly arrays and 
simply sequence random genome fragments, relying on bioinformatic techniques and 
computational power to assemble these short "shotgun" sequences into complete 
chromosome sequences (see References and Supplemental Reading). Further 
advances in sequencing technology have taken this approach to the extreme: so-called 
next-generation sequencing techniques generate huge numbers of sequences in 
parallel, but they are as short as tens of bases each. Sophisticated assembly software 
can join these bits of sequence into full-length DNA sequences with a high degree of 
accuracy. With these technologies constantly pushing the boundaries of faster, cheaper 
sequencing, in what new ways might we use DNA sequencing? 
	  
Bioinformatics Solutions: Assembly and Mapping of Short Sequence 
Reads 
DNA sequencing is the process of determining the order of the nucleotides that make 
up a piece of DNA. This is the laboratory technique that generates not only all the DNA 
sequences you've been working with throughout this text (for more detail on sequencing 
techniques, see the BioBackground section at the end of the chapter) but most of the 
amino-acid sequences as well, because computational "translation" of a nucleotide 
sequence is much faster and cheaper than directly sequencing a protein. Although the 
human genome was not the first to be sequenced (among cellular organisms, that honor 
belongs to the yeast Saccharomyces cerevisiae), it has generated the most interest: Its 
far-reaching potential has been compared with the invention of the printing press. We 
remain a long way from knowing the function of every gene in the human genome, but 
we have all the raw data: the nucleotide sequences of all 23 distinct human 
chromosomes and all the 20,000+ genes they carry. 

Although dideoxy sequencing was used in both cases, Celera genomics was able to 
complete the sequencing of the human genome in a fraction of the time required by the 
IHGP by pioneering a faster shotgun sequencing technique (Figure 8.2). The Celera 
approach was fast because many DNA fragments could be sequenced at once, but it 
created a major computational problem because it produced many short DNA 
sequences whose relationship to each other was unknown. With algorithms capable of 
accurately assembling these sequences into the sequences of complete chromosomes, 
Celera opened the door to rapid genome sequencing. As this technique gained 
momentum, dozens of other genomes were completed, including bacteria, vertebrate 
and invertebrate animals, plants, fungi, and viruses.Huge benefits have already been 
reaped from genome sequencing, including better understanding of biological 
processes, identification of genes responsible for disease, development of improved 
therapies, and industrial and agricultural applications. 



 
Figure 8.2: Schematic representation of shotgun sequencing. The DNA to be 
sequenced is fragmented, random fragments are cloned into plasmids, and the 
fragments are then sequenced from both ends. Computational assembly of many 
fragments allows the complete sequence of the original DNA to be reconstructed. 

However, translating shotgun sequence data into quality genome sequence requires 
highcoverage: Each segment of the genome must be sequenced many times over to 
generate enough overlapping fragments to assemble the complete genome. The advent 
of next-generation sequencing techniques (see BioBackground) drastically increased 
the rate at which sequence could be obtained. In 454 sequencing, for example, a million 
individual sequence reads can be done in a single run, and Illumina and SOLiD 
technology can multiply that by 1,000 times. However, in maximizing data throughput, 
these techniques sacrifice read length, or the lengths of the DNA sequences they 
identify. Read lengths in dideoxy sequencing can be 800 nucleotides long or longer, but 
that number drops to 500 nucleotides for 454 sequencing and less than 100 nucleotides 
for Illumina and SOLiD. These sequencing techniques are therefore only as good as the 
bioinformatics software that allows us to analyze and interpret them. 

The short sequences generated by next-generation sequencing are used in two general 
ways: assembled into genomes or used directly to identify RNAs, organisms, or 
functional segments. Genome assembly has progressed to the point that we can begin 
to contemplate applications such as the rapid and inexpensive determination of 
each individual human's complete genome sequence. Meanwhile, short sequence reads 
from cellular, environmental, or clinical samples are used to determine the complete set 
of mRNAs produced in a given tissue or under a given condition (RNA-seq) or to 
identify all the organisms present in a particular environment without the need to isolate 
or culture them (metagenomics). These latter applications are often referred to 
as deep sequencing techniques. Deep sequencing of DNA present in a stool sample, 
throat swab, or skin wash can be used to identify the microbes normally present in the 
human body (the microbiome) as well as any pathogenic organisms that may be 
present. In the future, doctors may be able to use deep sequencing to take a microbial 
"census" of patient tissues. Applications like these depend on bioinformatics to provide 



algorithms for reliable assembly of massive amounts of fragmentary data into 
meaningful sequences and for mapping sequence reads relative to genomes. 

In this chapter's projects, you will examine and use some of these bioinformatics 
applications to work with sequencing data. You will see how DNA sequencing data are 
presented, identify viruses from short sequence reads, experiment with assembly 
programs, and (if your course includes programming) write your own miniassembly 
program. 
	  
BioConcept Questions 

1. In Sanger sequencing, why does a newly synthesized strand of DNA terminate 
when DNA polymerase inserts a dideoxy nucleotide? How are these terminated 
DNA strands used to "read" the nucleotide sequence of the original DNA 
molecule? 

2. Why is shotgun sequencing so much faster than the directed approach originally 
taken by the IHGP? Why is it more dependent on computer power and 
bioinformatics? 

3. If the entire human genome were cleaved into a single set of small, non-
overlapping fragments, we could not determine the genome sequence by 
sequencing the fragments. Explain why this is the case. 

4. How do next-generation sequencing techniques extend and improve on the 
shotgun sequencing technique? What are their disadvantages? 

5. Complex genomes often contain many repeated sequences. For example, there 
are many STR (short tandem repeat) sites in the human genome, where a short 
sequence such as GATA might be repeated anywhere from a few to dozens of 
times. Why would an STR region potentially pose a problem for sequencing? Are 
next-generation techniques more or less susceptible to errors resulting from 
repeated sequences than older technologies? 

	  
Understanding the Algorithm: Determining Overlap in Sequence 
Assembly 
Learning Tools 

 
 Download  To better understand the problem of sequence assembly and the 
importance of the depth of coverage, you can download Assembly exercise.pdf from 
the Exploring Bioinformatics website. This file contains three copies of a short sequence 
representing threefold sequencing coverage that can be printed, cut into pieces, and 
reassembled. 

 

In this chapter's Web Exploration, you will gain experience using both sequence 
assembly tools and alignment-based tools for metagenomic analysis of short sequence 
reads from a clinical sample. In the Guided Programming Project and On Your Own 
Project, we focus on programs for assembling sequences, so this section explores 
assembly algorithms. 



The problem of sequence assembly is similar to the problem you would encounter if 
you ran this page through a paper shredder. Each fragment of the page might contain 
just a few words or perhaps just a handful of letters, and reassembling the complete text 
would be a daunting task. In shotgun sequencing, however, each part of the genome is 
represented more than once, as if you made several copies of this page and then 
shredded them together. Therefore, you might find pieces with ach fr and ent o but 
then you might discover a piece with Each fragm and another with nt of th that 
came from different copies of the page. Even if you never found the missing piece with 
agm that fits between the first two, you could conclude that a segment of the original 
text read Each fragment of th. In this way, overlapping short DNA sequences can 
allow us to build up the original sequence of a long piece of DNA (Figure 8.3). 

 
Figure 8.3: Assembly of short sequence reads into a longer contiguous sequence 
(contig). Overlaps are used to order the fragments, and coverage shows how often each 
nucleotide in the contig has been sequenced, a measure of the quality of the assembly. 
The highlighted G nucleotide appears to be a sequencing error. 

A sequence read is a single piece of data from a DNA sequencing reaction; whether it 
is an 800-nt fragment from Sanger sequencing or a 40-nt fragment from a next-
generation platform, it can be represented as a string of nucleotides. Thus, given a large 
number of strings representing nucleotide sequences, a sequence assembly program 
looks for overlaps to decide which strings should be joined together. Joining sequence 
fragments builds longer sequences called contigs, and when enough overlaps have 
been found, the contig represents an entire mRNA, plasmid, or chromosome. This 
process is far from trivial, however: Overlaps may be small, and the repeated 
sequences common to complex genomes (more than 50% of the human genome 
consists of repeated sequences of various kinds) introduce the possibility of 
misassembly. Furthermore, a fragment could come from either strand of the DNA 
molecule, so the assembler has to try assembling a given fragment and also its reverse 
complement. Furthermore, inaccuracy in the sequencing reactions themselves or in the 
base-calling software (see BioBackground) means that it may be unclear whether an 
overlap is genuine. 

Sequence assembly is therefore one of the most complex bioinformatics problems. In 
fact, it is still considered an open problem—one not completely solved—because no 
existing algorithm can reassemble fragments with complete accuracy in all situations. 



We are thus forced to rely on technical solutions to increase accuracy, such as 
continuing to sequence random fragments until every section of the target DNA has 
been sequenced multiple times.Then, errors become noticeable as bases fail to align 
properly (Figure 8.3). The assembly program keeps track of coverage—the number of 
times the nucleotide at each position hasbeen sequenced—as a measure of the 
reliability of the assembly at each point. 

To see how an assembly algorithm would work, let's consider the problem of 
assembling just two fragments. If two fragments overlap, the "suffix" (right or 3′ end) of 
one fragment must overlap the "prefix" (left or 5′ end) of the other fragment so that the 
base positions in the overlapping region match (Figure 8.4A). Then, the two fragments 
can be merged. However, what if there is more than one way they could overlap? 
Consider the sequences AATGCCTGAand TGACGAGTTAATGC: These could overlap in 
two different ways, as shown in Figure 8.4B. Which is the correct one? A common 
initial criterion for an assembly program is simply to choose the largest overlap as the 
one that most likely represents a correct assembly. Assuming the sequences are not 
identical and neither is a substring of the other, the longest possible overlap is one less 
than the length of the shorter sequence. We can therefore start with this maximum 
length and see if we can find an overlap this long. If not, we can look for an overlap one 
base shorter and so on, stopping the search as soon as a matching overlap is found. 
Then, we know we have identified the longest possible overlap and can merge the 
sequences (Figure 8.4B). Algorithmic steps to accomplish this are as follows. 

 
Figure 8.4: Assembly of two fragments with (A) an unambiguous overlap allowing the 
two to be merged into a contig, or (B) an ambiguous overlap requiring the assembly 
program to make a decision; here, the longest overlap is chosen as the most likely 
correct assembly. 
 
 
Algorithm 

 
Determining Largest Overlap Algorithm 

1. Start with two sequences: s1 and s2. 
2. Set n = size of the smallest sequence - 1 (n will represent the largest overlap). 
3. Compare n suffix characters from s1 with n prefix characters from s2. Also 

compare n suffix characters from s2 with n prefix characters from the s1. 
4. Count matching bases in the prospective overlap region. If the number of 

matches in either set equals n, the largest overlap has been found: merge 
sequences to yield the contig sequence. 

5. If the number of matches is less than n, subtract 1 from n. If n is 0, there is no 
overlap; otherwise, go to step 3. 



 

Given the sample sequences provided, this algorithm would first look at eight-base 
overlaps (the short sequence is nine nucleotides) and then seven and six. At n = 5, a 
match would be found with AATGC in the prefix of the short sequence 
matching AATGC in the suffix of the long sequence (Figure 8.4B), and the two would 
merge to form the contigTGACGAGTTAATGCCTGA. 

Of course, real sequence assembly is much more complicated: We have not considered 
the opposite strand or allowed for possible imperfect matches due to sequencing errors, 
and we have considered only two fragments, instead of the millions or even billions that 
can result from next-generation sequencing. The exhaustive matching of pairs of 
fragments will quickly become so computationally intensive as to be impractical, so 
heuristics must be used. One heuristic solution is a "greedy" algorithm: Given the choice 
of overlapping fragment A with fragment B, B with C, or C with A, the program makes 
the "educated guess" that the largest overlap is the best and proceeds without trying 
every possibility. The On Your Own Project provides a more detailed explanation of 
using this heuristic for sequence assembly. 
	  
Test Your Understanding 

1. Suppose two sequence reads give GGGGCAGGCC and GCCCCGG. What would be 
the sequence of the contig produced using the algorithm just given? 

2. Now suppose you would like your algorithm to account for the possibility that the 
sequences could come from either strand of the DNA. How would you modify the 
algorithm to accomplish this? Would the contig resulting from the two sequences 
in question 1 change as a result? 

3. The algorithm presented assumes that the strings cannot be identical and that 
one cannot be contained completely within the other (one cannot be a substring 
of the other). But this is a somewhat arbitrary constraint, particularly when 
comparing a short sequence with a longer contig that has been built. How would 
you change the algorithm to allow for substrings and identical sequences? 

4. Real sequencing data are "noisy:" They can contain incorrect characters due to 
sequencing errors (for example, the accuracy of most next-generation methods 
decreases as the fragment length increases) or to ambiguities leading to 
incorrect base-calling. How would you modify the algorithm so that a perfectly 
matching overlap is not required but merely one that exceeds some threshold 
value? How would incorporating this change affect the number of comparisons 
that must be made between two sequences? 

	  
Chapter project: Identifying Viruses Through Metagenomic Analysis of 
Clinical Samples 
To sequence, for example, the human genome, one might imagine extracting DNA from 
a sample of human cells free from contamination by bacteria or other sources of 
nonhuman DNA. However, what if we were to extract and sequence DNA of any kind 
that might happen to be in a soil sample, water sample, or stool sample? The resulting 



sequence would give us information about the genomes of all the different organisms 
present in that environment: We call this mixture a metagenome. This information could 
be used in a number of ways: We might use specific primers to sequence only 
diagnostic DNA segments, such as the genes for ribosomal RNA that are present in 
every organism and commonly used in phylogenetic analysis (seeChapters 6 and 7). 
Or, a biotech company might try to get a broad sample of protein coding genes and look 
for novel enzymes that might have practical applications. Or, we might use the 
metagenome to find evidence of microbes that live in association with humans, 
potentially proceeding from there to build a complete genome of a previously unknown 
organism. This is how several new viruses that cause diarrheal disease were actually 
identified, and we use some of these same techniques in this chapter's projects. 
	  
Learning Objectives 

§ Understand how short, random DNA sequences can be assembled to generate 
sequences of genes and genomes 

§ Appreciate the difficulty of accurate assembly and the dependence of sequencing 
on strong, efficient bioinformatics algorithms 

§ Gain experience with metagenomic uses of next-generation sequencing 
§ Know the various sources of inaccuracy, biological and computational, in 

sequence assembly and how quality data and coverage can increase accuracy 
§ Understand how to produce test data that simulate sequence reads and the 

value of these simulated data 

Suggestions for Using the Project 

The Web Exploration Project for this chapter allows students to deal with DNA 
sequence data in three distinct ways; the three parts of this project can be used 
independently depending on the focus desired by the instructor. The Guided 
Programming Project leads students to write code to generate simulated sequence data 
that are then used with the miniassembler in the On Your Own Project; instructors can 
provide either or both of these solutions in finished form for use in nonprogramming 
courses. 

Programming courses: 
§ Web Exploration: See the output of Sanger sequencing data and understand 

base-calling, assemble a small sequence read dataset, and map metagenomic 
sequence data to known organisms. Parts I, II, and III can be used 
independently. 

§ Guided Programming Project: Develop a simulator to produce test data 
resembling the output of various sequencing platforms. 

§ On Your Own Project: Understand greedy algorithms for heuristic assembly of 
sequence data; develop a miniassembler to assemble sequencing data. 

Nonprogramming courses: 
§ Web Exploration: See the output of Sanger sequencing data and understand 

base-calling, assemble a small sequence read dataset, and map metagenomic 



sequence data to known organisms. Parts I, II, and III can be used 
independently. 

§ Guided Programming Project: Download executable code for a sequence data 
simulator and use it to further experiment with the Web-based assembler. 

§ On Your Own Project: Understand greedy algorithms for heuristic assembly of 
sequence data; download executable code for a miniassembler and test with 
data from the Guided Programming Project and/or Web Exploration. 

Web Exploration— Analysis of Virus Sequences in the Human Metagenome 

The Web Exploration for this chapter is divided into three independent parts. In the first 
section, we look at sequence traces for dideoxy sequencing of a virus genome to better 
understand the nature of automated DNA sequence, how base-calling works, and some 
potential sources of error in sequence data. We then use a small sample of actual next-
generation sequencing data taken from a metagenomic experiment to identify the 
organisms present in a stool sample based on short, random DNA sequence reads. 
Finally, we use an assembly program to see how sequence reads can be built into a 
contiguous virus genome sequence. 

Part 1: DNA Sequence Traces and Base-Calling 
 Link  Automated dideoxy sequencing (see BioBackground) was one of the major 
innovations that made genome sequencing possible. However, it changed the nature of 
raw sequence data from bands on a gel to a computerized record of light wavelengths 
and intensities. These data can be output as an electropherogram, more commonly 
called a DNA trace (Figure 8.5), in which the fluorescence emitted by each 
dideoxynucleotide is represented by a color and the intensity represented by peak 
height. A researcher can examine the trace by hand to determine the sequence (e.g., a 
T for each red peak). However, this is extremely tedious even for a short sequence and 
certainly impossible for an entire genome. Thus, sequencing software also includes 
a base-calling program (Phred is a popular example) that interprets the color and 
intensity data and outputs an actual sequence of nucleotides. 

 
Figure 8.5: A sample electropherogram or "DNA trace" that would be generated by 
automated Sanger sequencing. The different color shades represent the four distinct 



fluorescent nucleotides detected, while the peak heights represent the intensity of 
detection of that particular fluorescence. At the bottom of the figure is the DNA 
sequence as determined by an automated base-calling program. 

 Link  Today, dideoxy sequencing is done inexpensively by many companies and 
universities. A researcher submitting DNA to be sequenced usually receives not only 
FASTA-formatted sequence files but also the sequence trace itself. Although the base-
calling programs have good accuracy, there are always ambiguities: Is a broad peak 
one base or two? Is a weak peak an actual base or an artifact? In a small sequencing 
project, the reliability of the sequence can be improved by checking the accuracy of the 
base-calling using a trace viewer. Chromas is a commonly used desktop trace viewer 
that comes in a free "light" version. For our purposes, however, we can look at some 
sequence traces stored in the NCBI Trace Archive, a database of dideoxy sequencing 
projects. 

Navigate to the Trace Archive database. A difficulty in using this database is that it does 
not use the standard NCBI Entrez search interface. To locate some sequences to 
examine, click the tab labeled Obtaining Data and then the option Registered 
Species to see a list of species for which there is sequence in the database. You 
should find an entry for Human Gut Metagenome; clicking this entry creates a query in 
the search field above; click Submitto see the results. These sequences come from a 
metagenomic project in which DNA taken from the human gut (via a fecal sample) was 
sequenced to identify the microbial species present. You can see that the data consist 
of a great number of comparatively long reads. Although they have already been edited 
to remove the least reliable data from each sequence, you may be able to see some 
spots where bases could not be accurately determined, indicated by N. 

Change the display to show the sequencing traces rather than the FASTA file. Click and 
drag the trace itself or click in the bar just above it to move through the sequence. It 
should be clear how the quality of the sequence changes along the read, from tall but 
indistinct initial peaks to a region where the sequence is very easy to read, to much 
lower peaks farther on. Notice that the base-calling software can determine bases far 
past where we can distinguish peaks (though a more sophisticated trace reader allows 
changing the scale to increase the viewable size of the peaks). Examine any Ns that 
occur in the sequence; can you manually call the base that the software could not call? 
Look for some runs of bases, such as three or more Gs or As in a row; can you see why 
these can be hard to call? Do you agree with the base-calling program? What other 
areas of the sequence appear to be difficult to determine precisely? You can also 
change the display to show quality, an estimate of reliability for each nucleotide, or to 
show information about the sequence run. 
	  
Web Exploration Questions 

1. Looking at the DNA sequence traces, what conditions appear to cause the base-
calling program to output N rather than designating a specific base? 

2. How many nucleotides of sequence was the base-calling program able to read 
for the traces you examined? 



3. Why does the lowest quality sequence occur at the beginning and the end of the 
sequence run? 

4. Although each dideoxy sequencing run produces a sequence trace, in a large 
metagenomic or genome sequencing project, it would not be practical to examine 
each trace and manually assign difficult bases. How can the sequences returned 
by an automated base-caller be used reliably in such a project? 

Part II: Metagenomic Analysis of the Human Virome by Next-Generation 
Sequencing 
 Link To sequence a genome, many-fold coverage of every nucleotide is necessary for 
high accuracy. However, there are many uses of sequencing in which individual reads 
provide valuable information. Notably, for a metagenomic project intended to sample all 
the organisms in an environment, individual reads can be compared with sequence 
databases to identify known organisms or distinguish novel ones. Data from many such 
projects can be found in public databases such as NCBI's Sequence Read 
Archive (SRA) database. One example is a project led by Gary D. Wu at the University 
of Pennsylvania in which DNA from fecal samples was sequenced with the intent of 
examining the microbial population (microbiome) of the human gut under various 
dietary conditions. Although the original intent of the study was to relate the microbiome 
to Crohn's disease, these same data were also mined to examine the virome, or viral 
population, of the gut. Here, we examine a small sample of data from this research 
project to see how metagenomic data can be analyzed. 

 Link  Although there are many freely available programs, most software for analysis of 
next-generation sequencing data must be downloaded and run on a desktop computer, 
because of the complexity of working with millions or billions of short sequences 
(see More to Explore, for some programs you might be interested in using). Indeed, our 
reason for examining only a portion of the available metagenomic data is to keep 
processing time reason- able for a course project. One notable Web-based tool that can 
be used for metagenomic analysis (as well as many other kinds of sequence data 
analysis) is Galaxy (see References and Supplemental Reading), a flexible interface 
that can be used to run many different kinds of bioinformatics programs. 

On the Galaxy main page (try Galaxy sequence analysis if you are using a search 
engine to find it), you will see three panes: a tool list on the left, a pane with parameters 
for the current tool in the center (initially, some available tutorials are displayed here), 
and a history pane on the right showing pending and completed analyses. Let's start by 
downloading data from the virome study. In Galaxy, this can be done by accessing 
EBI's interface to the SRA database: In the tool pane, choose Get Data and then EBI 
SRA to open a search interface in the second pane. The accession number for the data 
from the virome project is SRS072363; enter this in the search box and submit the 
search. You should see the SRA database entry for a sample from one specific subject 
in the study; at the bottom of the page, you should see listings for two specific files of 
Illumina sequencing data in FASTQ format. The far-right column in the file listing table is 
headed Galaxy; click on file 1 in this column to import these data into Galaxy. You will 
see a message in the center pane and then a task added to the history pane; the task 
will turn yellow when the server starts on it and green when it is complete. Once 



complete, you can click the task to see a "preview" of the data it contains within the 
history pane or the eye icon to see the data file itself in the center pane. Notice in the 
description of this file the large number of sequences it contains. 

Next-generation sequencing techniques automate sequencing and base-calling even 
more fully than in automated dideoxy sequencing. Although raw sequence data can be 
viewed (454 sequencing, for example, generates a flowgram similar in principle to an 
electropherogram), the enormous number of reads and the automation drastically 
decrease the value of any manual examination of the data. Instead, it is common to 
summarize both the called bases and data on the quality of the read within a single file 
in FASTQ format (Figure 8.6). Like a FASTA file, a FASTQ sequence file starts with a 
comment line, in this case beginning with @, to identify the sequence. The next line of 
the file is the sequence itself. There is then a line starting with + where an additional 
comment may optionally be added. The last line gives a quality score for each 
nucleotide, encoded as an ASCII character. The quality score range depends on the 
sequencing software; older Illumina software used a quality score from -5 to 62, 
whereas Sanger format uses a quality score based on the Phred algorithm, from 0 to 
93. 

 
@EAS100R : 3: 90 : 836 : 2213#0 TCGATGATTTGGGGTTCAATCCATTTGTTCAA  
%%%%)!''*((((***+))%)**55CCF>>>>>  

 
 
Figure 8.6: Example of next-generation sequencing data in FASTQ format. The first line 
is a comment marked by @ and identifies the sequence (including the instrument, run, 
specific cell, etc.). The second line is the sequence itself. The third line is an additional 
comment line marked by +, and the fourth line is the quality score for each base 
encoded by calculating a Phred quality score, adding 33 and using the ASCII character 
corresponding to that number (so, % = ASCII 37 = Phred 4;C = ASCII 67 = Phred 34). 

Converting the imported data to Sanger FASTQ format is needed for many of the 
Galaxy tools; to accomplish this, find FASTQ Groomer under NGS (next-generation 
sequencing) QC and manipulation in the tools pane. Notice that this tool will work 
on an item from your history, in this case the imported sequence data. Be sure the input 
data type is Sanger (your data are from Illumina 1.8, which uses the same FASTQ 
quality score system as FASTQ files for Sanger sequencing) and execute the task. You 
can expect this task to take a fairly long time to process (maybe hours if the load on the 
server is high). However, you can put additional tasks into the queue while you are 
waiting and they will be completed in order once this step is done. 

If you look at the actual sequences in the imported or groomed data file, you will notice 
that many are runs that consist only of Ns, indicating that no useful sequence data were 
obtained. Others may be very short, and others may have very low-quality scores. Let's 
limit our analysis for this project to runs that yielded a reasonable amount of good-
quality sequence. To do so, look in the same category of tools for Filter FASTQ 
reads by quality score and length. Use the FASTQ Groomer output and set 



minimum length to 50 nucleotides and the quality cut-off value to 20, which represents a 
99% probability that the base has been called correctly. Run the analysis and note how 
many sequences were discarded. 

Now that we have used the quality data to develop a subset of sequences we want to 
pursue further, we can convert the FASTQ data to a simple FASTA file of sequences 
with an identifying line. The complex identifiers in the FASTQ file are not really needed; 
let's give each of our sequences a simple identifier like GutVirome-1, GutVirome-2, and 
so on. Galaxy has tools for manipulating complex genome files that perform these 
actions easily. First, convert the FASTQ data to a table, using the FASTQ to 
Tabular converter tool. The output is in columns: sequence identifier, the sequence 
itself, and the quality data. Now add a column to the table, using the Add column tool 
found under Text manipulation. In theAdd this value field, 
type GutVirome and then change Iterate to Yes; this adds a column of data 
containing sequentially numbered labels as suggested earlier. Finally, generate the 
FASTA file using Tabular-to-FASTA (under FASTA manipulation), with the new 
fourth column (c4) as the title column and the second column (c2) as the sequence 
column. The resulting FASTA data should look very familiar to you. 

Using the FASTA file, we can now do the actual metagenomic analysis. We want to 
compare each remaining sequence read with the entire database of known sequences 
and identify the source of the sequence: human DNA, known or novel bacterial species, 
known or novel virus, and so on. Galaxy includes MegaBLAST as a tool that can 
perform this search; essentially, it will carry out a BLAST search for every sequence in 
your FASTA file, using parameters optimized to allow for small differences due to 
sequencing errors. Choose Megablast underNGS: Mapping, set the FASTA data as 
input, nt as the target database, a word size of 16, and a minimum percent identity 
threshold of 80%. Note at the bottom of this pane how the MegaBLAST output will look 
and then execute the database search. This process may also take some time; when it 
is complete, you should see that the number of lines has grown drastically, because any 
of the sequence reads can match multiple database sequences. 

How can one deal with such a large set of results—to say nothing of the enormous 
amount of data we would have obtained had we started with all the sequence data from 
all the study subjects? One way to summarize the results is by retrieving from the 
database the taxonomic information (species, genus, family, order, etc.) for each 
matched sequence. Results can then be grouped on this basis to reveal whether the 
sequenced DNAs belong to viruses, bacteria, human cells, or other organisms—even 
those that do not match a known species can be classified into larger groups. 
Under Metagenomic analyses, choose Fetch taxonomic representation. 
Set the name column to c1 (the identifier you gave the sequences) and the GIs column 
(GenBank gene identifier) to c2; these accession numbers will be used to retrieve the 
taxonomic information. Run the analysis. 

There are now a number of possible ways to examine the data further. To look at all the 
virus sequences in the dataset, for example, filter the data to show only the lines in 
which the Superkingdom column contains viruses. Similarly, well-chosen filters can 



allow you to look at bacteria or fungi or other organisms (you may need to look at some 
sample data to decide on filter terms). Another way to look at the data is to generate a 
phylogenetic tree of the organisms identified by the alignments: first run Find lowest 
diagnostic rank on the taxonomic data and then Draw phylogeny to get a PDF 
file showing the tree. 
	  
Web Exploration Questions 

5. How does the number of viral sequences found in the sequence runs you 
analyzed compare with the number of bacterial sequences? Are there fungal 
sequences? Protists? Do these relative numbers make sense in terms of the 
human gut environment and the roles of these organisms? 

6. Some of the species represented among the gut sequences might seem 
surprising. What seemingly unlikely species were identified, and what are some 
possible reasons for these results? 

7. What are the most commonly found viral sequences? Why is this the case? 
8. How could viruses that are normal residents of the gut community be 

distinguished from those that might be pathogens? 
9. How could novel viruses be distinguished from related viruses that have already 

been characterized? 

Part III: Assembling the Sequence of a Novel Virus 
Whereas metagenomic analysis can be conducted using individual short sequence 
reads resulting from next-generation sequencing of clinical samples, determining the 
genome sequence of any organism requires assembly of sequence reads into contigs 
with sufficient depth of coverage to detect and correct errors. The depth of coverage 
required is lower for sequencing methods producing long reads and much higher for 
techniques producing very short reads. Once a genome of interest has been identified 
from a metagenomic sample, it may be possible to identify enough reads from that 
genome to begin assembling its sequence. With the identification of portions of the 
genome, specific primers can be designed based on the now known sequence and 
used on the same metagenomic DNA samples to fill in the gaps in the genome. This 
process has been used to identify a number of novel pathogenic human viruses in 
recent years. For example, klassevirus, a new human virus in the picornavirus family, 
was identified in this manner from stool samples taken from children with diarrhea who 
tested negative for known diarrheal viruses (see References and Supplemental 
Reading). Viruses such as these may turn out to be important causes of human disease 
that have escaped detection until now. 

 Link  As with metagenomic analysis, most assembly programs that can handle 
genomic sequence data, especially next-generation sequencing data, are intended to 
run on powerful desktop machines (see More to Explore for some desktop programs 
you could use for assembly). For this project, we use EGassembler, a Web 
implementation of the CAP3 (contig assembly program) assembler (see References 
and Supplemental Reading). From the Understanding Bioinformatics website, you can 
download reads.txt, a file that contains 2,500 simulated 454 sequencing reads in 
FASTA format, representing the genome of an unknown virus identified in metagenomic 



samples. These sequences range in length from 100 to 500 bases and contain between 
1 and 10 random substitutions or single-nucleotide deletions each, representing the 
errors inherent in sequencing data. 

 Download  Navigate to the EGassembler page and either upload the sequence file or 
copy and paste the sequences into the input field. Notice that in addition to the CAP3 
assembler itself, EGassembler includes software to scan for low-quality sequence (e.g., 
sequences containing many Ns) and remove sequences matching databases of 
organelle and cloning vector DNA as well as highly repetitive sequences. For our 
purposes, turn off the options other than sequence cleaning and the assembly step itself 
and then run the program. You should immediately see the results of sequence 
cleaning; you can view a.cln file to identify reads that were discarded and then examine 
these reads in the original sequence file. 

In a few minutes, the link to the results should become functional. From the results 
page, you can view (1) the contig or contigs that resulted from the assembly of your 
sequence reads; (2) any "singletons," which are reads that could not be assembled into 
the contigs or that were not used in creating the contig; and (3) an alignment of the 
individual sequence reads showing how they led to the generation of the consensus 
contig sequence. 
	  
Web Exploration Questions 

10. How many sequence reads were rejected in the sequence cleaning process? 
Can you determine why they were rejected? 

11. Use BLAST to compare your contig sequence with known sequences in 
GenBank. The assembled sequence should match one known sequence with a 
high degree of similarity. What have we sequenced? How long is its genome? 

12. Because next-generation sequencing produces random short reads, there is no 
guarantee that even 2,500 reads would be sufficient to completely sequence a 
particular genome. Did the sequence reads you assembled cover the entire 
genome or do gaps remain? To fill any gaps, would it make sense to simply run 
more sequencing reactions, or are there other approaches that should be 
considered? 

13. Looking at the contig alignment file in the EGassembler results, you should be 
able to see hundreds if not thousands of small sequencing errors among the 
sequence reads. Was the assembler able to generate a correct contig sequence 
(as compared with the known sequence in the data-base) despite these errors? 
Explain how the sequence errors were accurately corrected. Were all errors 
caught, or did some remain in the final contig sequence? 

14. You used the default parameters for the CAP3 assembler in your EGassembler 
run. In a real sequencing project, however, you might want to change variables 
such as the overlap percent identity cut-off (the minimum percentage of 
nucleotides that must be identical in the overlapping region of two fragments). By 
default, CAP3 is quite tolerant of sequencing errors (and in fact automatically 
compensates for some of the common problems of high-throughput sequencing, 
such as low-quality sequence at the beginning and end of fragments). To see 



how these parameters affect the assembly, try setting the overlap percent identity 
cut-off to 100%. What happens to your contig? Does the quality of your alignment 
change? (You can choose Step-by-Step Assembly at the top of the page to 
access more parameters.) 

More to Explore: Sequencing Tools 
 

DNA sequencing has become such an important part of molecular biology and 
bioinformatics that a large number of software tools for analyzing sequencing 
information are available, both proprietary and otherwise. As mentioned previously, the 
sizes of data files containing millions or hundreds of millions of sequencing reads and 
the processing power required to analyze them reduce the desirability of Web-based 
interfaces, so many of the freely available programs must be down-loaded and installed 
on one's own computer. Table 8.1 lists a number of sequence analysis programs that 
you might be interested in working with in the future. 
Table 8.1: Some sequence assembly and analysis software.  

 Open table as spreadsheet 

Program Description 
Sequence assembly   
Velvet Assembler optimized for very short sequence reads 
Oases Extension of Velvet for transcriptome assembly 
IDBA-UD Assembler optimized for uneven coverage 
SSAKE Short-read assembler based on a greedy algorithm 
CABOG Celera software for small and large genome assembly 
SOAPdenovo Assembler capable of human genomesize assembly 
Mapping of sequence reads to reference genomes (metagenomics) 
Bowtie Fast alignment of sequence reads to human genome 
BWA Aligns sequence data with a reference sequence 
MAQ Maps sequence reads and identifies variants 
SOAPaligner Maps short oligonucleotides onto reference sequences 

 
Guided Programming Project: Sequencing and Assembly 
The goal of this guided project is to better understand sequencing data and how they 
are handled computationally in two ways: by developing a program to generate 
fragments of a known sequence that effectively simulate actual sequencing data and by 
using a simple assembly algorithm to assemble pairs of error-free sequence reads. In 
the On Your Own Project, you will carry this further, developing a miniassembly 
program capable of a more complex assembly. 



Simulating Sequencing Data 

The accuracy of any sequence assembly or metagenomic read-mapping program must 
be tested, and it is often convenient to have a set of test data that closely matches real 
sequencing data but has a known solution. Instead of using a contig assembled from 
actual sequencing data (which could be subject to assembly errors), a sequence 
simulation algorithm is commonly used to generate test fragments of a known DNA 
sequence that are designed to mimic the results of a particular sequencing platform 
(see References and Supplemental Reading). These simulated sequence reads should 
be random segments of the known sequence (representing random "shotgun" sequence 
data) whose size is appropriate for the sequencing technology being simulated (Table 
8.2); we can ask the user to supply a desired minimum and maximum fragment length. 
Simulated sequencing errors and variable sequence quality can be introduced to 
increase the realism of the simulation. 
Table 8.2: Read lengths for major sequencing technologies.  

 Open table as spreadsheet 

Sequencing Platform Typical Read Length No. of Reads per Run 
Sanger 500–900 bp 1–96 
454 200–300 bp 400,000 
Solexa 36 bp 3.4 million 
Illumina 100 bp 3 billion 
SOLiD 35 bp 1.7 billion 

In a real sequencing project, fragments of the DNA to be sequenced are produced by 
random processes. Thus, our program should randomly choose a substring of the input 
DNA string that falls within the specified size range. However, we need to make sure 
we generate enough overlapping fragments to cover the whole genome. The original 
shotgun sequencing genome projects tried to achieve about eightfold coverage of the 
entire original sequence: that is, each base position in the original sequence should 
appear in at least eight fragments. Next-generation sequencing methods, with their 
shorter reads, typically work with 30-fold coverage, while an application such as 
identifying rare mutations with a high degree of confidence may require 1,000-fold 
coverage. We should allow the user to input a desired coverage value, simulating the 
ability of a user to "tune" the coverage in a sequencing project. The pseudocode that 
follows describes an algorithm to simulate sequence reads by generating fragments of 
an input sequence to achieve a desired coverage level. 
Algorithm 

 
Sequence Read Simulator: Generating Fragments for Sequence Assembly 

Goal: To generate random fragments from an input sequence. 

Input: A single nucleotide sequence, user-defined minimum fragment size, maximum 
fragment size and coverage fold 



Output: A set of fragments 

Note: substring is assumed exclusive, thus substring(1,4) includes positions 1, 2, 3 only 
 

// Initialization  
Input the sequence: s1  
Input the minimum and maximum fragment size: fMin, fMax  
Input the coverage fold expected: fold  
for each i from 0 to length of s1 – 1 
 coverage[i] = 0 // holds coverage count of nucleotides   
 
// STEP 1: Generate a set of fragments for the input sequence 
numFrags = 0 
do      

randLength = random number between fMin and fMax, inclusive 
randStart = random number between 0 and (length of s1-
randLength) 
frags[numFrags] = s1.substring(randStart, 
randStart+randLength) 
numFrags++ 
// update coverage 
for each i from randStart to (randStart+randLength-1) 
 coverage[i]++ 

while (!coverageMet(coverage, fold)) 
output frags 
// function to determine if coverage met 
function coverageMet(coverage, fold) 

i = 0 
met = true // assume coverage met 
while (i < coverage length and met==true) 
if coverage[i] < fold 

met = false 
i++ 
return met  

 
 

Assembling Paris of Sequence Reads 

The goal of an assembly program is to produce one contig from a set of sequence 
fragments; here, we implement one small but important step in the assembly process: 
assembling eachpair of fragments in a set of sequence reads into a contig using the 
overlap algorithm (see Understanding the Algorithm). The program will need to use a 
nested loop to iterate through the set of sequence reads, attempting to overlap each 
fragment with every other fragment and looking for the largest overlap. The output for 
each pair of fragments should include the original fragments, the resulting contig, and 



the number of characters in the overlapping region. The following pseudocode shows a 
solution for finding the largest overlap. 
Algorithm 

 
Fragment Overlap Generator: Finding Overlaps Between Pairs of Fragments 

Goal: To determine the largest overlap between pairs of fragments Input: Set of 
fragments 

Output: The fragments, the resulting contig, and length of the overlapping region for 
each pair of fragments in the input file 

 
// Initialization  
Input the fragments and store in an array: frags  
numFrags = number of fragments read  
// STEP 1: Determine overlap for each pair of fragments   
 
for each i from 0 to numFrags-1      

for each j from i+1 to numFrags       
f1Len = length of frags[i]       
f2Len = length of frags[j]       
minLen = minimum of f1Len and f2Len       
overlap = 0       
frag1 = frags[i]       
frag2 = frags[j]       
k = minLen - 1       
while k >= 1 and overlap == 0          

// compare suffix of frag1 to prefix of frag2          
if frag1.substring(f1Len-k, f1Len) == frag2.substring 

(0, k)             
// create contig             
contig = frag1.substring(0, f1Len-k) + frag2             
overlap = k             
output frag1, frag2, contig, overlap          

else if frag2.substring(f2Len-k, f2Len)            
== frag1.substring(0, k)             
contig = frag2.substring(0, f2Len-k) + frag1             
overlap = k             
output frag1, frag2, contig, overlap          

k--  
 
	  
Putting Your Skills Into Practice 

1. Implement the Sequence Read Simulator and Fragment Overlap Generator 
programs described in the pseudocode, using whatever language is used in your 
course. Test your programs with a short sequence to validate them, but note that 
it will be difficult to obtain adequate coverage if your sequence is too short. 



2.  Download  Experiment with different short sequence lengths, coverage values, 
and minimum/maximum fragment sizes. How many "sequence reads" did it take 
to get the level of coverage you specified? How does that change if you change 
the fragment size? Was your overlapping assembly program able to match the 
correct fragments to generate a set of contigs found in the original sequence? 
Then, try running your program on a larger sequence, such as the klassevirus 
genome sequence you can download from the Exploring Bioinformaticswebsite. 

3. Modify your sequence read simulator to output the coverage values for your 
sequence. Where in the sequence do the highest coverage values occur? Can 
you explain this pattern? Does the pattern change if you change the fragment 
length or coverage parameters or the size of the input sequence? Does this 
pattern accurately simulate what would happen in a real sequencing experiment, 
or is it merely a computational artifact? If you wanted more even coverage, how 
could you modify your program? 

4. You may have noticed that it is possible for your sequence read simulator to 
generate a fragment that is a substring of (entirely contained within) another 
fragment. Fragments that are substrings of other fragments are considered 
"singletons" and are often eliminated from the assembly process, because they 
do not add any additional information and can even decrease the efficiency of the 
assembly process. Modify either program to remove all fragments that are 
entirely substrings of other fragments so they are not used when finding 
overlaps. 

5. The real sequencing process is prone to misreads; these occur with high 
frequency at the beginning and end of a sequence read, where sequencing is 
difficult for technical reasons, but can be found randomly throughout the 
sequences when the data sent to the base-calling software is ambiguous. 
Sometimes the sequencing reactions fail and a particular fragment is unreadable 
(usually represented by all Ns). Make your sequence read simulator more 
realistic by modifying its code to introduce random changes (inserted, deleted, or 
changed base) or Ns at a low rate. (For a more challenging exercise, make the 
likelihood of such changes higher at the ends of the sequence.) Then, modify 
your overlap generator so it looks for matches that exceed some configurable 
threshold but does not require an exact match (for example, if the matching 
threshold is 75%, then at least 75% of the characters in the overlapping region 
must match). Can you still get accurate assembly? 

6. Our simulator program only considered a single input string, representing one 
DNA strand. Real sequencing data could come from either strand, and in fact 
pairs of sequences from opposite ends of a DNA fragment, one from each 
strand, are often generated. The assembler cannot know in advance which 
strand a fragment came from, so it would have to try each fragment and its 
inverse complement to determine which assembled best. Modify your simulator 
so it chooses whether to output a selected fragment or its reverse complement 
(use your code from Chapter 2) and your fragment generator so it will try both 
strands. 

7. Repeated sequences pose a major problem for sequence assembly programs 
(indeed, some repeat-intensive regions of the human genome, such as the areas 



around centromeres, have yet to be sequenced). Test your overlap generator 
program with the following sequences (assume their positions relative to the 
original sequence are as shown). Considering the results, discuss the difficulty 
the repeat problem presents in determining a best overlap. Keep in mind that the 
length of a repeated sequence can often be much longer than the possible size 
of a fragment read. 

 
Original sequence: 
 
Test fragment set 1: 

 
GGATAGATATATATATATATCGACTTC  
 
GGATAGATATAT                  
                ATATGCACTTC  
GGATAGATATATATAT      
    GGATAGATATATATAT  

 

 
Test fragment set 2: 

On Your Own Project: A Mini-Assembly Program 

The Guided Programming Project introduced you to the problem of finding overlaps 
between pairs of fragments, and the Putting Your Skills Into Practice exercises should 
have helped you recognize the additional complexity introduced by sequencing errors 
and repeated sequences. In this project, we develop a miniassembly program capable 
of assembling multiple overlapping fragments into a contig using a "greedy" algorithm 
based on the traveling salesperson problem. We also look at the role of coverage in 
correcting errors and in determining which overlap is best when multiple options exist. 
Instructors of nonprogramming courses can download a completed miniassembly 
program from the Exploring Bioinformatics website that students can use in completing 
the exercises under Programming the Solution later in the chapter. 

Understanding the Problem 
Assembling a contig requires identifying overlaps among sequence reads and then 
determining how best to piece together the overlapping fragments. However, a single 
fragment may overlap with many other fragments, making it difficult to choose which 
pair to merge. Table 8.3 shows a simple example: For each fragment in a simple 
hypothetical sequencing project, the fragments that can overlap its suffix are shown 
along with (in parentheses) the length of each overlap. This output could be produced 
by a simple modification of the program you wrote for the Guided Programming Project. 
The suffix of fragment 1, for example, overlaps the prefixes of four other fragments: 
fragment 2 by three characters (TTG) and fragments 3, 4, and 7 by one character each 
(G in each case). 
Table 8.3: Overlaps for a hypothetical set of sequence reads.  

 Open table as spreadsheet 

Fragments Overlaps (Length) 
1. TACCTTG 2 (3), 3 (1), 4 (1), 7 (1) 
2. TTGAT 1 (1), 3 (3) 



Table 8.3: Overlaps for a hypothetical set of sequence reads.  
 Open table as spreadsheet 

Fragments Overlaps (Length) 
3. GATATGG 4 (2), 7 (1) 
4. GGAG 3 (1), 7 (1) 
5. CTCTA 1 (2), 6 (3) 
6. CTAGT 1 (1), 2 (1) 
7. GCTCT 1 (1), 2 (1), 5 (4), 6 (2) 

Once the overlaps are identified, how do we merge the fragments? One approach is to 
simply start with the first fragment, merge with a matching one (fragment 2 in Table 
8.3 would work), choose another fragment that matches the growing contig (fragment 3 
in this case), and so on until all fragments are chosen. In the example, fragments 7, 5, 
6, 1, 2, 3, and 4, merged in that order, would form a contig. But how did we know where 
to start? Would other choices have given a different path or led us to a dead end? 

To develop an algorithmic solution to this problem, let's look at the data in the form of 
agraph, which in computer science is a data structure showing relationships among 
elements:Figure 8.7 shows a graph of the data in Table 8.3. Each fragment is 
represented by a numbered node, with directional arrows representing overlaps 
between fragments. The suffix of the fragment at the tail of the arrow overlaps the prefix 
of the fragment at its head, and the arrow is labeled with the length of the overlap. The 
contig is then generated by finding a path in the graph that passes through each node 
once. 

 
Figure 8.7: Graph representing overlaps between fragments as paths between nodes. 

The assembly problem is closely related to a very famous problem called the Traveling 
Salesperson Problem (TSP), usually described as finding the shortest flight path 
between a set of cities so that each city is visited only once and the path begins and 



ends in the same city. The possible flight paths and distances are fixed, so the problem 
can be represented as a graph where cities are nodes and arrows are flight paths, much 
like Figure 8.7. The good news is that there is a solution to the TSP, but the bad news is 
that it can take an enormous amount of computational time to find it: if n is the number 
of cities (or sequences), the number of possible paths is n!. This is a truly huge number 
if we consider the 3 billion–base pair human genome covered 30-fold by 100-base pair 
sequencing reads! Worse, we do not know which fragment comes first and (if it is a new 
sequence we are assembling) we have no way to verify the correctness of the solution, 
unlike the traveling salesperson, who at least knows the starting and ending city and 
that the goal is the shortest path. Fortunately, as you saw previously in Understanding 
the Algorithm, using heuristics will help. 

A greedy algorithm is one way to solve the TSP in a reasonable time. This is a heuristic 
that when faced with a decision "greedily" chooses the option that appears to best serve 
its goals. Because the goal of the TSP is the shortest path, a greedy algorithm would 
always choose the arrow with the shortest distance at any decision point. Unfortunately, 
this approach does not guarantee a solution: It is possible to arrive at a node with no 
arrows leading away from it. 

For the assembly problem, because we are unable to determine in advance which 
overlap is the correct one (i.e., the one that leads to assembling the original sequence) 
at any node, we could greedily choose the arrow representing the longest overlap. In 
this problem, we do not have a predetermined starting node, but we can be greedy here 
as well and start with the largest overlap among all the pairs of fragments. But does this 
make sense biologically? As the length of the overlap increases, the probability that it is 
genuine and not a chance match increases: A fragment that ends in A will 
overlap any fragment that starts with A (one of four just based on chance), whereas a 
fragment ending in ACTG will find a chance match just one time in 256, and the 
probability of a chance eight-base overlap is only one in 65,536. Therefore, by always 
greedily choosing the largest overlap, we can reasonably expect to end up with the 
shortest common superstring—a string that includes all the fragments in the smallest 
total number of characters, which would be our contig. 

Remember, however, that the greedy algorithm does not guarantee finding the original 
sequence; sequencing errors and repeated sequences are problematic because they 
make it more difficult to correctly determine the overlaps in the first place. Because we 
do not know the original sequence, we cannot be sure our program has found the 
correct solution (though successful testing with good simulated data will increase our 
confidence), and error correction becomes very important. There are three general 
ways to correct errors (Figure 8.8).Preprocessing error correction means fixing 
problems in the data before processing that data; this might be done by improving 
sequencing techniques, increasing read lengths to reduce the impact of repeats, hand-
calling bases in questionable areas (in a small enough project), or analyzing the output 
data and eliminating reads or regions with poor quality scores. Inprocessing modifies 
an algorithm to better handle errors in the data, such as setting a threshold match value 
in the assembly algorithm to deal with misreads, which we can easily implement 
(see Putting Your Skills Into Practice, exercise 5). An inprocessing solution for repeated 



regions is to use matepair reads, pairs of sequence reads from the two ends of a DNA 
fragment. If these reads aren't found on opposite strands within a short distance of each 
other in the final assembly, the assembly is incorrect. Postprocessingvalidates the 
output after the algorithm has run; taking this approach, we will use coverage statistics 
to identify possible areas of misassembly resulting from repeated regions. 

 
Figure 8.8: Schematic illustration of the sequence assembly and validation process. 

Given the sequence fragments and resulting contig sequence in Figure 8.9A, even with 
a misread (GTCTA, rather than GTCTC), a consensus sequence can be successfully 
built. However, even though all the fragments overlapped, the contig does not match the 
original sequence: fragment 3 was misassembled due to the repeated sequence 
TCGTAG. How could we recognize this without knowing the original sequence? 
Examining coverage is one method, because coverage should be relatively constant 
across the sequence. Repeated sequences can match more fragments than they 
should, producing a high-coverage peak (Figure 8.9B) that could be flagged as a 
possible location of misassembly. Determining coverage for each base position is 
simply a matter of counting the number of fragments that overlap that position; in Figure 
8.9A, coverage values would be (1,1,2,3,3,2,3,2,2,1,2,1,1,2, 2,1,1) for an average of 
1.8. The repeat region shows noticeably higher coverage even in this small sample. 
Regions with low coverage values, on the other hand, should be considered unreliable 
simply because they may not have been sequenced enough to correct misreads orother 
problems. Statistical calculations can be done to establish minimum and maximum 
coverage values for high reliability. 



 
Figure 8.9: Sample sequencing project: (A) Fragments are generated, sequenced, and 
assembled, but a repeated sequence results in misassembly; (B) Peak of coverage 
shows possible location of misassembly. 

Solving the Problem 
At this point, you should be able to see how an algorithm would be built to tackle the 
difficult problem of sequence assembly using our TSP-based "greedy" approach. First, 
use what you learned from the Guided Programming Project to determine the overlaps, 
implementing a threshold percentage for matching the overlaps (see Putting Your Skills 
Into Practice, exercise 4) and think carefully about how to organize and store the 
overlap information so that it is easy to retrieve as you begin merging sequences. 

Figure 8.10 steps through the process of merging the test sequences in Table 8.3 using 
their overlap data and a greedy algorithm. The arrow linking nodes 7 and 5 has the 
largest overlap (Figure 8.10A, blue arrow), so using the greedy algorithm, our first 
merge is the suffix of 7 with the prefix of 5. Remember that our final path must visit each 
node only once; node 7 now leads to node 5 and therefore cannot lead to any other 
node, so we can eliminate any other arrows leading away from node 7 (Figure 8.10A, 
dashed arrows). In sequence terms, we have overlapped GCTCT with CTCTA to give the 
contig GCTCTA, so we cannot overlap the 3′end of GCTCT with any other fragment. 
Similarly, node 5 has now been visited, so we can eliminate any other arrows leading 
into node 5 (there are none in this case). 



 
Figure 8.10: Steps in finding a path to a sequence alignment. From left to right and top 
to bottom, each graph shows a link (heavy arrow) between two sequence fragments 
that would be chosen using a "greedy" algorithm. Dashed arrows show paths that can 
be discarded once a choice is made. 

Now, we choose the next-longest available overlap. The overlap is 3 nt for 1→2, 2→3, 
and 5→6, so we could choose any of these; by simply taking the first one, we would 
choose 1→2 (Figure 8.10B, blue arrow). Again, other paths leading away from 1 or into 
2 are eliminated (dashed arrows). Proceeding in this fashion, we would choose the 
paths from 2→3 (Figure 8.10C) and then 5→6 (Figure 8.10D), eliminating potential 
choices as we proceed. Now the longest overlap remaining is between 3 and 4 (Figure 
8.10E); once this is chosen, the only remaining paths are 4→7 and 6→1. Again, 
arbitrarily choosing the first one gives the result inFigure 8.10F: a complete path 
through all seven nodes in the order 1, 2, 3, 4, 7, 5, 6. Once you have the final path, you 



can easily obtain the final contig by overlapping the fragments in order of the path. 
Therefore, in our example, you would overlap fragment 1 with fragment 2. The resulting 
contig would then overlap with fragment 3. That contig would overlap with fragment 4 
and so on. This corresponds to the assembly of all the fragments into the 
contigTACCTTGATATGGAGCTCTAGT. Note, however, that the algorithm gives the path 
but does not specify how the developing contig overlaps with the next fragment, which 
will not necessarily be by the same number of nucleotides as the original fragments. 

Programming the Solution 
Now you should have enough information to extend your overlap-finding program to 
become a full-fledged mini-assembler, using the "greedy" algorithm as described here. 
As each fragment is chosen, keep track of where it fits in the growing contig so you can 
calculate coverage; use this information to flag any unreliable sequences or likely 
repeats once you have built your contig. Check manually to see if your algorithm can 
correctly assemble a set of fragments with good overlaps based on a short test 
sequence before you start implementing your solution in your language of choice. 

 Download Test your program on the short sequences in Table 8.3; do you get the 
contig described earlier? Then use your sequencing simulator program (instructors 
can download this from the Exploring Bioinformatics website for nonprogramming 
courses) to generate fragments for some longer sequences (try 200 nucleotides or so at 
a time from theklassevirus sequence, for example) with more coverage. Does your 
program correctly assemble the fragments? How much coverage is necessary for it to 
do so reliably? How does the average fragment length affect its accuracy? Does the 
program ever fail to find a solution (and did you think to have it let the user know of this 
failure)? 

To see how your program handles repeats, introduce some into your test sequences—
for example, put 10 consecutive repeats of GCATC in the middle of a 100- or 200-
nucleotide sequence, generate fragments that are 10 or 20 nucleotides long, and then 
see how your program handles the assembly and whether your coverage values 
correctly identify problem areas. Then try a more realistic sequence, such as the 
complete klassevirus genome. Does your program work equally well here, or does it 
encounter problems? What do your coverage values tell you about the reliability of 
various regions of your contig sequence? 

 
Connections— The Future of Genome Sequencing 

The rate at which genes, genomes, and metagenomes can be sequenced continues to 
expand rapidly, whereas the cost continues to decline. As a result, sequencing is being 
used in ways we never previously imagined. Not only will the sequencing of individual 
human genomes soon become practical (the so-called $1,000 genome is nearly within 
the reach of several companies as of this writing), but we are sequencing the genomes 
of the entire human microbiome and applying sequencing technology to the 
identification of targets for transcription factors, mutations resulting in complex genetic 
disorders, and genetic diversity of endangered animals. As sequencing moves from the 
research lab to the hospital lab, we will see it used for genetic screening, cancer 
diagnosis, and preimplantation diagnosis of embryos. Individualized medicine will likely 



become a reality, with drugs tailored to the individual genetic makeup of a particular 
patient. Ecologists, evolutionary biologists, pathologists, forensic scientists, and many 
others will also benefit. 

Of course, just obtaining the sequence is not the end of the story. To make the 
sequence useful, improved bio-informatics techniques to identify genes (Chapters 
9 and 10) are needed, especially as small RNAs and other unexpected findings 
challenge our definition of genes. Sequence alignment will also continue to be a major 
player as genomics moves increasingly into the interpretation phase. And along with the 
rapid pace of scientific change will come a need to consider the wise and ethical use of 
these vast volumes of data: Should we diagnose genetic diseases we cannot yet treat? 
Should insurance companies have access to risk data based on sequence analysis? 
What would constitute fair and equitable access to new medical technologies that may 
be highly effective but at least initially extremely expensive? Continued advances in 
sequencing technology will no doubt provide both new answers and new questions in 
the near future. 

 
 

BioBackground: Sequencing DNA 
It is helpful for both developers and users of sequence analysis software to understand 
how DNA sequencing is done. The strengths and limitations of a particular sequencing 
technology affect the nature and quality of the DNA sequences obtained, which in turn 
impact how those sequences should be treated by assembly or mapping software. This 
section does not attempt to be a complete manual on DNA sequencing, but we discuss 
three commonly used sequencing platforms to aid in understanding how the fragments 
analyzed by sequencing software are obtained. Good sources of further information are 
listed in References and Supplemental Reading. 

Automated Sanger Sequencing 

The sequencing method developed by Fred Sanger in 1975 was not the first, but it was 
far better suited to the rapid sequencing of long DNAs than the laborious chemical 
cleavage methods that preceded it. The technique became widely used and by the time 
the human genome project began had been improved by the use of fluorescent 
nucleotides and automated. 

Sanger sequencing (or dideoxy sequencing) harnesses DNA polymerase, the 
enzyme that normally replicates DNA in the cell. The DNA molecule to be sequenced 
serves as the template for DNA polymerase, and a short single-stranded primer binds 
to the template and serves as the starting point. DNA polymerase can then synthesize 
multiple copies of a single strand of DNA complementary to the template (Figure 8.11). 
However, there is a twist: In addition to providing ordinary nucleotides (dNTPs) to be 
joined into the new DNA strand, fluorescent dideoxy nucleotides are added. Dideoxy 
nucleotides lack the 3′ –OH group to which the next nucleotide in the chain would be 
joined; when a dideoxy nucleotide is added to a growing DNA strand, synthesis stops. 
Thus, if low concentrations of dideoxy A, C, G, and T nucleotides (ddNTPs for short), 
each fluorescing a different color, are added to a reaction containing polymerase, 



primer, template, and dNTPs, a set of DNA fragments will be generated, each of which 
ends in a dideoxy nucleotide that can be identified by its fluorescence. 

 
Figure 8.11: Sequencing DNA by the Sanger (dideoxy) method. Dideoxy nucleotides 
that terminate fragments are shown in boxes. 

In automated Sanger sequencing, the fragments are placed on a gel-like matrix in a tiny 
capillary tube and an electric current is applied. The DNA fragments, being strongly 
negatively charged, move through the gel toward the positive pole, with smaller 
fragments moving faster. A laser excites each fluorescent nucleotide as the fragments 
move past it, and a computer-connected reader determines which base the fragment 
ends with by the color of the fluorescence (Figure 8.11). Each succeeding fragment is 
one nucleotide longer than the one before it, and the pattern of fluorescence color and 
intensity allows the DNA "trace" (Figure 8.5) to be constructed. Sanger sequencing 
cannot read bases extremely close to the primer, as a fragment of some reasonable 
length is needed to resolve properly in its passage through the gel. High quality can 
typically be maintained for some 500–800 nucleotides from a single capillary tube, and 
384 such tubes can be run simultaneously on a single instrument. 

Shotgun Sequencing 

In directed sequencing, a primer is used to obtain sequence from a particular 
template, and then a new primer can be synthesized to match the just-read bases from 
the end of that sequence and the process repeated. Thus, there is no ambiguity 
regarding what part of a long template has been sequenced, but the process is slow 
even if multiple templates are sequenced at the same time. Shotgun sequencing and 
computerized assembly revolutionized this process: A long DNA is fragmented by 
mechanical shearing or enzymatic digestion into many short pieces, each of which is 
joined to a cloning vector (plasmid). Because the vector sequence is known, the 
sequence from each end of each fragment can be obtained using primers that match 
vector sequences (Figure 8.12). When many random fragments have been sequenced, 
there should be overlapping sequences, allowing for computerized assembly. Using this 
technique, it is not necessary to wait for new primers to be synthesized: Fragmenting 
and cloning can go on at the same time as sequencing of already cloned fragments. 
The concept of shotgun sequencing is also used in all next-generation sequencing 



methods, but the need for the cloning step has been eliminated—for example, by direct 
analysis of uncloned fragments or PCR amplification of random DNA regions. 

 
Figure 8.12: Shotgun sequencing: A large genomic DNA is broken into random 
fragments, which are cloned into plasmid vectors. Primers omplementary to the vector 
allow sequence to be obtained from both ends of the cloned fragments. 

454 Sequencing 

The first widely used next-generation sequencing method was developed by 454 Life 
Sciences (now owned by Roche) in 2004; this pyrosequencing method is popularly 
referred to as 454 sequencing. As with any shotgun sequencing method, the DNA to be 
sequenced must be fragmented, either chemically, mechanically, or by enzymatic 
digestion; fragments of 300–800 bp are suitable for 454 sequencing and must be made 
blunt (no single-stranded overhangs) on each end. Short oligonucleotide adapters of 
known sequence are then joined on to each end of the fragments; one adapter has a 
biotin molecule that can be reacted with a bead coated with streptavidin. Single-
stranded DNA fragments with adapters thus become immobilized on the beads (Figure 
8.13). 

 
Figure 8.13: Sequencing DNA by the 454 (pyrosequencing) method: adaptors are 
ligated to DNA fragments, immobilized on beads, and amplified by PCR. Solutions of 
single nucleotides are added and light resulting from an enzymatic reaction involving the 
pyrophosphate cleaved from the nucleotide when it is added to the DNA chain is 
detected as evidence that a particular nucleotide was incorporated. Reactions can be 
done on 1.6 million beads in parallel 

Next, the immobilized fragments are amplified. Beads are captured in individual oil 
droplets containing PCR reagents, and primers matching the adapters are used to 
generate some 10 million copies of the original fragments, all attached to a single bead. 
The beads are then transferred to individual wells, each holding only 75 pl of volume, of 
a PicoTiter plate capable of holding 1.6 million individual beads. Primers are then bound 



to the adapter sequences, and DNA polymerase can then add nucleotides 
complementary to the single-stranded template much as in Sanger sequencing (Figure 
8.13). A solution containing a single nucleotide is "flowed" over the plate, and reagents 
bound to the beads react with the diphosphate (pyrophosphate) released from the 
polymerization reaction to produce a tiny emission of light. A camera monitors each well 
and detects the light, indicating that a particular nucleotide was successfully added to 
the growing chain (and was thus complementary to the template strand) in a particular 
well. The process then repeats with each of the other three nucleotides in turn and then 
the whole cycle of four nucleotides repeats. Recording which nucleotides are added in 
which order to the DNA in each well generates a sequence read, and the reads can 
then be assembled by computer to produce the complete sequence of the original DNA. 

Illumina Sequencing 

Solexa announced its high-throughput sequencing platform in 2006; this company was 
acquired by Illumina, and the technology is variously referred to as Solexa, Illumina, or 
SBS sequencing. As in 454 sequencing, adaptors are added to the ends of DNA 
fragments; they are then bound to primers that in this case are already attached to a 
slide, and PCR creates local clusters of a particular DNA molecule. Fluorescent 
nucleotides are then added, each nucleotide capable of fluorescing a distinct color, and 
DNA polymerase can incorporate a single nucleotide into a growing complementary 
DNA strand. A laser removes a blocking group from each nucleotide, allowing its 
fluorescence to be visualized and the identity of the last-added nucleotide in each 
cluster thus determined. A new batch of nucleotides is then added. As before, the 
sequence of a fragment is generated by monitoring the order in which the different 
colors (wavelengths) of fluorescence appear in each cluster. 

SOLID Sequencing 

Both the 454 and Illumina methods (and, in fact, the Sanger method) involve 
"sequencing by synthesis," with a polymerase enzyme adding detectable nucleotides 
sequentially to a new strand. SOLiD sequencing, developed by Applied Biosystems and 
available since 2008, relies instead on the ability of two-nucleotide fluorescent probes to 
hybridize with (bind) the DNA template and be ligated to a growing chain by DNA ligase. 
Fragments of the DNA to be sequenced are linked to adapters, joined to beads, and 
amplified by emulsion PCR much as in 454 sequencing. Each two-base pair emits 
fluorescence at a distinct wavelength. The primer determines the position at which 
probes can hybridize, and after several cycles of hybridization, ligation, and cleavage, a 
new probe is used that is one nucleotide shorter, requiring a different set of probes to 
bind the same sequence to increase accuracy. Sequence reads produced by the SOLiD 
platform are very short, only 50 nt long, increasing the dependence of this technology 
on accurate and efficient assembly algorithms and powerful computers. 
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Chapter 3: Sequence Alignment: Investigating an 
Influenza Outbreak 
Chapter Overview 

This chapter focuses on algorithms for optimal alignment of DNA sequences. Students 
in both programming and nonprogramming courses will understand how dynamic 
programming techniques can be used to make the complex problem of gene alignment 
tractable and, through the use of Web-based tools, how the choice of alignment 
parameters can influence the biological relevance of the results. Students will also 
consider how a basic algorithm can be modified to answer different biological questions. 
Students in programming courses will develop their own solutions that implement these 
algorithms. 

• Biological problem: Origin of new influenza virus strains 
• Bioinformatics skills: Optimal global, semiglobal, and local alignments of DNA 

sequences; gap penalties and alignment parameters 
• Bioinformatics software: EMBOSS implementations of pairwise alignment 

algorithms 
• Programming skills: Two-dimensional arrays, dynamic programming, 

backtracking 
	  
Understanding the Problem: The 2009 H1N1 Influenza Pandemic 
In March 2009, epidemiologists responsible for influenza surveillance at the Centers for 
Dis-ease Control and Prevention (CDC) and the World Health Organization (WHO) 
were surprised by an outbreak of influenza in Mexico City. Because influenza virus 
mutates rapidly, the strains that are circulating change from year to year, necessitating 
annual revaccination; CDC and WHO are charged with monitoring flu virus strains and 
determining which will be used for vaccine development. In addition, these agencies 
monitor both human and animal influenza cases to identify new strains, watching for the 
emergence of a pandemic virus—one capable of causing a severe, multicontinent 
outbreak. Uppermost in the minds of these scientists is the desire to prevent a 
repeat of the 1918 influenza pandemic—the single deadliest infectious disease 
event in history, infecting half the world's population and killing at least 20 million 
people in 120 days ( ; see also References and Supplemental Reading at the end 
of the chapter). 



 
Figure 3.1: The rapid spread and severity of the 1918 influenza pandemic placed an 
enormous burden on healthcare workers and facilities. Depicted here is a demonstration 
at the Red Cross emergency ambulance station in Washington, D.C. Courtesy of 
Library of Congress, Prints & Photographs Division [reproduction number LC-USZ62-
126995]. 

In addition to ordinary, seasonal human viruses, WHO and CDC had been keeping tabs 
for some years on an avian (bird) influenza virus strain known as H5N1 that at the time 
they believed posed the greatest risk of a new pandemic. This "bird flu" virus has 
caused severe infections in domestic fowl and in humans in direct contact with birds 
(such as poultry farmers) but has thus far remained incapable of efficient transmission 
from person to person. In reality, however, the next human pandemic resulted not from 
H5N1 but from a previously unknown strain of H1N1 that had escaped detection. When 
Mexican authorities reported a number of cases of influenza caused by this relative of 
the 1918 flu strain, public health officials were concerned about the possibility of 
widespread severe illness. Particularly alarming were reports of severe cases and 
deaths among the young and middle aged, as virulence for these age groups (seasonal 
flu has serious health consequences mostly for infants and the elderly) was a hallmark 
of the 1918 virus. Fortunately, it later became clear that this new H1N1 virus was no 
more dangerous than ordinary seasonal strains. Nonetheless, in the interval between 
identification of the new strain and development of a vaccine, it caused at least 8,000 
deaths and a large number of precautionary school closings. 

What exactly is a "new strain" of influenza virus, and how is a new strain identified? 
What makes one strain a dangerous pandemic virus and another a mild seasonal virus? 



Why are some strains transmitted easily among humans, whereas others are largely 
confined to animals? 
	  
Bioinformatics Solutions: Sequence Alignment and Sequence 
Comparison 

Alignment of the sequences of two genes or proteins refers to matching them up in 
what we hope is a biologically relevant way to determine how similar they are. 
Sequence alignment is possible when the sequences are evolutionarily related: Similar 
sequences are similar because they are descended from the same common ancestor, 
with the differences among them resulting from mutation (for more detail, see 
BioBackground). Figure 3.2 shows an example in which many different oxygen-carrying 
proteins have similar sequences because they all have the same origin. 

 
Figure 3.2: Alignment of DNA and protein sequences is possible because of 
evolutionary relationships. In this example, evolution from an ancestral globin gene is 
thought to have produced a variety of oxygen-carrying proteins—including the two 
subunits of hemoglobin found in human blood, myoglobin found in the muscles of 
mammals, and even leghemoglobin made by leguminous plants. Thus, all these 
different proteins would be encoded by genes with recognizably similar sequences. 
Structures from the RCSB PDB (www.pdb.org): leghemoglobin, PDB ID 2GDM (E. H. 
Harutyunyan et al. (1995) The structure of deoxy-and oxy-leghemoglobin from lupin. J. 
Mol. Biol. 251:104–115); alpha-globin and beta-globin, PDB ID 4HHB (G. Fermi and M. 
F. Perutz (1894) The crystal structure of human deoxyhaemoglobin at 1.74 A 
resolution. J. Mol. Biol. 175:159–174); myoglobin, PDB ID 1MBO (S. E. V. Phillips 
(1980) Structure and refinement of oxymyoglobin at 1.6 A resolution. J. Mol. Biol. 
142:531–554). 

The problem of alignment was introduced briefly in the last chapter, where sequence 
comparison was used to detect mutations. Sequence alignment is also used in 



developing phylogenetic trees based on molecular data, assembling genome 
sequences, predicting protein structure and function, and numerous other bioinformatics 
applications. Indeed, it would be fair to say that sequence alignment is the key 
technique in bioinformatics—and also a difficult computational problem because of the 
complexity of genomic information. This chapter presents an algorithm for identifying the 
best alignment of two sequences, with projects in which you will use this technique to 
investigate influenza virus strains and their virulence. Subsequent chapters will explore 
how variations of this basic algorithm may be extended to apply to many other important 
biological problems. 

Despite their obviously different characteristics, St. Bernards and chihuahuas are 
members of the same species, Canis familiaris. Although we usually use the term 
"breed," we could think of them as different strains of dog: groups within a species that 
have distinct, inheritable genetic characteristics. Even in animals and plants, it can be 
very difficult to determine by simple observation whether two organisms belong to the 
same species; the problem is much more difficult for bacteria and viruses, where there 
are few if any visual distinctions among individuals. Comparison of DNA or protein 
sequences has become the new standard for classification (see BioBackground). 
Bioinformatic techniques provide a means of comparing genes and identifying species 
or strains. Each year, the genomes of many influenza viruses isolated from patients are 
sequenced, and it is the comparison of these sequences that allows agencies such as 
CDC to determine whether new viruses have arisen and whether they are minor 
variants of existing viruses (this is referred to as antigenic "drift") or are very different 
from circulating viruses (antigenic "shift" variants) and have pandemic potential ( Figure 
3.3). In addition, comparison of the genes of a new variant with known viruses that are 
highly virulent or more moderate in their effects allows experts to predict the potential 
severity of influenza outbreaks. 

 
Figure 3.3: An example showing how sequence alignment can demonstrate similarity, 
and thus relatedness, of two DNA sequences. 
	  
BioConcept Questions 
Computational techniques for gene alignment depend on understanding of the biological 
basis for gene comparison and the meaning of similarity and variation among the genes 
of different organisms. Use these questions to test your biological understanding; read 



the BioBackground box at the end of the chapter if you find that you need a better 
foundation. 

1. How is similarity between genes related to the biological concept of descent from 
a common ancestor? 

2. Given the sequences ACGAT and CGATC, why is the simplest 

alignment satisfactory one? What do we have to 
allow for in order to generate an alignment that appears more biologically 
relevant? 

3. List all the possible ways to align the very short sequences ACC and ACT. 
Discuss why "brute-force" alignment (trying all the possible combinations to 
identify the best one) is not a practical method of aligning real genes. 

4. Often, it is necessary to introduce gaps into one or both sequences to align them 
optimally. However, most alignment programs penalize gaps to keep them to a 
minimum. Why are gaps potentially problematic, particularly for sequences that 
represent coding regions? 

5. The influenza virus mutates so rapidly that you would likely be able to identify at 
least a couple of mutations over the length of the complete virus genome even if 
you sequenced two viruses from two different patients within the same influenza 
outbreak. What might be some considerations in deciding whether two viruses 
with different genome sequences actually represent two different strains? 

	  
Understanding the Algorithm: Global Alignment 
Learning Tools 

 
 Download  From the Exploring Bioinformatics website, you can download a 
demonstration spreadsheet that shows visually how the Needleman-Wunsch algorithm 
aligns short sequences. Try the examples in the text or make up your own sequences to 
see how the algorithm deals with mutations, differences in length, and so on. Files are 
available for Excel and OpenOffice for Windows, Linux, and Mac OS. 

 

The simple algorithms in the previous chapter that in essence align two genes to look 
for mutations are limited: One algorithm required the genes to be of the same length, 
whereas the other used an inefficient trial-and-error method. To be able to align any two 
sequences, we need a flexible algorithm that will match them up in a meaningful way, 
accounting for differences in length due to indels and recognizing that over evolutionary 
time mutation may have made similar genes look quite different. The algorithm needs a 
means of discriminating between better and worse alignments and also a scoring 
system to decide how similar the genes are. 

Here, we discuss an algorithm for optimal, global alignment of pairs of genes published 
by Saul Needleman and Christian Wunsch in 1970 (see References and Supplemental 
Reading). This algorithm and modifications of it (discussed later in this chapter) are still 
widely used today, and the ideas they are based on are at the root of many other 



comparison algorithms as well. Indeed, it may interest you to know that when an 
Internet search engine such as Google asks, "Did you mean…," it is using an algorithm 
very similar to this one to match what you typed with common search words. 

Optimal Alignment and Scoring 

To compare two genes, such as the HA genes of two different influenza virus strains, 
we want to look for matches and mismatches along their entire lengths: a global 
alignment. (Reasons to compare only parts of genes are discussed later.) Global 
alignment is a technique used to compare sequences in their entirety; the Needleman-
Wunsch algorithm is also a pairwisealignment algorithm, because it compares a 
sequence to only one other sequence at a time. 

Sequences can be aligned in many different ways. For example, three ways to align the 
short sequences ACGTACT and ACTACGT are shown below: 

 
ACGTACT  ACGTAC-T  ACGTACT----  

ACTACGT  AC-TACGT  ----ACTACGT  

**    *  ** *** *      ***  

 

If we do not allow for insertions or deletions, there is only one way to align these 
sequences (left), but if we make the biologically reasonable assumption that indels 
could have occurred, we get many more possibilities. The hyphens used in the center 
and right alignments represent gaps, indicating that insertions in one sequence or 
deletions in the other occurred at these points. 

Which alignment is best (optimal)? To decide, we need a scoring system. If we simply 
count nucleotides that match, then the introduction of one gap in each sequence 
(center) gives us a much better score (6) than simply aligning the ungapped sequences 
(3). However, indels pose a biological problem, because they can create frameshifts; 
thus, we should use them with caution. Intuitively, we recognize that the left alignment is 
far superior to the rather cumbersome right one, but both have three matches according 
to our simple scoring system. A more sophisticated scoring system (we could call this 
a scoring metric) would award amatch score (or match bonus) for nucleotides that 
match, a mismatch score (or mismatch penalty) for nucleotides that do not, and 
a gap penalty where a gap was introduced. For example, if the match score is 1, the 
mismatch score is 0, and the gap penalty is -1, then the left alignment still scores 3, the 
center alignment scores 4, and the right one scores -5 (matching our judgment that this 
is likely to be a poor choice from a biological standpoint). 

An obvious way to do a global alignment is simply to try every possibility and see which 
one gives the best score. However, even for these two short sequences, permitting 
gaps gives more than 40,000 possible alignments; that number quickly becomes 
staggering if we are working with real genes consisting of thousands of nucleotides. 
This is in fact an intractable problem even for a computer: A programmer would say that 



it is not bounded by polynomial time, meaning the time required to arrive at a solution 
increases so rapidly as sequence length increases as to become impractical. 

The key element of Needleman and Wunsch's now-famous article was a solution based 
ondynamic programming. A dynamic programming algorithm divides a problem into a 
series of smaller subproblems, solves them, and then uses these solutions to build the 
solution to the original problem. Needleman and Wunsch solve the problem of a global, 
optimal alignment of large sequences by using a matrix of partial alignment scores and 
then backtracking along a path to the best possible alignment(s). This clever approach 
allows all optimal alignments to be found quickly, even for long sequences. 

Needleman-Wunsch Algorithm 

Let's see how the Needleman-Wunsch algorithm works to align two short 
sequences: CGCAand CACGTAT. We use a match score of 1, a mismatch score of 0, and 
a gap penalty of -1. First, construct an N × M matrix, where N is the length of the first 
sequence + 1 and M is the length of the second sequence + 1. Each position in the 
matrix represents a possible way to align part of the sequence. If two identical, equal-
length sequences were being aligned, the matching nucleotides would line up right 
down the diagonal. In our example, however, we will obviously need at least two gaps, 
because one sequence is two nucleotides shorter than the other. Even when the two 
sequences are of equal length, gaps could be needed to obtain the optimal alignment in 
order to account for indels. These gaps move the matching nucleotides off the diagonal. 
We need to account for this as we initialize the matrix. We start with a zero in the first 
cell of the matrix and then initialize the first row and first column by adding the gap 
penalty (-1) to each successive cell, as shown in Figure 3.4A. These initial values show 
what happens if we have to introduce a gap at the beginning of one of the sequences. If 
a single gap was added to the beginning of the sequence, its maximum score would be 
reduced by one, two for a double gap, and so on. 



 
Figure 3.4: Using the Needleman-Wunsch algorithm to align two sequences: (A) 
Initializing the matrix using gap penalties; (B) Filling in the matrix using the best 
subscore; (C) The completed matrix with the optimal score (blue cell) and first 
backtracking step; (D) Backtracking through the matrix, with two possible paths shown; 
(E) The completed alignments. 

Now we are ready to fill out the rest of the matrix, which we do by computing the 
optimum (maximum) score for each possible partial alignment. Each cell in the matrix 
represents a partial alignment: For example, the blue cell in Figure 3.4A represents the 
alignment of the C in the long sequence with the C in the short sequence. At each point, 
there are three choices: 

1. If the two nucleotides match, their score is 1, but if they mismatch, they score 
zero. Add this match or mismatch score to the score diagonally above and to the 
left of the cell. This represents aligning nucleotides without leaving a gap. In our 
example, C matches C, so the score (representing the alignment of C with C) is 0 
(from the cell on the diagonal) plus 1 for the match, or 1 total. 

2. Or, we could introduce a gap in the short sequence, represented by moving 
horizontally rather than diagonally (moving to the next nucleotide along the top 
sequence but not making a corresponding move to the next nucleotide in the left 



sequence). The gap penalty is -1, so in our example, we add -1 to the score in 
the cell to the left of the blue cell:-1+-1 = -2. 

3. Or, we could introduce a gap in the long sequence, represented by adding the 
gap penalty to the score in the cell above the blue cell: -1 + -1 = -2. We want an 
optimal alignment in the end, so we should choose the best possible score for 
each partial alignment; in this case, the best of the three options is 1, so we put a 
1 in the blue cell (Figure 3.4B). 

This process now continues for the remaining cells of the matrix. In the cell to the right 
of the blue cell in Figure 3.4B, our choices are -1 (-1 on the diagonal ++0 for the A vs. C 
mismatch), 0 (for a gap in the short sequence), and -3 (for a gap in the long sequence), 
so 0, the best of the three, goes in this cell. Repeating this process for the remaining 
cells results in the matrix shown in Figure 3.4C. 

Generating the Alignment 

Remember that this is a global alignment, so we are comparing the two sequences 
along their entire lengths. That means the optimum score for the alignment as a whole 
is always represented by the number in the bottom-right cell of the matrix (at the end of 
both sequences, the blue cell in Figure 3.4C): in this case, 0. 

Of course, we don't want just the score; we want to see how the sequences can be 
aligned optimally. To accomplish this, start from the bottom-right cell and work 
backward to determine how that subscore was obtained. In this case, the zero resulted 
from adding the gap penalty to the cell to its left, representing a gap in the short 
sequence, as indicated by the arrow in Figure 3.4C. So, the T in the long sequence is 
aligned with a gap in the short sequence (partial alignment at the bottom of Figure 
3.4C). 

Now, follow the path one cell to the left and consider the 1 there. It must have come 
from adding the match score to the cell diagonally above and left, so now you know that 
you can align the two A's and move diagonally (Figure 3.4D). Now we have an 
interesting situation. The zero in the next cell in the path (blue cell in Figure 3.4D) could 
have been generatedeither by adding the gap penalty to the cell on its left or by adding 
the mismatch score to the cell diagonally left. This means we have two possible paths 
from this point and thus two possible alignments that give equally good scores: one in 
which we add a gap to the short sequence and one in which we allow C and T to 
mismatch (arrows in Figure 3.4D). It is entirely possible for there to be more than one 
way to optimally align two sequences—and this is a great example of why real-world 
research requires the good judgment of scientists who understand both biology and 
computational algorithms. 

We can now continue this way until we reach the upper-left cell of the matrix. Along the 
way, another point is reached at which two paths give the same score. Thus, there are 
three optimal ways to align these sequences, each giving an overall score of zero, as 
shown inFigure 3.4E. 



We can change the scoring parameters (match and mismatch scores and gap penalty) 
based on the problem we are trying to solve. For example, to compare two protein 
coding genes, it makes sense to penalize gaps significantly because of the frameshift 
problem. But in genes for noncoding RNAs, a gap may be no worse than a mismatch, 
and we might set our gap penalty lower. Or, if we only wanted highly similar sequences 
to give good scores, we might penalize both gaps and mismatches. 

The Needleman-Wunsch algorithm provides a straightforward way to find optimal, 
global alignments, and its use of dynamic programming (each cell in the matrix is the 
solution to a subproblem that is not computationally intensive to obtain) allows it to run 
efficiently even when long sequences are being compared. Furthermore, simple 
modifications of this basic algorithm allow different kinds of alignment that can provide 
additional information. 
	  
Test Your Understanding 

1. How would the Needleman-Wunsch algorithm align the 
sequences ACGTACTand ACTACGT? Try them by hand or use the spreadsheet 
tool from the text website. 

2. For a more challenging problem, find all the possible optimal alignments for the 
sequences CTAG and CGCTAATC. You should find 10 altogether; the score for 
each should be -1. 

3. Now try aligning CAG with TTTCAGCAGTTT. What do you expect will happen? Are 
you surprised by what actually happens? 

Question 3 points out a problem with using global alignment to compare two 
sequences of very dissimilar lengths. There might in fact be a good match for the 
short sequence within the long sequence (e.g., perhaps the short sequence is 
one conserved domain of a larger protein), but the introduction of many gaps can 
prevent a global alignment algorithm from finding it. A solution is to use 
asemiglobal (sometimes called "glocal") alignment technique that does not 
penalize terminal gaps—those that occur at the beginning or end of the 
alignment. 

4. How would you modify the Needleman-Wunsch algorithm to carry out a 
semiglobal alignment? 

Hint: Only two changes in how the matrix is used are required. Consider what 
parts of the matrix represent the terminal gaps. 

	  
Test Your Understanding 

1. How would the Needleman-Wunsch algorithm align the 
sequences ACGTACTand ACTACGT? Try them by hand or use the spreadsheet 
tool from the text website. 

2. For a more challenging problem, find all the possible optimal alignments for the 
sequences CTAG and CGCTAATC. You should find 10 altogether; the score for 
each should be -1. 



3. Now try aligning CAG with TTTCAGCAGTTT. What do you expect will happen? Are 
you surprised by what actually happens? 

Question 3 points out a problem with using global alignment to compare two 
sequences of very dissimilar lengths. There might in fact be a good match for the 
short sequence within the long sequence (e.g., perhaps the short sequence is 
one conserved domain of a larger protein), but the introduction of many gaps can 
prevent a global alignment algorithm from finding it. A solution is to use 
asemiglobal (sometimes called "glocal") alignment technique that does not 
penalize terminal gaps—those that occur at the beginning or end of the 
alignment. 

4. How would you modify the Needleman-Wunsch algorithm to carry out a 
semiglobal alignment? 

Hint: Only two changes in how the matrix is used are required. Consider what 
parts of the matrix represent the terminal gaps. 

	  
Learning Objectives 

§ Understand the value of aligning genes and some practical applications of this 
technique 

§ Gain familiarity with the use of Web-based alignment tools to explore sequence 
similarity and understand how to modify their parameters 

§ Know how the Needleman-Wunsch algorithm optimally aligns any two sequences 
§ Understand how the Needleman-Wunsch algorithm can be modified to yield 

other alignments 

Suggestions for Using the Project 

This project is designed to be used in courses that require programming skills as well as 
those that do not. Below are suggestions for modules of the project that instructors 
might choose to use in these two types of courses. Instructors should also feel free to 
ask questions of their own that use these same skills. 

Programming courses: 
§ Web Exploration: Experiment with the Needleman-Wunsch algorithm and the 

effect of gap penalty parameters as well as the benefits of local alignment 
(Smith-Waterman algorithm). Parts I, II, and III can be used independently. 

§ Guided Programming Project: Implement the Needleman-Wunsch algorithm in a 
programming language of your choice. 

§ On Your Own Project: Modify the code for the Needleman-Wunsch program to 
implement a local alignment algorithm. 

Nonprogramming courses: 
§ Web Exploration: Experiment with the Needleman-Wunsch algorithm and the 

effect of gap penalty parameters as well as the benefits of local alignment 
(Smith-Waterman algorithm). Parts I, II, and III can be used independently. 



§ On Your Own Project: Identify modifications to the Needleman-Wunsch algorithm 
that would convert it to a local alignment algorithm. 

Web Exploration 

Part I: Pairwise Global Alignment with the Needleman-Wunsch Algorithm 
The genomes of influenza viruses are divided into eight segments, each representing 
essentially the coding information for a single protein. Segment 4 contains the gene 
for hem-agglutinin (HA), the viral surface protein essential for the initial interaction 
between the virus and its host cell. HA is one key determinant of which host(s) a 
particular virus can infect, because the virus cannot replicate or cause disease without 
being able to first bind to a host cell. The HAs of one of the major seasonal human 
viruses circulating before 2009, the 2009 H1N1 pandemic virus, and the 1918 human 
pandemic virus are all classified as the H1 type, whereas recent outbreaks of severe 
avian flu are caused by a virus with HA classified as H5. These classifications are based 
on binding of antibodies of known specificity, but sequence alignment provides much 
more detailed information about similarities and differences and where changes have 
occurred. 

 Download  We can use the Needleman-Wunsch algorithm to compare influenza virus 
HA segments. To start with, let's see how the 2009 H1N1 virus—the reference strain is 
designated A/California/07/2009 (H1N1)—compares with the human seasonal H1N1 virus 
that was currently circulating at that time, A/Brisbane/59/2007 (H1N1). Download the 
DNA sequences of segment 4 for both viruses from theExploring 
Bioinformatics website. We align the sequences using EMBOSS, a suite of alignment 
tools produced by the European Bioinformatics Institute (somewhat parallel to the U.S. 
NCBI). At the EBI-EMBL's EMBOSS Web page (not the page for the EMBOSS 
software itself), you should see a list of programs for pairwise sequence alignment. 
Under the heading Global Alignment, the program Needle is an implementation of 
the Needleman-Wunsch algorithm. 

 Link From the EMBOSS site, choose the version of Needle that compares nucleotide 
sequences, and then paste your two sequences into the designated text boxes. Notice 
that you can set some parameters for the comparison, most notably the gap penalty. 
Needle uses an affine gap penalty, which means it imposes a larger penalty when a 
new gap is added and a smaller penalty when that gap is extended (our earlier example 
used a linear gap penalty). Leave the parameters set to the defaults for now. 

Run Needle to align your two sequences; your results should look similar to Figure 3.5. 
At the top, you will see parameters such as the gap penalty and two measures of 
similarity: the number and percentage of matching nucleotides (labeled "Identity") and 
an alignment score (based on the scoring matrix, in this case awarding a match bonus 
of 5). In the alignment itself, matching nucleotides are shown by a | character, 
mismatches by a dot (.), and gaps by a dash (-). 

 
#=======================================  
# Aligned sequences: 2  



# 1: H5N1_NA # 2: 2009_H1N1_NA  
# Matrix: EDNAFULL  
# Gap penalty: 10.0  
# Extend penalty:  0.5  
#  
# Length: 1417  
# Identity:   1160/1417 (81.9%)  
# Similarity: 1160/1417 (81.9%)  
# Gaps:         70/1417 ( 4.9%)  
# Score: 4944.0  
#=======================================   
 
H5N1 NA        1  ATGAATCCAAATCAAAAGATAATAACCATTGGGTCAATCTGTATGGTAAT   50 
                 |||||||||||•||||||||||•||••||||||||||||||||||••|||  
2009_H1N1_NA   1  ATGAATCCAAACCAAAAGATAATAACCATTGGTTCGGTCTGTATGACAAT   50 
 
H5N1_NA       51  TGGAATAGTTAGCTTAATGTTACAAATTGGGAACATGATCTCAATATGGG  100 
     ||||||•|•||•||||||•|||||||||||•|||||•||||||||||||•  
2009_H1N1_NA  51  TGGAATGGCTAACTTAATATTACAAATTGGAAACATAATCTCAATATGGA  100 
 
H5N1_NA      101  TCAGTCATTCAATTCAGAC-AGGGAATCAAAACCAAGTTGAGCCA-----  144 
     |•||•||•|||||||| || •|||||||||||•||••||||••||   
2009_H1N1_NA 101  TTAGCCACTCAATTCA-ACTTGGGAATCAAAATCAGATTGAAACATGCAA  149 
 
H5N1_NA      145  --------------------------------------------------  144 
 
2009_H1N1_NA 150  TCAAAGCGTCATTACTTATGAAAACAACACTTGGGTAAATCAGACATATG  199 
 
H5N1_NA      145  -----ATCAGCAATACTAATTTTCTTACTGAGAAAG-CTGTGGCTTCAGT  188 
     ||||||||•||•||•|||••|•||| ||•|| |•||||•|||•|| 
2009_H1N1_NA 200  TTAACATCAGCAACACCAACTTTGCTGCTG-GACAGTCAGTGGTTTCCGT  248  

 
 
Figure 3.5: Sample output from the EMBOSS Needle program, showing scoring data 
and part of an alignment for two sequences. Matching nucleotides are represented in 
the alignment by a vertical line, mismatches by a dot, and gaps by a dash. Generated 
from: EMBOSS Needle/European Bioinformatics Institute. 
	  
Web Exploration Questions 

1. How many matching nucleotides are there between your two sequences? What 
is the alignment score? 

2. How many gaps were needed to align these sequences? Is there any particular 
pattern to where or how the gaps occur? 

3. Can you suggest where the coding sequence might occur within this segment? 
What is your evidence? 

Nearly all of segment 4 consists of coding sequence, so we would expect indels— 
especially one- or two-nucleotide indels—to be mutations with serious consequences 
for the HA protein. Considering this, perhaps it would be valuable to consider strongly 
penalizing gaps: Try setting the gap opening penalty to 50, rather than the default 10. 



Web Exploration Questions 
4. What is the logic behind the affine gap penalty, which imposes a large penalty for 

opening a new gap but a much smaller penalty for extending the size of an 
existing gap? 

5. When you align the two HA sequences using a higher gap opening penalty, does 
the percent identity change significantly? How about the number of gaps and 
their placement or size? 

6. Your alignments with higher and lower gap opening penalties are both optimal 
alignments (the best alignments given the parameters), and they give quite 
similar scores. Which alignment do you believe is "better," biologically, and what 
is your justification? (Hint: What striking observation did you make when looking 
at the gaps in the second alignment?) 

 Download  The origins of the 1918 pandemic virus remain murky, but its H1 HA gene is 
thought to be the source of the HA genes found in all modern human and swine 
H1 viruses. Download the segment 4 sequence of the 1918 human pandemic virus from 
the Exploring Bioinformatics website and compare it with the others. Consider what gap 
penalty you would like to use for this alignment. 
	  
Web Exploration Questions 

7. Discuss how closely the HA segments of the two modern viruses are related to 
each other and how closely they resemble the 1918 virus. Can you draw any 
conclusions from your data about the origin of HA in the 2009 pandemic virus? 

8. If you were to use a different segment from the same viruses for your sequence 
comparisons, you might come up with different answers. How is this possible? 

Part II: Local Alignment with the Smith-Waterman Algorithm 
 Download  Another way to use sequence alignment is to find one sequence within 
another. The influenza virus M2 gene, for example, is another key player in the biology 
of the virus: Once the virus enters the cell, M2 is involved in the release of the virus 
genome subunits so they can travel to the nucleus and direct viral replication. Suppose 
we have sequenced segment 7 from the 2009 H1N1 pandemic virus but are uncertain 
what part of it represents the actual M2 coding region. To find out, we could align the 
well-characterized M2 coding sequence from the Brisbane strain with the full segment 7 
sequence from the newly sequenced virus. Download the DNA sequence for segment 7 
from A/California/7/2009 and the coding sequence for M2 from A/Brisbane/59/2007 from 
the Exploring Bioinformaticswebsite and align them using Needle with the default gap 
opening penalty of 10. 
	  
Web Exploration Questions 

9. How good are the score and the percentage of sequence identity for this 
comparison? Why don't these statistics tell the full story in this case? 

10. Suppose we only looked at the portion of the 2009 segment that actually aligned 
with the M2 coding region of the Brisbane strain. How would this change the 



percent identity? Is this degree of similarity as high as you would expect for these 
related viruses? 

Considering what you know about the Needleman-Wunsch algorithm, you should see 
why it might not be the best choice for aligning sequences that are so drastically 
different in length. Because the need to make alignments of this kind arises frequently, 
in 1981 Smith and Waterman published a modification of the Needleman-Wunsch 
algorithm that allows for localalignments (see References and Supplemental Reading). 
A local alignment looks for optimal partial (subsequence) matches; how this works is 
discussed further in the On Your Own Project. EMBOSS includes an implementation of 
the Smith-Waterman algorithm, called Water. Choose the nucleotide version of the 
Water method and then set a gap open penalty of 10 and a gap extension penalty of 0.1 
and align the sequences. 
	  
Web Exploration Questions 

11. How does this alignment differ from the previous one? Is the percent identity, 
either for the whole alignment or just for the regions that actually match, 
significantly better than before? 

12. There is an obvious difference in how the subsequences of the M2 coding region 
align with the 2009 segment 7 sequence in the local alignment. Can you suggest 
a hypothesis for why the sequences align this way? (Hint: Remember that the M2 
sequence is the protein coding sequence.) Based on your hypothesis, is the local 
alignment superior to the global alignment in terms of its ability to help us 
understand the viruses biologically? 

This alignment is very sensitive to the parameters used. If you want to demonstrate this, 
try changing the gap extension penalty (e.g., from 0.1 to 0.5). Although almost all 
bioinfor-matic programs come with default settings that are usable for many common 
purposes, this illustrates the importance of understanding the algorithm and the 
meaning of the parameters, as well as the value of considering what kind of alignment 
would be most appropriate for the sequences being aligned. 

Part III: Using Alignment to Investigate Virulence 
Influenza viruses have received a great deal of study, and the ability to compare many 
strains has led to significant advances in understanding what allows one strain to cause 
more severe disease than another. The H5N1 "bird flu" virus makes an interesting case 
in point. This virus causes severe influenza in birds and has become established in 
populations of domestic chickens and turkeys. Human cases occur sporadically, mostly 
in individuals heavily exposed to infected birds, such as poultry farmers, and H5N1 flu is 
severe for humans as well. Once a human case occurs, however, spread to another 
human is exceedingly rare, even among family members in close contact with the 
infected individual. A 2006 article by van Riel et al. (see References and Supplemental 
Reading) demonstrated that the avian H5N1 virus binds to a form of sialic acid receptor 
that in humans is found only far down in the lungs and lower respiratory system. Human 
viruses, in contrast, bind to a form common in the upper respiratory tract. Thus, it is 
difficult for H5N1 to infect humans because our respiratory defenses normally prevent 
viruses from reaching the lungs. However, a mutant strain in which HA was altered to 



be able to bind to sialic acid in the upper respiratory tract could be a very dangerous 
strain indeed. 

 Download  So far, no such H5N1 strains that infect humans efficiently have been 
observed. However, we might ask whether the strains that do make it into humans tend 
to have altered HA genes—if so, that would suggest that either adaptive mutations 
could be occurring within the human host or that the viruses that cause human 
infections are subpopulations that are already better adapted. There are many avian 
H5N1 sequences available and a number of sequences of H5N1 viruses isolated from 
infected humans, so we can use sequence alignment to see whether these have 
essentially the same HA or noticeable differences. Download sequences for segment 4 
from two different avian H5N1 virus isolates and from a human H5N1 isolate from 
the Exploring Bioinformatics website and compare them using the Needleman-Wunsch 
algorithm. 
	  
Web Exploration Questions 

13. What are the scores and sequence identities for a comparison of the two avian 
viruses? Are the differences between the human isolate and the avian isolates 
greater than the differences among avian isolates? 

14. Based on your results (which of course are limited—it would be necessary to do 
many more comparisons in reality), do you believe there is evidence that human 
adaptation is occurring in H5N1 viruses that might merit concern about human-to-
human transmission in the near future? 

More to Explore 
 

 Link  The sequences for all the influenza virus segments and genes used in this 
exercise come from the Influenza Research Database, which indexes a wealth of 
sequence information on influenza viruses of all types. If you are interested in exploring 
influenza virus sequences further, you can retrieve individual genes, segments, or 
whole genomes from this database using a flexible search interface. 

 

Guided Programming Project: The Needleman-Wunsch Global Alignment 
Algorithm 

In this project, you will gain an understanding of dynamic programming and how it can 
be used to tackle the difficult problem of sequence alignment by implementing the 
Needleman-Wunsch algorithm and using it to construct global, optimal alignments. You 
will then modify your program to implement a semiglobal alignment algorithm. (Local 
alignments are tackled in the On Your Own Project that follows.) 
 Download  All the programming examples in this section are written in pseudocode: 
They are intended to show you the flow of program execution but do not represent the 
syntax of any particular language. Thus, you can implement them in any language you 
wish (we recommend Perl or Python). Depending on your programming experience, you 
may need a syntax guide for your language; some basic syntax related to the chapter 
projects can be found on the Exploring Bioinformatics website. Instructors can find 



complete programs in Perl or Python and solutions for the Putting Your Skills into 
Practice exercises and On Your Own Projects in the instructors' section of the Exploring 
Bioinformatics website. 

Dynamic Programming and the Needleman-Wunsch Algorithm 
The Needleman-Wunsch algorithm was one of the first to implement dynamic 
programming to solve an alignment problem. Dynamic programming is a problem-
solving technique that breaks down a complex problem, such as the global alignment 
problem, into smaller overlapping subproblems. The solutions of the subproblems are 
then used to solve the original problem. Problems that can be solved with dynamic 
programming have a few common characteristics: 

§ There must be a way to divide the problem into smaller subproblems. (Each 
subproblem may then be broken down further.) 

§ The problem-solving process starts by solving these more manageable 
subproblems. 

§ Solutions to the smallest subproblems are then used in determining solutions to 
the next largest problems. 

§ The process repeats until the original (largest) problem is solved. 

You learned earlier (review Understanding the Algorithm before continuing if needed) 
how the Needleman-Wunsch algorithm works. Building a scoring matrix divides the 
alignment problem into subproblems: The values in the matrix represent partial 
alignment scores or partial solutions to the overall problem. The bottom-right cell of the 
matrix always gives the optimal score, and backtracking through the matrix yields one or 
more "paths" that are interpreted as a series of aligned nucleotides or gaps that 
generate the corresponding optimal alignment(s).Figure 3.4E shows the matrix and 
paths for the sample sequences you have already seen. 

Implementing the Needleman-Wunsch Algorithm 
To align sequences using the Needleman-Wunsch algorithm, a computer program must 
(1) build a scoring matrix, (2) find paths through the matrix, and (3) generate alignments 
from the paths. The scoring matrix should be relatively easy for you to implement. The 
matrix itself could be implemented as a two-dimensional array. The first row and first 
column are initialized the same way regardless of the sequences compared. Then, each 
cell in the matrix is filled using the optimal score from among three choices: match or 
mismatch, gap in the first sequence, or gap in the second sequence (see Understanding 
the Algorithm). 

The more difficult problem is how to find the path(s) back through the matrix and convert 
them to actual alignments computationally. Recall that we start at the lower-right cell 
and then determine the direction to move based on which of the three bordering cells 
(above, left, or above-left diagonal) could have been used to arrive at the score in the 
current cell. The directional arrows in Figure 3.4E show how we moved from cell to cell, 
but computers cannot really deal with these arrows. So, we replace the arrows with 
directional strings, using "H" for a horizontal move, "V" for a vertical move, and "D" for a 
diagonal move. 



Our example contains three possible paths, so the following three strings are created, 
following the path from the lower-right corner to the upper-left corner in each 
case: HDHHDDD,HDDDHHD, and HDDDDHH. Moving from left to right in the directional 
strings and right to left in the sequences (we start at the ends of the two sequences 
because the directional strings start with the lower-right cell), we create the alignments 
as follows: 

1. If the directional character is a D, then align the two currently considered 
nucleotides and obtain new nucleotides to consider by moving to the left one 
position in each sequence. 

2. If the directional character is an H, then align the current nucleotide in the second 
(top) sequence with a gap character. Obtain a new current nucleotide for 
sequence 2 (top) by moving to the left one position, but keep the same current 
nucleotide for sequence 1 (left). 

3. If the directional character is a V, then align the nucleotide in the first sequence 
with a gap character and obtain a new current nucleotide by moving to the left 
one position in the first sequence but not the second. 

This process continues until all nucleotides have been aligned. For our sample 
sequences, the result is as follows: 

 
   Path 1:  HDHHDDD       Path 2: HDDDHHD      Path 3: HDDDDHH 
Alignment:  CACGTAT    Alignment: CACGTAT   Alignment: CACGTAT 
            CGC--A-               C--GCA-              --CGCA-  

 

The memory usage required by this algorithm is bounded by the size of the two input 
sequences, because you need to keep an array of size N × M in memory at all times. 
The length of the sequences that can be aligned is limited to the memory size of the 
computer on which the program runs. In the pseudocode that follows, only one 
directional string is constructed; a function (subroutine) is used for this task to 
modularize the steps of the algorithm. Finding all possible strings is left as an exercise. 

The pseudocode that follows will guide you in writing a Needleman-Wunsch program 
that prompts the user for sequences to align and for a scoring metric. The Putting 
Your Skills into Practice exercises that follow ask you to implement the program in 
whatever language your course is using and then provide suggestions for further 
exploration of the algorithm. Alternatively, your instructor may choose to provide the 
basic code (from the instructor section of the Exploring Bioinformatics website) for you 
to test and modify. 
Algorithm 

 
Needleman-Wunsch Algorithm 

• Goal: Determine the optimal global alignment of two sequences. 
• Input: Two sequences 
• Output: Best, global alignment(s) of two input sequences 

 
 // Initialization  



Input the two sequences: s1 and s2  
N = length of s1  
M = length of s2 matrix = array of size [N+1, M+1]  
gap = gap score  
mismatch = mismatch score  
match = match score   
 
// STEP 1: Build Alignment Matrix  
set matrix[0,0] to 0  
for each i from 1 to N, inclusive      

matrix[i, 0] = matrix[i-1, 0] + gap  
for each j from 1 to M, inclusive      

matrix[0, j] = matrix[0, j-1] + gap  
for each i from 1 to N, inclusive      

for each j from 1 to M, inclusive          
if (s1[i-1] equals s2[j-1])             
score1 = matrix[i-1, j-1] + match          

else             
score1 = matrix[i-1, j-1] + mismatch          

score2 = matrix[i,j-1] + gap          
score3 = matrix[i-1, j] + gap          
matrix[i][j] = max(score1, score2, score3)   

 
// STEP 2: Create Directional Strings  
dstring = buildDirectionalString(matrix, N, M)   
 
// STEP 3: Build Alignments Using Directional Strings  
seq1pos = N-1 // position of last character in seq1  
seq2pos = M-1 // position of last character in seq2  
dirpos = 0   
 
while (dirpos < length of directional string)      

if (dstring[dirpos] equals "D")         
align s1[seq1pos] and s2[seq2pos]         
subtract 1 from seq1pos and seq2pos      

else if (dstring[dirpos] equals "V")           
align s1[seq1pos] and a gap           
subtract 1 from seq1pos      

else // must be an H           
align s2[seq2pos] and a gap           
subtract 1 from seq2pos      

increment dirpos   
 
// Function to create directional string  
function buildDirectionalString(matrix, N, M)      
dstring = ""      
currentrow = N      



currentcol = M      
while (currentrow != 0 or currentcol != 0)          

if (currentrow is 0)              
add 'H' to dstring              
subtract 1 from currentcol          

else if (currentcol is 0)              
add 'V' to dstring              
subtract 1 from currentrow          

else if (matrix[currentrow][currentcol-1] +               
gap equals matrix[currentrow][currentcol])              
add 'H' to dstring              
subtract 1 from currentcol          

else if (matrix[currentrow-1][currentcol] +               
gap equals matrix[currentrow][currentcol])              
add 'V' to dstring              
subtract 1 from currentrow          

else              
add 'D' to dstring              
subtract 1 from currentcol              
subtract 1 from currentrow  

return dstring  

 
 
Putting Your Skills into Practice 

1.  Download  Write a program in the language used in your course to implement 
the above pseudocode. Test your program by using the sample sequences 
above and the other short sequences you used in the Test Your Understanding 
exercises and verify that it finds the expected alignment 
(only one alignment,however: see question 4 for more about finding all possible 
alignments). Then try it on the influenza virus sequences you compared using 
Needle in the Web Exploration. (If your class skipped the Web Exploration 
section, download sequences for HA genes from various influenza virus strains 
from the Exploring Bioinformatics website.) 

2. A user-friendly alignment program would format the output for readability, printing 
a specific number of characters on each line and then leaving a blank line 
between segments of the alignment. Numbering and a special character to 
indicate matches are also helpful (similar to the output you saw for EMBOSS). 
Modify your program to make it a more user-friendly solution. 

3. Improve the program further by adding additional information beneficial to users: 
the alignment score and match percentage. You could also give the user the 
option to print the matrix and the path string for debugging purposes (which might 
also help you if your program is not doing exactly what you want it to). 

4. The implementation of the Needleman-Wunsch algorithm shown previously finds 
only a single optimal alignment, but you can modify your program to 
findall possible optimal alignments. If you are familiar with the programming 
technique of recursion, you may want to consider a recursive solution, but this 



problem can also be solved without using recursion. Test your modified program 
to see that it finds all optimal alignments of your short test sequences, then test 
your program with real influenza HA sequences. Are there multiple optimal 
alignments for these sequences? In general, would long sequences be more or 
less likely to lead to multiple optimal alignment paths? 

Although global alignment algorithms are useful, they do not solve all alignment 
problems. An example mentioned earlier is the need to find the coding sequence for a 
gene within a longer DNA sequence, requiring alignment of a short sequence with a 
long one. The Needleman-Wunsch algorithm can perform a global alignment, but it will 
penalize not only internal gaps but also the many terminal gaps—gaps at the beginning 
and end of the alignment—needed to align the short sequence at its proper position 
within the large sequence. This idea is illustrated by three sample alignments of a pair 
of sequences: 

 
 CGCTATAG  CGCTATAG  CGCTATAG  

 --CTA---  C--TA---  --C--TA-  
 

Using a global alignment, these alignments are all considered "optimal" (three different 
paths to the same optimal score, –2). However, it is clear that the first alignment would 
actually be the best, because it includes only terminal gaps used to "position" the short 
sequence. If you eliminated the gap penalty for terminal gaps, the scores for these three 
sequences would be 3, 1, and 1, with the best alignment getting the best score. This 
alignment, where terminal gaps are ignored, is called a semiglobal alignment. 
	  
Putting Your Skills into Practice 

5.  Download  Modify the Needleman-Wunsch program so it implements a 
semiglobal alignment by eliminating the gap penalty for terminal gaps. (Hint: This 
actually requires only a few minor changes in the code. Focus on what the 
outside rows and columns of the matrix represent and how they are used.) Try 
your program on the short sequences above and then on the sequences shown 
in Test Your Understanding question 3. If it works correctly, try a real-world case 
by downloading the sequence of 2009 H1N1 pandemic influenza virus segment 7 
and the coding sequence for the 2009 H1N1 virus M1 gene (do not use M2, 
because that requires a local alignment, discussed later in the chapter) from 
the Exploring Bioinformatics website. Align the sequences and see if your 
program can successfully pick out the M1 coding sequence within the segment 7 
sequence. 

6. If you try the M1 coding sequence versus segment 7 alignment just mentioned in 
the EMBOSS Needle program, you might not expect it to succeed. However, it 
does. Go back to the parameter page and look closely at how the default 
parameters are set and see if you can decide why it works. 



On Your Own Project: A Local Alignment Algorithm 

Understanding the Problem: Local Alignment 
At this point, you should have a good understanding of how the Needleman-Wunsch 
algorithm constructs optimal, global alignments. You should have considered (in the 
Testing Your Understanding exercises) how this algorithm could be modified to produce 
a semiglobal alignment and perhaps actually programmed such a solution (see Putting 
Your Skills into Practice). Finally, you should have worked with the Water program from 
EMBOSS and have an idea why a local alignment would be useful. 

Local alignments solve the problem of finding and aligning conserved regions in 
otherwise dissimilar sequences by looking for optimal partial or subsequence matches 
between the sequences. Consider the 
sequences AAAGCTCCGATCTCG andTAAAGCAATTTTGGTTTTTTTCCGA. Two similar 
regions in these sequences, AAAGC and TCCGA, are separated by regions that are 
very different. A global or semiglobal alignment program should find the AAAGC 
alignment but will fail to correctly align the sequences so the TCCGA sequences also 
match up. To find subregions of similarity, large gaps must be expected and should not 
adversely affect the alignment score; this was the basis for Smith and Waterman's 
modification of the Needleman-Wunsch algorithm to produce a local alignment (see 
References and Supplemental Reading). Surprisingly, implementing the Smith-
Waterman algorithm requires only a few changes to a semiglobal alignment algorithm. 

Solving the Problem 
A key element of a local alignment algorithm is the treatment of gaps. As with the 
semiglobal alignment, we should not penalize terminal gaps. But, for a local alignment, 
the Smith-Waterman algorithm also needs to consider how internal gaps are handled. 
For a global or semiglobal alignment, negative values can occur within the matrix, and 
they are useful because increasing negative values along an alignment path indicate a 
move away from similarity. However, for a local alignment, negative scores are no 
longer useful, because we do not necessarily expect the alignment to approximate an 
"ideal" diagonal path. Indeed, long gaps may be necessary to find optimally aligned 
subsequences, and these longer gaps should not be penalized so heavily as to negate 
good partial alignment scores. How might our system for placing a subscore in each cell 
of the matrix be modified to deal with this issue? 

A second important modification involves the alignment score. Both the global and 
semiglobal alignment algorithms build the alignment path starting with the cell in the 
lower right of the matrix; this cell contained the optimal alignment score, because both 
algorithms considered the sequences in their entirety. However, a local alignment must 
consider subsequence matches, and high subsequence alignment scores could appear 
anywhere in the matrix, indicating the presence of a similar subsequence somewhere 
within the longer sequences. There could be many such similar subsequences within 
the longer sequences, and we want our local alignment algorithm to find all of them. 

Finally, once a high score is found, continuing to follow the path until we reach the 
upper-left cell is not required: A highly conserved subregion may not extend all the way 



to the beginning of either sequence. Thus, the process of finding the path start and path 
end also requires modification. 

Based on this information, describe a modified algorithm that would find local 
alignments given two sequences. Be sure to detail how the matrix is initialized, how the 
sub-scores are placed into each cell, and where the alignment path(s) should start and 
end. 

Programming the Solution 
 Download  If your course involves programming, your instructor may ask you to make 
the necessary modifications to your semiglobal alignment program and actually 
implement the local alignment algorithm you described. Test your program with the 
sample sequences shown previously and see if it can find both matches. Then, 
download the segment 7 sequence for the 2009 H1N1 pandemic influenza virus and the 
coding region of the M2 gene from the Brisbane seasonal strain from the Exploring 
Bioinformatics website and see if your program gives the same result as the EMBOSS 
implementation of the Smith-Waterman algorithm. 

 
Connections: An Influenza Controversy 

In early 2012, two different influenza virus research groups working on the H5N1 strain 
submitted papers to be considered for publication in prestigious scientific journals. 
Although their methods differed, the goal of both groups was to identify what mutations 
were necessary for the avian H5N1 flu virus to be transmitted readily among humans 
and whether the resulting virus would be as virulent as the current avian strains. 
Bioinformatics, including sequence alignment, played a major role in their research, but 
their work went beyond computational modeling to actually generate new virus strains 
whose virulence could be tested directly. The aim of this research was to better predict 
the future pandemic potential of H5N1 and thus better prepare medical researchers to 
deal with a human-transmissible version. Many scientists agreed that their research had 
significant merit and that the scientific and medical communities would benefit from 
publication. Others, however, expressed concern about the potential for accidental 
release of an engineered H5N1 virus that could itself become the next pandemic strain. 
Still others contended that publication of these results would essentially hand the 
"blueprint" for a bioweapon to any nation or terrorist organization interested in using it. 
Months of controversy ensued in an attempt to decide whether the work should be 
published, suppressed, or published with key techniques and details redacted. What do 
you believe should be done with this research? 

 
 

BioBackground: The Influenza Virus and Molecular Evolution 
Viruses sit at the interface between living and nonliving: Outside a host cell, they are 
metabolically inert, apparently nothing but nucleic acid in a protein shell, sometimes 
surrounded by a membrane-like envelope. Yet, every virus has some molecule on its 
surface capable of interacting with a receptor on the surface of a living cell. When the 
virus bumps into and attaches to a cell, this interaction results in entry of the virus into 
the cytoplasm, whereupon the viral genes are expressed and, pirate-like, the virus takes 



over the host cell machinery and subverts it to the manufacture of more viruses (Figure 
3.6), ultimately destroying the cell. For the influenza virus, the preferred host cell is an 
epithelial cell of the upper respiratory system, and the cellular receptor is a sugar called 
sialic acid that binds the HA protein on the surface of the virus. 

 
Figure 3.6: Schematic drawing of an influenza virus (greatly oversized) and a simplified 
overview of its replication cycle. After interacting with the sialic acid receptor, the virus 
enters the cell by endocytosis. The genome is released, moves to the nucleus, 
replicates, and directs synthesis of viral proteins. Assembly at the membrane is followed 
by budding to release new viruses. 

An influenza virus can be classified based on the type of HA protein it carries, as well as 
a second protein, neuraminidase (NA) involved in releasing the viral progeny from the 
host. Several major types of HA (H1, H2, H3) and NA (N1, N2, N3) are known, so a virus 
can be denoted H1N1, H3N2, H5N1 and so on. However, mutations produce variation 
even within these types, so subtypes must be defined. For example, in 2009–2010, one 
major circulating seasonal flu virus was A/Brisbane/59/2007 (H1N1), a type A virus first 
identified in Brisbane in 2007, whereas in 2007–2008, A/Solomon Islands/3/2006 (H1N1) 
was common; both subtypes are different from the new pandemic virus discovered in 
2009, A/California/7/2009 (H1N1), even though all three have the same H and N types. 

The RNA genome of influenza virus is synthesized by a virus-encoded polymerase that 
does not "proofread" to remove errors; thus, mutations producing variant strains—new 
subtypes—occur frequently. Mutations in the HA and NA genes are particularly 
important because these are major molecules recognized by the host immune system: 
Variation here can allow a virus to escape immune detection and thus increase its 
opportunities to infect and spread. Such mutations would clearly be advantageous to 
the virus and selected for over time, allowing the new strain to become more prevalent 
in the population. 

We would recognize the new strain as being evolutionarily related to the original one by 
the similarity of their genes: Two genes are similar if they have the same DNA 



sequence to a significant extent. This is determined by aligning genes from two strains 
(or, more broadly, from any two organisms), and we interpret significant similarity as 
evidence that these genes have a common origin. Differences between the sequences 
(Figure 3.7) are assumed to result from mutation, including substitutions of one base for 
another (resulting in mismatched bases in the alignment) as well as insertions or 
deletions (resulting in gaps in one of the aligned sequences). When a gene in one 
species or strain is very similar to a gene in a different species or strain, we say the 
genes are orthologs ( Figure 3.8): Our conclusion is that the two species are 
descended from a common ancestor and that the genes have become modified by 
mutation over time in each of the daughter species. In fact, many or most genes in two 
evolutionarily related species should be orthologs. If we find two similar genes within 
thesame species, we refer to these as paralogs and conclude that they arose by a 
gene duplication event followed by mutation. 

 
Species 1:  T A A A G A C C A T A G G A A A T A A A G A T A A 
Species 2:  T A A C G A C C A T - G G A A A C A A A G A T A A  

 
 
Figure 3.7: Determining the similarity of two or more genes by aligning them so that 
their nucleotide sequences match up as well as possible. Differences resulting from 
mutation are highlighted; dashes represent the locations of insertion or deletion 
mutations (indels). 



 
Figure 3.8: Sequences of genes or proteins reflect the pathways of change that have 
occurred in the evolutionary history of related species or strains. 

Gradual evolution by mutation produces new influenza virus strains that have genome 
sequences closely related to their "parent" strain; aligning the sequence of, for example, 
the HA gene from a currently circulating virus with its ortholog from a suspected new 
variant demonstrates the similarity of the genes and reveals their differences. 
Differences in regions of the protein known to be bound by host antibodies suggest a 
new strain of potential medical importance that should be carefully tracked and perhaps 
included in the next season's vaccine formulation. In addition to mutation, however, 
influenza viruses can also change more suddenly by a recombination mechanism: If two 
viruses infect the same cell (this can often happen in pigs, which are susceptible to 
swine, avian, and human influenza viruses), the progeny of one virus can acquire a 
whole genome segment from the other. Sequence alignment is again the tool needed to 
establish that a more radically different virus has evolved. 

Analysis of sequence comparisons (see References and Supplemental Reading) 
revealed that the 2009 pandemic H1N1 virus arose through this recombination 
mechanism: Its parent was a well-known "triple reassortant" strain common in swine 
that carries an HA gene descended from the 1918 pandemic virus along with other 



segments from avian and human viruses (Figure 3.9). This virus more recently acquired 
NA and M genes that originated in a Eurasian avian virus, generating a novel virus type 
that began circulating in the human population probably about a year before the first 
cases were recognized clinically. In addition to demonstrating origins and pathways of 
evolution, sequence alignment is a key tool in investigating the functions of genes and 
proteins. In the case of influenza virus, several specific variations have been associated 
with highly virulent viruses capable of causing severe disease: a mutation in HA 
allowing the protein to be processed by a more common protease, thus increasing host 
range; a mutation in the viral polymerase allowing higher activity at the lower 
temperature of the human respiratory tract; and so on. The virulence of a new influenza 
virus strain can thus also be characterized by aligning its genes with their orthologs to 
look for these specific changes. 

 
Figure 3.9: Origins of the genome segments of the 2009 pandemic H1N1 virus, as 
determined by sequence alignment. 
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Chapter 4: Database Searching and Multiple 
Alignment: Investigating Antibiotic Resistance 
Chapter Overview 

This chapter develops skills in two very commonly used types of Web-based 
bioinformatics tools: searching sequence databases for high-scoring matches to a query 
sequence (using BLAST) and multiple sequence alignment (using ClustalW). No 
programming project is provided; however, the algorithms and parameters used by 
these programs, both of which use heuristic methods to speed up complex tasks, are 
discussed in some detail. This chapter focuses on algorithms for optimal alignment of 
DNA sequences. This chapter is recommended for both programming and non-
programming courses because these techniques and those related to them are used 
extensively in real-world bioinformatics applications. 

• Biological problem: Overuse of agricultural antibiotics and development of 
antibiotic resistance 

• Bioinformatics skills: One-to-many sequence alignments and multiple 
sequence alignment 

• Bioinformatics software: BLAST and ClustalW 
• Programming skills: Heuristics 

	  
	  
Understanding the Problem: Antibiotic Resistance 
Fifty years ago, many people believed the newly discovered antibiotics—drugs that 
selectively kill bacteria without harming human hosts—would end infectious diseases 
caused by bacteria. Indeed, these "miracle drugs" have preserved the lives of millions. 
Today, however, tuberculosis, pneumonia, diarrheal disease, staph infections, and other 
bacterial diseases remain important— and in some cases increasing—causes of illness 
and death. One important reason is the dramatic rise of antibiotic-resistant bacteria no 
longer killed by commonly used antimicrobial drugs. 

Resistance results from selection for mutants that can survive antibiotic treatment (see 
Bio-Background at the end of this chapter). As the use of an antibiotic becomes 
widespread, bacteria are increasingly exposed to it, escalating selective pressure and 
resulting in rapid evolution of strains that thrive when antibiotics kill their susceptible 
cousins. Thus, in an effort to curb resistance, physicians today are much more cautious 
than in the past, prescribing antibiotics only when the need is clear and holding those 
least prone to resistance in reserve. 

The nontherapeutic use of antibiotics in agricultural animals and even on food crops 
(Figure 4.1) is at the center of a current controversy over resistance. Routine use of 
antibiotics in animal feed prevents disease and promotes growth, allowing more animals 
to be raised more cheaply in less space. But many believe these economic benefits 
come at a high cost: Are the 28 million tons of agricultural antibiotics used annually in 
the United States and Canada (far outweighing the 3 million tons for all human uses) 



promoting antibiotic resistance? Most scientists believe that antibiotic overuse is a major 
contributor to the development and spread of resistance, leading to bans on 
subtherapeutic agricultural use of antibiotics in Denmark in 1999 and in the European 
Union in 2006. No such legislation is yet in place in the United States, and those who 
oppose such laws argue that no causal link has been definitively established between 
agricultural antibiotics and antibiotic-resistant disease bacteria in humans. We can 
investigate this link using some more advanced sequence alignment techniques. 

 
Figure 4.1: The extensive use of antibiotics in agricultural animals that are not sick has 
sparked controversy about the role of this practice in speeding the development of 
antibiotic-resistant bacteria. Courtesy of Scott Bauer/USDA ARS. Inset © AbleStock. 
	  
Bioinformatics Solutions—Advanced Sequence Comparison Algorithms 
There is no question that intensive use of antibiotics in animals increases the 
prevalence of antibiotic-resistant bacteria—in animals. But how can a microbiologist 
determine experimentally whether these bacteria are an important source of resistance 
genes for bacteria that cause disease in humans? In 2001, Abigail Salyers and her 
colleagues used bioinformatics to look for evidence that bacteria inhabiting the human 
gut had been the recipients of antibiotic-resistance genes originating in bacteria found in 
domestic animals (see References and Supplemental Reading). Taking advantage of 
the many sequenced bacterial genomes and the huge collection of sequenced genes in 
public genome databases, they looked for unrelated animal and human bacteria that 
have closely related resistance genes. 

New or altered genes, including those that allow a bacterial cell to resist an antibiotic, 
arise by random mutation, which is rare. However, once these genes exist in a bacterial 
community, they can be readily passed from one bacterium to another (usually on 
plasmids), a phenomenon known as horizontal gene transfer (HGT; see 
BioBackground), allowing resistance to spread rapidly in a bacterial community. If a 
"donor" bacterium gives a resistance gene to a "recipient" organism, the two should 



have the same gene—that is, one that encodes a protein with the same amino-acid 
sequence. Furthermore, if human pathogens have the same antibiotic-resistance genes 
as bacteria from domestic animals, it would suggest that HGT occurs between them, 
supporting the conclusion that increased resistance among agricultural bacteria is 
indeed dangerous to human health. Similarity, of course, can be measured by sequence 
alignment, so Salyers used alignment first to retrieve genes from GenBank that were 
similar to a particular resistance gene and then to ask how similar the genes from 
unrelated species were. Two resistance genes that were ≥ 95% identical were 
assumed to have resulted from an interspecies gene transfer event. 

The pairwise comparison techniques we have used thus far are of limited value when 
many sequences must be compared efficiently. In the sections that follow, we explore 
tools that build on the alignment algorithms we have already seen to allow for the rapid 
comparison of one sequence to many or the simultaneous alignment of multiple 
sequences. 
	  
BioConcept Questions 
To successfully complete this chapter's projects, you need to understand a little about 
antibiotic resistance, HGT, and how similarity measurement can help us decide whether 
HGT has occurred. Use these questions to test your biological understanding; read 
BioBackground at the end of the chapter if you need a better foundation. 

1. What is the difference between vertical and horizontal gene transfer? Why are 
the terms "vertical" and "horizontal" used to describe these processes? 

2. Any bacterium could become antibiotic resistant by means of mutation. Why is 
HGT considered so much more of a threat, at least in terms of medically 
important resistance? 

3. How does the degree of similarity between two genes help us understand 
whether they descended vertically from a common ancestor (recent or distant) or 
whether they could have moved from one species to the other by HGT? 

4. Suppose you have evidence that two genes in two different bacterial species 
have a single, common origin. Give two possible explanations for how this might 
have occurred. 

	  
Understanding the Algorithm—aDatabase Searching and Multiple 
Alignment 

Blast: A Heuristic Approach to Database Searching 

The Needleman-Wunsch algorithm is a relatively efficient algorithm for optimal, global 
pairwise sequence alignment. However, imagine that you wanted to align an antibiotic-
resistance gene of interest with every other sequence in GenBank. The computational 
time required is the time to make one alignment (compute the matrix and alignment 
paths) times the number of sequences in the database—currently more than 100 
million. We would say that the time required to solve this problem is O(NS) or on the 
order of NS, where S is the number of sequences. It gets large quickly: If one alignment 
took 1 second of computer time, the whole search would take more than 3 years. 



Yet, BLAST (Basic Local Alignment Search Tool; see References and Supplemental 
Reading) can compare a query sequence to the entire database and return all matching 
sequences in a matter of seconds. 

BLAST and its several variations are perhaps the most widely used of all bioinformatics 
software. As its name suggests, BLAST implements a local alignment algorithm similar 
in principle to the Smith-Waterman algorithm. However, it uses a heuristic or "shortcut" 
that makes it a practical and efficient solution to this complex problem. 

To understand how BLAST works, we first need to clarify what we mean by a 
"matching" sequence. The point of comparing an antibiotic-resistance gene to GenBank 
is to identify similar sequences—generally, orthologs. Thus, a sequence matches the 
query if it shows statistically significant and/or biologically relevant similarity when 
aligned to the query. But how does BLAST make 100 million alignments so quickly? In 
fact, it does not make a full alignment for every sequence. Its first step is to break the 
query sequence into short "words" called k-tuples: subsequences k characters long. 
The default setting for k is 11 for DNA alignments and 3 for protein alignments. BLAST 
then scores close matches between these short sequences and each database 
sequence; this process is known as "seeding." Where it finds a good match, a local 
alignment algorithm finally comes into play, and the program tries to extend the 
alignment in both directions, comparing the resulting score with a threshold value. An 
alignment that can be extended to score above the threshold is referred to as ahigh-
scoring pair (HSP). 

Figure 4.2 shows an example of the BLAST algorithm using a famous quotation for 
which several variations can be found instead of a sequence (remember, alignment 
programs can compare any two strings). The alignments in the figure are scored with a 
simple match = 1, mismatch = 0, gap = -1 system. If the query sequence is broken down 
into three-letter words(k-tuples) and we focus on the 37th k-tuple, "ent," there is no 
match for any of the words in database sequence A, so this sequence can be 
discarded. Sequence B has an initial match, but attempting to extend the alignment 
does not increase the score above the threshold, so this sequence would not be 
reported as a significant alignment. Sequence C, however, has an alignment that 
exceeds the threshold score and would be reported as a match. 



 
Figure 4.2: An example of how the BLAST algorithm finds an initial match between a 
short subsequence (k-tuple or "word") of the query and the target sequence, then 
extends the match to find a local alignment with scoring above a threshold value. 

BLAST then calculates the statistical likelihood that a given score would occur based on 
mere chance alignment of unrelated sequences (the e-value) and orders the matching 
sequences according to this measure of statistical significance. As we will see in 
the next section, BLAST reports back to the user the name of the matching sequence, 
the score, the e-value, and the alignment itself. In addition to changing scoring 
parameters such as the gap penalty, BLAST allows the user to adjust the k-tuple value 
if desired. Although the default value typically works well, decreasing the word size 
allows the identification of sequences that match less well (useful when similarity of the 
query to other sequenced genes is weak) and is also needed if the sequence to be 
compared is very short (current implementations of BLAST do this automatically when a 
short query is entered). 

You use heuristics all the time without realizing it. Consider, for example, how you 
decide which route to take when you have several alternatives. It is extremely difficult to 
calculate a truly optimal solution (accounting for traffic, construction, traffic lights, speed 
limits, school zones, and many more variables), so you apply a heuristic: You decide to 
take the route that is shortest in mileage or the one you believe has the least traffic. This 
allows you to choose rapidly but does not guarantee that you will in fact choose the 
fastest option. Similarly, BLAST's heuristic approach allows it to quickly discriminate 
possible matches from unrelated sequences. Although it may not find optimal 
alignments, it deals with large volumes of data extremely rapidly while finding solutions 
that are acceptably close to optimal. 



ClustalW: Multiple Sequence Alignment 

Although BLAST can quickly identify a large number of sequences similar to a query, it 
displays only individual alignments of the query with each matching sequence. 
However, we might instead want to see an alignment of a whole group of similar 
sequences at once (Figure 4.3A). For example, perhaps the sequences of genes 
similar to our query resistance gene fall into two or three distinctly identifiable groups. 
Or, we might want to identify a consensus sequence: the nucleotides or amino acids 
that appear the most frequently at each position in a given region of the sequence. 
Rather than a pairwise alignment, this requires a multiple sequence 
alignment algorithm. 

The computational complexity problem for multiple sequence alignment is even greater 
than for database searching. Here, the order of adding sequences to the alignment 
matters. Suppose, for example, we have optimally aligned two sequences, GTCT and 
GGT as in Figure 4.4A. If we now want to align the sequence CT with the other two, we 
might get the alignment in Figure 4.4B. However, if we aligned GTCT with CT first, we 
might find the optimal alignment to be the one in Figure 4.4C instead. The dynamic 
programming approach of Needleman and Wunsch could deal with this problem by 
building a matrix of size L × M ×N, each dimension one character longer than the length 
of one sequence. However, as more sequences are added, the matrix becomes four-, 
five-, six-dimensional, and so on and the computational time required becomes O(NS): 
the time required for one alignment raised to the power of the number of sequences, 
which obviously becomes impractical very fast. 

Thus, multiple sequence alignment algorithms again use heuristics to manage the 
complexity of the problem. ClustalW (see References and Supplemental Reading) is 
one of the most popular multiple sequence alignment algorithms; it uses a progressive 
alignment algorithm in which the order of adding new sequences to the alignment is 
determined by first calculating a rough phylogenetic tree called a guide tree (Figure 
4.3B). The guide tree is generated by first doing pairwise alignments and then using the 
score or percent similarity from those alignments to draw a tree showing which 
sequences are more and less closely related (we will have much more to say about the 
mechanics of generating a phylogenetic tree in subsequent chapters). Starting with the 
two most closely related sequences (in the example in Figure 4.3B, these 
are Bacteroides xylanisolvens and B. fragilis), ClustalW then does global, pairwise 
alignments to align each new sequence with those already aligned, in order of 
decreasing relatedness. Note that although this is an efficient way to produce a multiple 
alignment, the fact that it is based on global alignment means ClustalW may not 
correctly align sequences that share regions of similarity if the sequences are not very 
similar overall. 
	  
Test Your Understanding 

1. Describe two features of the BLAST algorithm that enable it to complete a 
database search much faster than the Needleman-Wunsch algorithm would. 



2. For the BLAST example in Figure 4.2, are there k-tuples within the query 
sequence that give a very different result? What might be an example of a query 
sequence that would yield an HSP for all three database sequences? 

3. Describe briefly how the sequence differences you can see in Figure 4.3A relate 
to the lengths of the branches in Figure 4.3B. 

4. In Figure 4.3, the sequence labeled CA_F7SDb01 is from an organism that has 
not yet been characterized sufficiently to give it a species name; all other 
sequences are from species within the genus Bacteroides. Based on the region 
of the multiple alignment shown in this figure, would you characterize 
CA_F7SDb01 as likely to belong to some Bacteroides species or likely to come 
from a different genus? 

5. Write out a set of six short (seven or eight nucleotides) DNA sequences in which 
all six are related but there are two sets of three that are more closely related to 
each other than to the other set. Show how the guide tree might look for your 
sequences and then what the multiple sequence alignment might look like. 

 
Figure 4.3: (A) Segment of a multiple sequence alignment for the coding region of a 
penicillin-resistance gene from five different species. Darker shading indicates 
nucleotides that are conserved among more of the five sequences. (B) Guide tree used 
by ClustalW to produce this multiple alignment. Data from—EBI ClustalW. 

 
A GTCT B GTCT C GTCT 

  G-GT   G-GT   --CT 
      CT--   -GGT 

 
 
Figure 4.4: Multiple sequence alignment is complex because the order of adding 
sequences to the alignment can affect the alignment results. 
	  
Chapter Project—Horizontal Gene Transfer of Antibiotic Resistance 
Salyers and her colleagues (see References and Supplemental Reading) used 
bioinformatics methods to look for evidence of horizontal transfer of antibiotic genes 
between bacteria found in animals routinely fed antibiotics and bacteria that might affect 
human health. Because of the enormous number of bacteria residing normally in the 
human large intestine, they hypothesized that these bacteria serve as a reservoir for 
HGT (Figure 4.5) and could easilyexchange genes with ingested bacteria, including 
antibiotic-resistant bacteria originating in agricultural animals. Thus, using alignment 
methods, Salyers focused on determining whether common intestinal bacteria might 
carry the same genes for antibiotic resistance as unrelated species that are not gut 
residents. Related species, of course, are likely to have highly similar genes, but a high 



degree of similarity between genes of otherwise dissimilar organisms strongly suggests 
horizontal transfer. Salyers used the criterion of ≥ 95% similarity to decide whether 
sequences from two organisms in fact represented the same gene. In this project, we 
will use BLAST to identify a set of resistance genes of interest and ClustalW to examine 
the similarity among them, enabling us to draw some conclusions about the impacts of 
subtherapeutic agricultural antibiotic use. We will focus on genes enabling bacteria to 
resist the antibiotic erythromycin, a drug commonly used in both therapeutic and 
agricultural applications. 

 
Figure 4.5: According to the "reservoir hypothesis" proposed by Salyers and others, 
resistant bacteria ingested in food that pass through the human large intestine have the 
opportunity to transfer resistance to any of the trillions of bacteria resident there, 
creating a reservoir of resistance, which could then lead to transfer to human 
pathogens. 
	  
Learning Objectives 

§ Understand the value of searching a database for sequences matching a query 
§ Gain experience with the use of BLAST in database searching and understand 

its parameters 
§ Appreciate the importance of a heuristic in processing large amounts of data 

rapidly 
§ Understand the use of multiple sequence alignment and know how to use 

ClustalW for this purpose 

Suggestions for Using the Project 

This project is designed to build skills in using two very important pieces of 
bioinformatics software: BLAST and ClustalW. Because of their wide use, familiarity 
with these tools is highly recommended for students in both programming and 
nonprogramming courses. The BLAST and ClustalW sections that follow can be used 
independently; instructors can down-load a set of ermB sequences from the Exploring 
Bioinformatics website if they would like their students to do the multiple alignment 
without first using BLAST to identify sequences of interest. Instructors could also ask 
students in programming courses to implement a BLAST-like algorithm based on the 
earlier discussion. 



Searching for Erythromycin Resistance Genes with BLAST 

Obtaining the ermB Sequence 
Erythromycin is an antibiotic that halts bacterial growth by binding to the bacterial 
ribosome and blocking translation. Two different mechanisms of erythromycin 
resistance have been observed: Some resistant bacteria have acquired a gene whose 
product modifies the ribosome so erythromycin can no longer bind, whereas others 
have acquired a gene encoding a transport protein (called an efflux pump) that rapidly 
removes erythromycin from the cell. You already know how to find sequences in 
GenBank via a text search; however, a key word such as "erythromycin" will retrieve 
both kinds of genes and will fail to retrieve any resistance genes that were not 
annotated as such. Instead, using BLAST, we can search using a sequence as our 
query and retrieve all similar sequences, regardless of how they are annotated. 

 Download  As our query sequence, we use an erythromycin-resistance gene 
called ermBfrom Strep-tococcus agalactiae, a Gram-positive bacterial species 
commonly associated with the udder of cows, where it can cause mastitis. This gene 
produces one of several known resistance proteins of the ribosome-modification type. 
Erythromycin resistance due to ermBhas commonly been seen in the human 
pathogen Streptococcus pneumonia, the most common cause of bacterial pneumonia, 
so it will be interesting to determine whether HGT of this gene has occurred among 
diverse bacteria. Start by obtaining the DNA sequence for theS. agalactiae ermB coding 
region from GenBank in FASTA format by using a text search, by searching for the 
accession number DQ355148.1, or by downloading the file from theExploring 
Bioinformatics website. 

Understanding BLAST Results 
BLAST results are shown in three sections. The top section is a graphical view (see 
sample of some representative BLAST results in Figure 4.6A), with a bar for each 
sequence that matches the query. The length of the bar shows the length(s) of the 
matching region(s), and its color represents the score for each segment. The middle 
section (Figure 4.6B) gives details about each match: the accession number and 
description for the gene matched and five parameters related to the quality of the 
match: 

§ Max score: the score of the best matching segment (remember, this is a local 
alignment, not a global one). 

§ Total score: the total scores of all matching segments found (same as max 
score if there is only one matching segment). 

§ Query coverage: the percentage of the query sequence that aligned to some 
part of the match. 

§ e-Value: a statistical measure evaluating how likely it is that a match this good 
would occur by chance. The lower the e-value, the more likely it is that the two 
sequences are truly similar and not just chance matches. Two identical 
sequences would have an e-value of zero. 

§ Max ident: the percentage of nucleotides that are identical between the query 
and target sequences within the matching regions. 



The third section (Figure 4.6C) shows the actual pairwise alignments between the 
query sequence and the top matching database sequences. Links in each section 
provide direct access to a variety of additional information about the matching 
sequences. 

Identifying ermB Orthologs with BLAST 
 Link  From the NCBI BLAST home page, you can see several ways to run BLAST, 
including both nucleotide and protein comparisons. For this exercise, we compare DNA 
sequences, so you should choose the nucleotide option. This should take you to a 
search form where you can either paste or upload your S. agalactiae ermB sequence. 

Many options and parameters are available on this page. Notice the section 
labeled Choose Search Set, where you can specify the sequences to be searched. 
Importantly, the default set of sequences is the subset of GenBank containing human 
DNA sequences. This obviously will not work in our case, where we want to retrieve 
bacterial sequences. Change the database to nucleotide collection (nr/nt), 
which will search all the unique ("nonredundant" or nr) sequences in GenBank. 
Furthermore, many sequences in GenBank are from bacteria that have been 
sequenced (using DNA harvested from an environmental sample) but never cultured; 
these are not useful to us because we do not know what species they come from, so 
check the box to exclude sequences from uncultured samples. To further refine the 
results, there is also an input box where you can limit your search to a particular 
organism or group of organisms; you could type bacteria here to exclude any 
nonbacterial sequences that might happen to match. Finally, there is a box where you 
can type an Entrez query to include or exclude specific kinds of sequences. 

If you click Algorithm parameters near the bottom, you can set the parameters that 
BLAST uses for its comparison. These options should be starting to look familiar to you: 
For example, you can set a linear or affine gap penalty, change the match and 
mismatch scores, and alter the word size (k-tuple) for the initial match. Some of these 
parameters are set automatically when you make a choice from the Program 
selection section, where you choose the specific algorithm that will be used by 
selecting options such as Highly similar sequences 
(megablast) or Somewhat similar sequences (blastn). With the parameters 
visible, try clicking each of these options and notice how the parameters change. For 
example, megablast has a default word size of 28, whereas blastn has a default of 11; 
how would this change the results? When you have finished exploring, 
choose blastnfor now to see both very similar and less-similar sequences the program 
might identify. Click the BLAST button to start the search and compare 
your ermB sequence with the selected sequences. In a short time, you should get a 
page of results (see Figure 4.6 for an example of what this page would look like). 



 
Figure 4.6: Sample results of a BLAST search for database sequences matching a 
nucleotide query sequence—(A) graphical summary of results, (B) table of scores, and 
(C) alignments. 
	  
Web Exploration Questions 

1. In their original survey, Salyers and colleagues used a cutoff of 95% identity for 
sequences considered similar enough to have been shared by HGT. You can get 
a quick measure of identity by using the max ident score in the BLAST 
results—however, you can also get a high max ident for a very small matched 
region, so also consider the query coverage. Looking at these parameters, are 
the matches that BLAST retrieved highly similar to your query or less similar? Do 



your data suggest that all or most of them represent the same gene, transferred 
from organism to organism by HGT? 

2. You may notice in your list that a number of the sequence matches come from 
cloning vectors— engineered DNA molecules used for laboratory manipulations. 
Construct an Entrez query to exclude these from your results and run your 
search again—but be careful not to exclude too much. Remember that unless 
you limit the field, the entire text of each entry will be searched for a match. What 
query did you use? 

3. What evidence can you find among your BLAST results to support or refute the 
hypothesis that resistance genes are being shared between unrelated species—
especially between agricultural species and human pathogens or human gut 
bacteria that might come into contact with pathogens? You will have to do some 
detective work to answer this question: For example, find a bacterial phylogenetic 
tree online to help you decide how closely related the different species in your list 
are, and then try to find out which ones might be found in domestic animals, 
which are residents of the human gut, and which are human pathogens. 

4. There are so many sequences in GenBank today, including many whole genome 
sequences, that BLAST often fills up its list of top matching sequences without 
ever getting down to less related but potentially more interesting matches. In your 
initial BLAST results, for example, it is likely that most if not all sequences come 
from Gram-positive organisms, one major division of the bacteria. HGT to the 
more distantly related Gram-negative organisms would be very interesting but is 
hard to assess from this list. Construct a BLAST search that excludes Gram-
positive matches. Or, another way to get interesting results might be to require 
matches to specific groups of Gram-negative organisms that you know live in the 
human gut, such as Bacteroides (the most common genus among human gut 
bacteria) or Escherichia. Be careful to exclude from consideration sequences that 
come from cloning vectors in this case—you only want sequences naturally 
found in these bacteria. Describe how you searched, the similarity of your results 
to the query, and whether the percent identity suggests that your results 
represent horizontally transferred genes or genes arising by mutation. 

5. Based on your results thus far, would you say that you have evidence for (a) 
extensive HGT, (b) a mix of HGT and evolution by mutation, (c) evolution mostly 
by mutation with occasional HGT, or (d) a number of unrelated resistance 
genes? Support your answer with evidence. 

Retrieving Sequences 
In the next section, we will carry out a multiple alignment of some ermB genes from 
different species, which requires retrieving their sequences in FASTA format. The NCBI 
implementation of BLAST includes a number of useful tools for working with the 
sequences it finds, including a means of quickly retrieving the ones in which you are 
interested. Checkboxes next to the sequences BLAST aligned allow you to select 
interesting matches; chose some that are from different genera, from human pathogens 
or gut organisms, from Gram-negative organisms, and so on. Then, you should see a 
download link allowing you to retrieve the sequences in FASTA format. You can 
combine the results of several searches simply by downloading each set and then 



cutting and pasting in the resulting text files. Compile a file with several interesting 
sequences that you can go on to align with ClustalW. 

Before leaving BLAST, take a look at the sequences you retrieved. In some cases, 
BLAST will have retrieved an entire plasmid or even genome sequence, even though 
only a short region of this sequence is actually of interest. You can use the accession 
numbers of these sequences to retrieve the GenBank entry and then obtain just the 
coding sequence (seeChapter 1). Or, even though BLAST aligned your query with a 
correctly oriented nontemplate strand of the gene from the database, it might retrieve 
the template strand if that is how the matching sequence was entered into GenBank; 
you can get the reverse complement using Sequence Manipulation Suite (Chapter 2) if 
this is the case. Your text file should ultimately contain correctly oriented coding 
sequences for all the ermB orthologs you intend to align. Finally, the comment lines may 
be long and not terribly helpful. Because the ClustalW implementation we will use does 
not like spaces and will truncate the comments, replace the comment lines with 
something more useful, such as simply the name of the species with no spaces (e.g., 
>Streptococcus_agalactiae). 

Multiple Sequence Alignment with ClustalW 
Although you were able to get some information about the similarity of many sequences 
to your query sequence from your BLAST results, you undoubtedly noticed that BLAST 
still only made pairwise comparisons: It showed alignments between your query and 
one other sequence at a time. When comparing many sequences, it can be much easier 
to analyze the results when all alignments can be visualized at once. Furthermore, 
some questions might be better answered by aligning a group of sequences: for 
example, to ask if there are particular regions of the sequences that are more or less 
conserved. ClustalW is an example of a multiple sequence alignment program designed 
for this purpose; sample output is shown in Figure 4.3A. 

 Download  For this part of the project, you will need a text file containing the 
sequences of at least six to eight sequences similar to ermB in FASTA format. You 
should have all your sequences in a single file, separated by their comment lines; be 
sure you have the coding regions only. If your class did not do the BLAST part of the 
project, your instructor can download a file with some interesting sequences from 
the Exploring Bioinformatics instructor website and make it available to you. 

 Link  A good Web implementation of ClustalW is maintained by the EBI. Once you 
have loaded ClustalW, paste your entire list of sequences into the input box or upload 
your text file. Notice that two sets of parameters can be set: one for the initial pairwise 
alignments used to generate the guide tree and another for the subsequent multiple 
alignment itself. You will notice familiar ideas such as gap opening and extension 
penalties. Run your alignments initially with the default parameters. 

When the results are returned, you will see the alignment in simple text format, with 
asterisks below the alignment wherever a particular nucleotide is found in all 
sequences. You can view the guide tree by clicking the appropriate tab, and 
the Result Summary tab shows the results of the individual pairwise alignments that 



were done. A more sophisticated presentation can be obtained by using Jalview, a 
Java-based viewer: click the Result Summary tab and then click Start Jalview. 
Here, you can see a consensus sequence representing the most conserved nucleotides 
at each position, and you can format and color the alignment in various ways. A 
convenient way to visualize differences among the sequences is by 
selecting Percentage Identity from the Colour menu; this gives a dark 
background for nucleotides conserved in all sequences and lighter colors for 
nucleotides conserved in fewer sequences. 
	  
Web Exploration Questions 

1. In their original survey, Salyers and colleagues used a cutoff of 95% identity for 
sequences considered similar enough to have been shared by HGT. You can get 
a quick measure of identity by using the max ident score in the BLAST 
results—however, you can also get a high max ident for a very small matched 
region, so also consider the query coverage. Looking at these parameters, are 
the matches that BLAST retrieved highly similar to your query or less similar? Do 
your data suggest that all or most of them represent the same gene, transferred 
from organism to organism by HGT? 

2. You may notice in your list that a number of the sequence matches come from 
cloning vectors— engineered DNA molecules used for laboratory manipulations. 
Construct an Entrez query to exclude these from your results and run your 
search again—but be careful not to exclude too much. Remember that unless 
you limit the field, the entire text of each entry will be searched for a match. What 
query did you use? 

3. What evidence can you find among your BLAST results to support or refute the 
hypothesis that resistance genes are being shared between unrelated species—
especially between agricultural species and human pathogens or human gut 
bacteria that might come into contact with pathogens? You will have to do some 
detective work to answer this question: For example, find a bacterial phylogenetic 
tree online to help you decide how closely related the different species in your list 
are, and then try to find out which ones might be found in domestic animals, 
which are residents of the human gut, and which are human pathogens. 

4. There are so many sequences in GenBank today, including many whole genome 
sequences, that BLAST often fills up its list of top matching sequences without 
ever getting down to less related but potentially more interesting matches. In your 
initial BLAST results, for example, it is likely that most if not all sequences come 
from Gram-positive organisms, one major division of the bacteria. HGT to the 
more distantly related Gram-negative organisms would be very interesting but is 
hard to assess from this list. Construct a BLAST search that excludes Gram-
positive matches. Or, another way to get interesting results might be to require 
matches to specific groups of Gram-negative organisms that you know live in the 
human gut, such as Bacteroides (the most common genus among human gut 
bacteria) or Escherichia. Be careful to exclude from consideration sequences that 
come from cloning vectors in this case—you only want sequences naturally 
found in these bacteria. Describe how you searched, the similarity of your results 



to the query, and whether the percent identity suggests that your results 
represent horizontally transferred genes or genes arising by mutation. 

5. Based on your results thus far, would you say that you have evidence for (a) 
extensive HGT, (b) a mix of HGT and evolution by mutation, (c) evolution mostly 
by mutation with occasional HGT, or (d) a number of unrelated resistance 
genes? Support your answer with evidence. 

Retrieving Sequences 
In the next section, we will carry out a multiple alignment of some ermB genes from 
different species, which requires retrieving their sequences in FASTA format. The NCBI 
implementation of BLAST includes a number of useful tools for working with the 
sequences it finds, including a means of quickly retrieving the ones in which you are 
interested. Checkboxes next to the sequences BLAST aligned allow you to select 
interesting matches; chose some that are from different genera, from human pathogens 
or gut organisms, from Gram-negative organisms, and so on. Then, you should see a 
download link allowing you to retrieve the sequences in FASTA format. You can 
combine the results of several searches simply by downloading each set and then 
cutting and pasting in the resulting text files. Compile a file with several interesting 
sequences that you can go on to align with ClustalW. 

Before leaving BLAST, take a look at the sequences you retrieved. In some cases, 
BLAST will have retrieved an entire plasmid or even genome sequence, even though 
only a short region of this sequence is actually of interest. You can use the accession 
numbers of these sequences to retrieve the GenBank entry and then obtain just the 
coding sequence (seeChapter 1). Or, even though BLAST aligned your query with a 
correctly oriented nontemplate strand of the gene from the database, it might retrieve 
the template strand if that is how the matching sequence was entered into GenBank; 
you can get the reverse complement using Sequence Manipulation Suite (Chapter 2) if 
this is the case. Your text file should ultimately contain correctly oriented coding 
sequences for all the ermB orthologs you intend to align. Finally, the comment lines may 
be long and not terribly helpful. Because the ClustalW implementation we will use does 
not like spaces and will truncate the comments, replace the comment lines with 
something more useful, such as simply the name of the species with no spaces (e.g., 
>Streptococcus_agalactiae). 

Multiple Sequence Alignment with ClustalW 
Although you were able to get some information about the similarity of many sequences 
to your query sequence from your BLAST results, you undoubtedly noticed that BLAST 
still only made pairwise comparisons: It showed alignments between your query and 
one other sequence at a time. When comparing many sequences, it can be much easier 
to analyze the results when all alignments can be visualized at once. Furthermore, 
some questions might be better answered by aligning a group of sequences: for 
example, to ask if there are particular regions of the sequences that are more or less 
conserved. ClustalW is an example of a multiple sequence alignment program designed 
for this purpose; sample output is shown in Figure 4.3A. 



 Download  For this part of the project, you will need a text file containing the 
sequences of at least six to eight sequences similar to ermB in FASTA format. You 
should have all your sequences in a single file, separated by their comment lines; be 
sure you have the coding regions only. If your class did not do the BLAST part of the 
project, your instructor can download a file with some interesting sequences from 
the Exploring Bioinformatics instructor website and make it available to you. 

 Link  A good Web implementation of ClustalW is maintained by the EBI. Once you 
have loaded ClustalW, paste your entire list of sequences into the input box or upload 
your text file. Notice that two sets of parameters can be set: one for the initial pairwise 
alignments used to generate the guide tree and another for the subsequent multiple 
alignment itself. You will notice familiar ideas such as gap opening and extension 
penalties. Run your alignments initially with the default parameters. 

When the results are returned, you will see the alignment in simple text format, with 
asterisks below the alignment wherever a particular nucleotide is found in all 
sequences. You can view the guide tree by clicking the appropriate tab, and 
the Result Summary tab shows the results of the individual pairwise alignments that 
were done. A more sophisticated presentation can be obtained by using Jalview, a 
Java-based viewer: click the Result Summary tab and then click Start Jalview. 
Here, you can see a consensus sequence representing the most conserved nucleotides 
at each position, and you can format and color the alignment in various ways. A 
convenient way to visualize differences among the sequences is by 
selecting Percentage Identity from the Colour menu; this gives a dark 
background for nucleotides conserved in all sequences and lighter colors for 
nucleotides conserved in fewer sequences. 
	  

Web Exploration Questions 
6. Which ermB-like genes are the most similar? Which are less similar? Are there 

particular regions of the gene that are highly conserved or less conserved? 
7. What kinds of differences can you see among these genes? Do substitutions 

outnumber indels or vice versa? What do you notice about the indels that occur 
in the alignment? 

8. Try running ClustalW again with a very low gap penalty. Do the alignments 
change significantly? Which alignment is more biologically relevant, and what is 
your evidence for this view? 

9. Based on the criterion of closely related genes from unrelated organisms, do 
your results support the HGT hypothesis? 

How would you summarize your findings and conclusions regarding the likelihood that 
agricultural use of antibiotics can result in resistant human gut residents and/or resistant 
human pathogens? Your instructor may ask you to write up your findings in the form of 
a short report. 

 
BioBackground: Antibiotic Resistance and Gene Transfer 



Bacteria can have natural (intrinsic) resistance to some antibiotics because of their 
cell structure. For example, Gram-negative bacteria (such as the common intestinal 
organismEscherichia coli) are resistant to penicillin simply because the cell wall that 
penicillin attacks is protected by an outer membrane that other bacteria lack. But the 
resistance that is really important medically is acquired resistance: when bacteria that 
were previously sensitive to (killed by) an antibiotic become resistant to it, making that 
antibiotic useless for treatment. Acquired resistance requires genetic change: Either a 
new gene or new variant of a gene arises by mutation or a cell acquires a preexisting 
gene by horizontal transfer. 

Many people have the idea that using an antibiotic "makes" bacteria resistant. This is 
not true, however: Antibiotics do not cause resistance to occur (nor is it true that 
antibiotic use makes the person resistant to the antibiotic). However, antibiotic use 
can select for bacteria that have already become resistant, allowing them to become 
more prevalent in a population. As shown in Figure 4.7, if some bacteria in a population 
are more resistant to an antibiotic than others (due to mutation or to genes they have 
acquired), they will not be killed as easily when they encounter it. Thus, the antibiotic 
kills the most sensitive cells first and leaves the more resistant ones to pass their genes 
on. This can happen in your own body if you do not finish your antibiotic prescription: 
The most resistant cells remain alive and can then multiply and cause a relapse. The 
more we expose bacteria to antibiotics—whether in the body, in animals, or in the 
environment—the more we select for resistant organisms and thus the more prevalent 
the resistant bacteria become. 



 
Figure 4.7: How exposure to antibiotics selects for the survival of resistant cells in a 
population of bacteria. 

If a mutation gives a bacterial cell some advantage—and antibiotic resistance is just one 
of many possible examples—that cell's descendants inherit the altered gene. This is 
sometimes called vertical gene transfer (Figure 4.8, left panel) and could lead to 
increased resistance by selection if the population is challenged by an antibiotic. 
However, mutations are relatively rare, and resistance would develop slowly if bacteria 
had to rely on inheriting a rare mutation from their parents. A major reason for the rapid 
spread of resistance is that bacteria can also acquire genes by HGT. This refers to 
genetic material being transferred from one cell to another that is not its descendant 
(Figure 4.8, right panel). For example, many antibiotic resistance genes are carried on 
plasmids: small, circular, independent DNA molecules. A cell with a resistance plasmid 
can often transfer that plasmid to nonresistant cells around it, so that the resistance 
gene is passed not only to a cell's descendants but to its peers and to their 
descendants. Depending on the circumstances, this transfer could occur by cell-to-cell 
contact (conugation), by means of a bacterial virus (transduction), or by direct uptake of 
DNA released into the environment (transformation). Antibiotic resistance genes are 
also often found within transposons, semi-independent DNA sequences that can move 
within a genome, further promoting their mobility. 



 
Figure 4.8: Vertical gene transfer occurs when a cell passes a resistance mutation to its 
offspring (left); horizontal transfer from cell to cell (right) allows much faster spread of 
resistance. 

As discussed in the preceding chapter, when the sequences of two genes are similar, 
we conclude that they have a common origin; furthermore, we assume that highly 
similar genes diverged from that common origin only recently and have not had much 
time to evolve independently. Two very similar sequences found in dissimilar 
organisms—those that do not have a recent common ancestor—suggest that HGT has 
occurred: The gene evolved in one species but was then transferred intact to another 
relatively recently, so there has been limited opportunity for mutation. 
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Chapter 7: Tree-Building in Molecular 
Phylogenetics: Three Domains of Life 
Chapter Overview 

Measuring evolutionary distance from a sequence alignment is only half the problem in 
phylogenetics. Given a complex dataset, a set of pairwise distance measurements can 
likely be compiled into any number of distinct trees. This chapter deals with the key 
problem of tree-building: how to use computational methods to obtain biologically 
relevant groupings of species in a phylogenetic tree. The value of a phylogenetic tree is 
in what we learn about evolution by observing groups (clades) with a common ancestor; 
we generate these groups computationally by means of what computer scientists refer 
to as clustering algorithms and/or by methods that search through possible trees to 
identify an optimal solution. The projects in this chapter will help students in both 
programming and nonprogramming courses understand how distance metrics we have 
already discussed are used by clustering algorithms to group related organisms. 
Through the use of Web-based tools, students will develop phylogenetic trees using 
both distance-based and character-based methods. Students in programming courses 
will develop their own solutions that implement two important distance-based 
algorithms. 

Biological problem: Origins of genes in the bacteria, eukaryotes, and archaea 

Bioinformatics skills: Agglomerative clustering, single linkage, UPGMA, neighbor 
joining, probabilistic methods in phylogenetics 

Bioinformatics software: MUSCLE, Gblocks, BioNJ, PhyML, MrBayes (all at 
Phylogeny.fr), UPGMA 

Programming skills: Hash table and nested hash table data structures 
Understanding the Problem: Rooting the Tree 
In 1977, Carl Woese initiated a revolution in how biologists think about the living world. 
As phylogenetic thinking came to dominate systematics and taxonomy, evolutionary 
relationships among living organisms became the paramount criterion for classification. 
By the late 1960s, the "five-kingdom" system came into popular use (and sadly is still 
taught in many high-school curricula today): Linnaeus' plant and animal kingdoms, 
which obviously contained unrelated organisms, were divided into five kingdoms: plants, 
animals, fungi, protists, and bacteria. However, biologists also recognized the 
fundamental distinction in cell structure between the prokaryotes (bacteria) and 
eukaryotes (everything else). The waters were further muddied by the recognition that 
some prokaryotes living in extreme environments had rather different structures. With 
the advent of DNA sequencing and molecular phylogeny based on the universal 16S 
rRNA genes, Woese was able to recognize that these prokaryotes were as 
evolutionarily distant from the bacteria as the bacteria are from the eukaryotes. He 



proposed a higher level of classification, and we now recognize three domains of 
living things (Figure 7.1 

 
Figure 7.1: Phylogenetic tree for representatives of the three domains of life based on 
analysis of 16S rRNA sequences. 

The impetus for Woese's phylogenetic look at the prokaryotic world came from the 
growing recognition that certain prokaryotes found in hot springs, acidic pools, salt 
marshes, and other harsh environments were structurally very different from the more 
familiar bacteria that inhabit more temperate realms as well as our own bodies. They 
have cell walls like other prokaryotes but lack peptidoglycan, the carbohydrate 
universally present in all previously known bacteria. Their DNA is wrapped around 
histone proteins like the DNA of eukaryotic cells. Furthermore, they have some unique 
features of their own, like double-ended lipids that span their membranes. Many 
microbiologists believed these prokaryotes could represent the modern remnants of the 
ancestors of all living things; they were therefore termed "arachaebacteria" and later 
renamed the archaea to emphasize that they are unlike the bacteria. Once they were 
established as a distinct group, researchers soon began finding archaea everywhere, 
even in the human gut, and recognized their importance in the environment and in the 
evolution of life on earth. 

However, do the archaea really tell us what the original living cells were like? Some 
researchers still believe archaea represent the oldest evolutionary line, but that 
conclusion is far from clear. It is certain that the archaea have been around at least as 
long as the oldest bacteria, that their ability to survive in extreme environments 
suggests adaptations that would have been essential in the harsh conditions of the early 
earth, and that their genes clearly distinguish them from both bacteria and eukaryotes. 
Much remains to be learned about these organisms, and the application of bioinformatic 
methods to uncover their origins has led to some surprising results. We examine the 
relationships of the archaea to the other domains in this chapter's projects. 

 

Bioinformatics Solutions: Tree-Building 



Looking at the relationships of the three domains of life using bioinformatic methods will 
require us to align orthologous genes and produce phylogenetic trees based on that 
information. In Chapter 6, we introduced the idea of a molecular clock and the value of 
molecular and bioinformatic methods in investigating evolutionary relationships. We 
considered how sequence diversity can be related to evolutionary distance and how 
various distance metrics can be applied to sequence alignments to model the 
evolutionary pathways that led to the observed substitutions. Ideally, any gene shared 
by two groups could be used to determine the evolutionary distance between them, but 
in practice different sequences have different functional constraints, and we sometimes 
find evidence of unexpected behavior over evolutionary time. 

If you completed the Web Exploration exercises in Chapter 6, you even used these 
distance measures to draw a phylogenetic tree to show relatedness among mammals. 
Tree-building, however, is more complicated than using distance measures to draw a 
phylogenetic tree to show relatedness among mammals—or the rapid production of an 
attractive tree by the suite of programs at Phylogeny.fr—might lead you to believe. 
Given only four species, we can draw three different unrooted trees to show the 
relationships among them (Figure 7.2A). Distance data might help us choose one of 
these three, but in each case we can draw five rooted trees (Figure 7.2B), each 
maintaining the species relationships found in the unrooted tree but showing a unique 
evolutionary pathway. This means there are 15 different possible trees altogether for the 
four species. For 10 species, there are more than 2 million possible trees, and by the 
time we get to 50 species, there are a stunning 1074 possible trees. Thus, what 
phylogeneticists call "tree space" is intractably complex unless the dataset is extremely 
small; exhaustively drawing each possible tree and comparing it with the data is 
impossibly computationally intensive. Given that our goal is to construct a tree that 
represents biological reality by reconstructing to the extent possible the actual pathway 
of evolution, algorithms that are both computationally efficient and able to select an 
appropriate tree according to meaningful criteria are essential. 

 
Figure 7.2: Possible phylogenetic trees for four species. (A) Three possible unrooted 
trees, showing relationships between species but not evolutionary pathways. (B) For the 



top unrooted tree, five possible rooted trees that preserve branch lengths and show 
evolutionary pathways. 

 Link  All tree-building methods depend on a multiple sequence alignment of the genes 
being considered. This is in itself a computationally difficult problem; Chapter 
4 discussed heuristic methods by which ClustalW arrives at an alignment efficiently. It is 
then common for experienced researchers to examine the alignment by eye and make 
small adjustments, particularly to the positions of gaps. For example, the multiple 
alignment output might include a three-nucleotide gap in all the sequences, but that gap 
might be shifted left or right by a base or two in some sequences relative to others, 
when aligning the gaps would yield a better alignment overall. A multiple alignment 
editor such as Jalview (included in Phylogeny.fr's implementation of MUSCLE and the 
EBI implementation of ClustalW) or the desktop program BioEdit can be used for 
making these adjustments. Gapped positions can then be removed from the alignment 
using a program such as Gblocks (see Chapter 6). The result is a multiple alignment 
where every mismatched nucleotide or amino acid should represent (at least if our 
alignment algorithm is sufficiently good) the result of a substitution over evolutionary 
time. 

There are two general ways in which bioinformatic programs can then attempt to select 
an optimal tree from the sequence data. Distance-based methods, as their name 
implies, apply a distance metric to the sequences and then use some form 
of clustering algorithm to decide how species should be grouped based on those 
distances. The UPGMA and neighbor-joining (NJ) algorithms are commonly used in 
distance-based methods; we explore those methods in detail in this chapter. Character-
based methods are more probabilistic: They apply some model of evolution and then 
attempt to find the highest probability tree given that model and a particular dataset 
(alignment). For example, some models use parsimony: they apply the principle of 
Occam's razor ("the simplest explanation is the best one") and propose the evolutionary 
pathway that requires the fewest independent mutation events to generate the observed 
substitutions as the best one. Algorithms using Bayesian statistics to find an optimal 
tree are currently widely used in character-based methods. We do not specifically 
discuss character-based algorithms in this chapter (a comprehensive introduction to 
tree-building methods is beyond the scope of this text) but do use these methods in the 
Web Exploration. 
BioConcept Questions 

1. If all five rooted trees in Figure 7.2B are equivalent to the unrooted tree inFigure 
7.2A, why is it so important to develop an algorithm for choosing among them? 
Describe in evolutionary terms in what important ways these trees are different. 

2. Various distance metrics attempt to model what happens biologically as DNA 
mutates over evolutionary time. Yet, many researchers choose to use character-
based tree-building methods that essentially ignore any calculation of distance. 
What limitations do you see in distance metrics that might keep us from 
accepting distance-based methods as the single best approach? 

3. The distance metrics used in Chapter 6 apply specifically to nucleotide 
sequences. In this chapter's exercises, we use amino-acid sequence alignments 



as the basis for tree-building, and you may notice that we do not explicitly 
discuss distance metrics. In what way is a distance metric implicit in the 
alignment of protein sequences? 

4. Suppose you are studying a group of organisms that are genuinely descended 
from a common ancestor and have many orthologous genes. Given a relatively 
constant rate of mutation and a relatively even distribution of mutations across 
the genome, we would expect that any of the orthologous genes could be used to 
construct a phylogenetic tree and that whatever gene we picked would give 
essentially the same results. It turns out, however, that not all genes are equal in 
terms of phylogenetic analysis. What factors can you think of that might account 
for differences between genes? 

Understanding the Algorithm: Clustering Algorithms 
Learning Tools 

 
Understanding clustering algorithms is one key idea in this chapter. To help with this, 
theExploring Bioinformatics website has a link to a visual, interactive clustering 
simulation. 

 

The goal of a phylogenetic tree is to reveal the evolutionary relationships among 
organisms, allowing us to classify (group) them according to genuine relatedness rather 
than superficial similarity. Thus, building a phylogenetic tree from a sequence alignment 
is in essence just grouping sequences according to their similarity as a means of 
inferring the evolutionary groupings of species. Whenever objects need to be grouped, 
computer scientists use clustering algorithms, which simply determine which objects are 
most similar and should be included in a group and which are less similar and should be 
excluded. Hierarchical clustering (Figure 7.3) is appropriate for a phylogenetic tree, 
because it places the most similar objects in groups and then relates those groups into 
larger clusters and then still larger ones—very much like the idea of common ancestors 
giving rise to broad groups of species that can then be subdivided into smaller groups 
with their own common ancestors. Specifically, we use a form of hierarchical clustering 
called agglomerative clustering that begins with individual objects (sequences 
representing species, in our case) and then merges the clusters until a single large 
group is formed. 

 
Figure 7.3: Example of hierarchical clustering. This is also agglomerative clustering if 
we start by grouping similar individual objects rather than by dividing the whole 
collection. 



You know something about how to find the distances between individual sequences; 
clustering also requires a linkage method, which determines how the distance metric is 
applied when two groups are compared. After computing distances there is a merge 
step, in which those groups shown to be most closely related are brought together. The 
outcome of clustering is the information needed to draw the phylogenetic tree. 

Let's use a small dataset as an example: Suppose we want to construct a tree for six 
species (A–F) that all diverged from a common ancestor. The most closely related 
species diverged from each other most recently and thus share a more recent common 
ancestor. After choosing an orthologous gene, aligning sequences, and applying a 
distance metric (remember that clustering is a distance-based method), we can 
construct the matrix shown inFigure 7.4A to show the distances between each pair of 
sequences. An agglomerative clustering algorithm works by sequentially merging the 
most closely related elements intoclusters (or groups) until only one cluster remains. It 
starts with each individual element in its own cluster, and at each iteration the two 
closest clusters are determined and merged; for nelements, n - 1 iterations are required 
to complete the clustering. The key question we have not dealt with before is how to 
measure the distance between two clusters or between an individual element and a 
cluster. This is the linkage method, and we can choose from several linkage methods, 
depending on our assumptions about the data (Figure 7.5). Single linkagecalculates 
the distances between each item in one cluster and each item in the other and chooses 
the smallest distance; it is suitable for elements that are not very tightly 
grouped.Complete linkage is the opposite: The largest individual distance value is 
chosen, which works best when the items are tightly grouped. Centroid linkage uses 
the distance between the centers of the clusters. The steps that follow show how the 
agglomerative clustering algorithm would produce a tree from the distances given 
in Figure 7.4, using the single linkage method. 

 
A.  Open table as spreadsheet 

  A B C D E F 
A 0           
B 1 0         
C 3 2 0       
D 7 6 4 0     
E 17 16 14 10 0   
F 19 18 16 12 2 0 

B.  Open table as spreadsheet 

  AB C D E F 
AB 0         
C 2 0       
D 6 4 0     



  AB C D E F 
E 16 14 10 0   
F 18 16 12 2 0 

C.  Open table as spreadsheet 

  ABC D E F 
ABC 0       
D 4 0     
E 14 10 0   
F 16 12 2   

D.  Open table as spreadsheet 

  ABC D EF 
ABC 0     
D 4 0   
EF 14 10 0 

E.  Open table as spreadsheet 

  ABCD EF 
ABCD 0   
EF 10 0 

 
 
Figure 7.4: Agglomerative clustering for six hypothetical species. (A) Distances 
between pairs of aligned sequences. (B–E) Successive iterations of the agglomerative 
clustering algorithm, merging the two closest clusters each time. Distances resulting 
from application of the single linkage method are shown in color. 

 
Figure 7.5: Three different linkage methods that could be used to compute the distance 
between two clusters. 
Algorithm 

 
Agglomerative Clustering Algorithm 

1. Determine distances between sequences by alignment and a distance metric; 
for n sequences, create an n by n matrix of distance scores (Figure 7.4A). 



Each row and column of the matrix is a cluster, and each cluster currently 
contains just one element. 

2. Ignoring the diagonal, find the cell that contains the smallest distance 
(representing the closest elements, in this case A and B) and group those 
elements to form one cluster. There are now n – 1 clusters. This is the merge 
step. 

3. Redraw the distance matrix with the merged cluster (Figure 7.4B). Use the 
linkage method to determine the distance between the cluster and the other 
sequences. The distance from A to C is 3, and the distance from B to C is 2, so 
using the single linkage method, we choose the smallest and say that the 
distance from the cluster (AB) to C is 2. This calculation is repeated for the 
distance from (AB) to D, E and F. The distances resulting from the linkage 
calculation are shown in color in the figure. 

4. Repeat steps 2 and 3 until only one cluster remains. In Figure 7.4B, we can 
see that both (AB) to C and E to F have a distance of 2, so we have to 
arbitrarily choose one to merge. If we choose to merge (AB) with C and again 
recalculate distance with the single linkage method, we get the matrix shown 
in Figure 7.4C. The next merge gives the matrix in Figure 7.4D and then the 
one inFigure 7.4E. The last step is to merge the two remaining clusters. 

 

Now, how does this process relate to a phylogenetic tree? We can see the relationship 
better if we represent the clustering process in a computer-friendly conventional format 
known asNewick format. We first merged A and B, so we represent them with (A,B);. 
This cluster then merged with C and then eventually with D, which can be represented 
by(((A,B),C),D);. E and F merged with each other but not with any of the rest, so 
the final outcome is ((((A,B),C),D),(E,F));. This very condensed representation 
of the data can be used to draw the cladogram in Figure 7.6. Each cluster has a 
common ancestor: A and B have the common ancestor shown by the internal node at y; 
x represents the common ancestor of A, B, and C; and so on. Notice that E and F have 
a common ancestor, z, but share no common ancestry with any of the other species 
except at the root of the tree, v. 



 
Figure 7.6: A phylogenetic tree showing the results of agglomerative clustering for six 
hypothetical species. 

The agglomerative clustering algorithm is used in many distance-based methods for 
calculating phylogenetic groupings. One of the first widely used tree-building methods 
applied agglomerative clustering with a linkage method 
called UPGMA (Unweighted Pair-GroupMethod with Arithmetic Mean), which calculates 
the distance between two clusters by averaging the distances (arithmetic mean) 
between each species in the cluster and every species in the other cluster. (UPGMA is 
in practice much like the centroid linkage illustrated inFigure 7.5 as far as clustering of 
sequences is concerned.) This method assumes a constant rate of evolution, so each 
species in a cluster contributes equally to the new cluster value (unweighted). In the 
previous example, UPGMA would have given the distance from cluster (AB) to C as the 
average of the distances A–C (3) and B–C (2), or 2.5. More generally, if xand y are 
clusters containing n and m elements, respectively, and if xi represents the ith element 



in cluster x and yj represents the jth element in cluster y, the distance between the 

clusters is  

In the Web Exploration and the Guided Programming Project, we look at the use of 
agglomerative clustering with UPGMA to build a distance-based tree. The same basic 
algorithm is also the basis for the NJ method discussed in the Web Exploration and the 
On Your Own Project. In the Web Exploration, we also look at some character-based 
methods that employ probabilistic models to find optimal trees. 
 
Test Your Understanding 

1. Given aligned sequences for four species with distances W-X = 1.8, W-Y = 0.8, 
W-Z = 2.4, X-Y = 1.8, X-Z = 2.4 and Y-Z = 2.4, cluster the sequences using 
single linkage and show the result in Newick format. 

2. Apply the clustering algorithm to the distance data that you calculated for whales 
and their relatives in Chapter 6 (Chapter 6 Web Exploration exercise 6, 7, or 8). 
Do you get the same groupings as in the tree you drew from those data (Chapter 
6 Web Exploration exercise 9)? 

3. Try the UPGMA linkage method instead of the single linkage method for our 
sample dataset presented previously in Understanding the Algorithm. Do you get 
the same groupings? The same distances? 

4. In the sample dataset used in Understanding the Algorithm, at the second merge 
we had a choice of either merging cluster (AB) with C (which we chose to do) or 
merging clusters E and F (which we ignored); both choices had a distance value 
of 2. Use the clustering algorithm to determine how the tree would have come out 
if we had chosen E and F instead. Would it have been different? Would this 
always be the case? In other words, does the arbitrary choice of one grouping 
when there are two possibilities have the potential to affect our view of the 
evolutionary relationships? 

5. The tree in Figure 7.6 is drawn as a cladogram, not a phylogram: that is, the 
branch lengths are not strictly proportional, although the evolutionary pathways 
are shown correctly. Try putting branch lengths onto the tree, using the data 
in Figure 7.4A. What problem do you encounter? How would you explain this 
difficulty, biologically? (Hint: what assumption are we implicitly making when we 
calculate distances between clusters?) In the On Your Own Project, you will see 
how the NJ algorithm deals with this important complication by changing the way 
the distances between clusters are calculated. 

 

 



Chapter Project: Placing the Archaea in the Tree of Life 

Learning Objectives 

§ Understand how groups of organisms are clustered to develop a phylogenetic 
tree 

§ Recognize the difficulty of choosing a "best" phylogenetic tree and various 
approaches to that problem, including distance- and character-based methods 

§ Gain experience using Web-based software to develop trees using different 
algorithms 

§ Understand how molecular phylogenetics can help unravel relationships among 
the three domains of living things 

§ Identify some potential pitfalls of molecular phylogeny 

Suggestions for Using the Project 

This project is designed to be used either in courses that require programming skills or 
in nonprogramming courses. Following are suggestions for modules of the project that 
instructors might choose to use in these two types of courses. Instructors should also 
feel free to ask questions of their own that use these same skills. 

Programming courses: 
§ Web Exploration: Gain experience with Web-based tools to build phylogenetic 

trees from sequence data, compare various tree-building methods, and develop 
a set of sequences for use with the programming projects. 

§ Guided Programming Project: Implement a clustering algorithm and extend the 
solution to give a workable program to determine phylogenetic relationships 
using the UPGMA method. 

§ On Your Own Project: Implement the NJ method to deal with unequal rates of 
evolution, and compare the results with the UPGMA method. 

Nonprogramming courses: 
§ Web Exploration: Gain experience with Web-based tools to build phylogenetic 

trees from sequence data, and compare various tree-building methods. 
§ On Your Own Project: Identify modifications to the clustering algorithm that would 

allow for unequal rates of evolution; compare trees built by UPGMA and by NJ. 

Web Exploration: Molecular Clocks and the Archaea 

As described previously, due to molecular phylogenetics we realized that the diverse 
species of archaea in fact represented a coherent clade and that the archaea as a 
group are as different from the bacteria as they are from the eukaryotes. Many 
questions remain unanswered, however, including what the archaea might tell us about 
the origins of life on earth. Their adaptation to extreme environments (like the harsh 
conditions of 4 billion years ago) and the finding that their structures are similar in some 
ways to bacteria but in others to modern eukaryotes has suggested to some 
researchers that the archaea might be the closest living relatives of the first living things. 



However, interpretation of the molecular data is not always straightforward. In this 
project, we develop a phylogenetic tree using representatives of the three domains, 
examine the effect of different tree-building methods, and then look at what happens 
when different "clock" genes are used. The Phylogeny.fr site will be our primary tool for 
this exercise, because it provides a convenient and consistent framework for using 
several different phylogenetic tools. 

Developing the Dataset 
 Download  We need a sequence alignment to serve as the basis for our phylogenetic 
tree, and that means we need a molecular clock—in this case, a gene conserved across 
all three domains. It might surprise you to learn that humans and bacteria have 
recognizably similar proteins, but indeed they do. A good example is an accessory 
factor involved in the translation process that helps bring amino acid–carrying tRNA into 
the ribosome. This protein is called EF-1α in eukaryotes and EF-Tu in prokaryotes but 
is structurally and functionally similar in both: a good example of a protein conserved all 
the way from bacteria to humans and thus a suitable molecular clock for comparing 
species across all three domains of life. Because we are looking at such long time 
spans and because DNA sequences change faster than protein sequences, we use the 
EF-1α/EF-Tu protein rather than the DNA sequence of its gene. 

 Link  Start with a file of representative sequences. For the eukaryotes, let's use human 
and yeast (Saccharomyces cerevisiae) EF-1α. Search the 
NCBI Protein and/or Gene databases for these proteins or download them from 
the Exploring Bioinformatics website. Save the sequences in FASTA format in a single 
text file, separated by the comment lines for each sequences (no blank lines). Change 
the comment line to something readable, like "Human_EF-1a," but remember it must be 
a single line and some programs do not like spaces. For bacteria, two rather different 
well-studied species would be Escherichia coli strain K-12 and Bacillus subtilis. 
Remember the protein is EF-Tu in prokaryotes. For the archaea,Methanosarcina 
acetivorans and Haloarcula marismortui represent two distinct groups. 

A Distance-Based Tree Using UPGMA 
Let's start by building a tree using UPGMA as an example of a straightforward distance-
based linkage method. UPGMA is still commonly used by multiple sequence alignment 
programs but has become less common in tree-building programs. This method is not 
an option in the Phylogeny.fr suite of phylogenetic software, but we can use 
Phylogeny.fr to align sequences, calculate UPGMA distances with EMBOSS, and then 
return to Phylogeny.fr to benefit from the flexible tree rendering of TreeDyn. 

 Link Navigate to Phylogeny.fr, but this time choose A la Carte under Phylogeny 
Analysis. This option will give you more control over the steps of the analysis. Choose 
the programs you will use: MUSCLE for alignment, Gblocks for curation, 
ProtDist/FastDist + BioNJ (a distance-based method) for tree construction, and TreeDyn 
for tree visualization. Choose to run the workflow step by step and click Create 
workflow. You should now see an input box for your sequences; paste them there (or 



upload your file) and click Submit to run MUSCLE and produce a multiple sequence 
alignment. 

The final tree will be based on the multiple alignment, so it is valuable to verify its quality 
at this stage. As you scroll through the sequence, can you find any specific evidence to 
suggest the sequences are aligned appropriately? For example, what does the 
alignment suggest about the similarity of the two representatives of each domain to 
each other versus their similarity to the other domains? After examining the alignment, 
click Next step to go on to curation. At this point, you can choose whether to hand-
adjust the alignment; to do so, clickEdit stage input data to see the multiple 
sequence alignment in an editable form. Press F2 to get a black editing cursor, and then 
press delete to remove a gap or space to add a gap where you believe you can 
improve on the alignment. Most likely these spots will be in areas where gaps have 
been added, especially if they have not been added in the same place across all the 
sequences. 

When you have finished, click Submit to allow Gblocks to curate the sequences and 
then proceed to the phylogeny step. Notice the distance metrics (substitution matrices) 
available to you; some should sound familiar. Continue to the phylogeny results page. 
Below the tree (which we ignore for now), you should see several output options, one of 
which is a distance matrix in Phylip format. Click this link to see the distances between 
all possible pairs of sequences: We can use this to create a tree by the UPGMA method 
in an external program. Save this matrix to a text file. Keep your Phylogeny.fr window 
open; carry out the next step in a new browser window or tab. 

 Link  An agglomerative clustering program to build trees using UPGMA can be found 
atemboss.bioinformatics.nl. Find fneighbor in the list at the left, 
under Phylogenydistance matrix. This program accepts a distance matrix in 
Phylip format as input; upload your distance matrix file. Change the tree to UPGMA; the 
other parameters can be left at their defaults. Run the program. On the output page, you 
should see the data for a tree in Newick format (notice that specific branch lengths can 
be incorporated within this format, as well). The TreeDyn program at Phylogeny.fr can 
use this as input, giving us a nicer, more configurable tree. Copy the Newick formatted 
data to the clipboard. 

Back at Phylogeny.fr, click Next step to get to the Tree Rendering tab. Click Edit 
stage input data to feed TreeDyn the UPGMA tree data. Paste the UPGMA tree data 
into the input box and run the program to see your tree. As you examine the tree, 
consider it both qualitatively and quantitatively. Qualitatively, the hypothesized pathway 
of evolution is shown by the patterns of branching and grouping. You would expect the 
two members of each domain to cluster together (share a more recent common 
ancestor); do they? Which group branches off first? What does this tell you about the 
hypothesized relationship of the domains? Quantitatively, examine the branch lengths. 
Remember that this is a phylogram, so branch lengths are meaningful. What do they tell 
you about the evolutionary time between the branch points? Which branchings are more 
ancient and which more recent? What do the branch lengths tell you about the 
assumptions of the program? Notice that this tree has a root, but where the 



tree should be rooted is unclear—we do not really know what "the" ancestral organism 
was like, and we do not have an agreed-upon outgroup. Therefore, you may get a more 
realistic tree if it is unrooted; click one of the radio buttons labeled Radial to look at it 
this way. What would you conclude about these groups of organisms, based on this 
(admittedly very limited) analysis? Save or print the tree for later comparison. 

Neighbor-Joining Algorithm 
The On Your Own project discusses in some detail a variation of agglomerative 
clustering called the neighbor-joining (NJ) algorithm. NJ is still a distance-based 
method, but it models evolution differently. A strength of Phylogeny.fr is that it is easy to 
rerun a phylogenetic scenario with a different algorithm. Click the Phylogeny tab and 
choose eitherBioNJ or Neighbor (two implementations of the NJ algorithm). The same 
curated multiplealignment and even the same distance calculations will be used, but the 
NJ algorithm will be applied to build the tree. Again, examine the resulting tree both 
qualitatively and quantitatively and look for differences as compared with the UPGMA 
tree. Can you see the important difference in the program's assumptions? 

Character-Based Algorithms 
Character-based algorithms consider individual characters—nucleotides or amino 
acids—in building a tree. For example, if at a particular position in the alignment four of 
six sequences have A, it is probable that A represents the ancestral state, or the 
hypothesized sequence of the common ancestor of all the modern sequences. The 
default tree-building algorithm at Phylogeny.fr is PhyML, a character-based algorithm 
that uses maximum likelihood. Maximum likelihood applies some model of evolution 
(which might take into account transitions and transversions or other known biases in 
the data) and then identifies trees with the highest likelihood given the model. For 
example, in a coin flip, if your model is that the coin is normal, 50% heads would be a 
high-likelihood result and 100% heads would be an extremely low-likelihood result; if the 
model is a two-headed coin, the reverse would be true. 

The likelihood model can be further extended to use Bayesian statistics. Bayes' 
theorem involves an initial prior probability leading to the computation (based on an 
evolutionary model) of a posterior distribution of trees with high likelihood given the 
dataset. There is often minimal a priori information, so the prior distribution may be 
merely the distribution of all trees; the algorithm can then iterate repetitively using the 
outcome of one computation as the prior distribution for the next. (See References and 
Supplemental Reading if you are interested in knowing more about these statistical 
methods.) 

Using the same curated alignment as before, use the PhyML method to draw a tree at 
Phylogeny.fr. Again compare your tree qualitatively and quantitatively to the other trees 
you have drawn. Then, try MrBayes, an algorithm based on Bayesian statistics. Here, 
you need to set some limits or the computation can take a very long time. Limit the 
number of generations (iterations) to 1,000 and sampling to every 100 generations. 
Even with those limits, expect this analysis to take some time; you may wish to submit 
the job and request an email when it is done. 
Web Exploration Questions 



1. In what important way is a tree computed using the UPGMA algorithm different 
from a tree computed by the NJ algorithm? Which do you believe better models 
evolution, and why? 

2. Summarize concisely what you learned about the relationships among the three 
domains from your trees. Were the trees you developed by different methods 
consistent in terms of branching orders and evolutionary pathways? How 
consistent were they in terms of branch length? 

3. It would make sense that if one highly conserved protein works as a "molecular 
clock," then any other similarly conserved protein would give the same results. 
To test that assumption, generate a phylogeny with a different highly conserved 
protein, the heat-shock protein Hsp70 (also known as DnaK in bacteria). 
Download the amino-acid sequence of the Hsp70 protein for the same six 
organisms (NP_002145, AET14830, DNAK_ECOLI, DNAK_BACSU, 
YP_306886, DNAK_HALMA), align the sequences, examine and curate the 
alignment, and produce trees using NJ and maximum likelihood methods. 
Summarize the results of this analysis and discuss anomalies between the two 
molecular clocks. What did you learn about the reliability of evolutionary 
hypotheses based on molecular data from this exercise? 

More to Explore: Generating Datasets 
 

Thus far, you have looked at molecular phylogeny using small datasets built by looking 
up individual genes. Larger datasets increase reliability: In a small dataset, one or two 
sequences that contain sequencing errors or are for some reason far from typical, 
misidentified, or incomplete could readily lead to spurious conclusions. However, text 
searching is not the easiest way to assemble a larger dataset. Instead, BLAST could be 
used to search by similarity for sequences similar to one known sequence of interest 
that can then be used to build the dataset for phylogenetic analysis. Additional tools 
have been developed specifically to accomplish this kind of task, including BLAST 
Explorer, which is included in the Phylogeny.fr workspace. BLAST Explorer makes it 
easy to identify proteins similar to a query sequence and choose from among them the 
sequences to include in a phylogenetic analysis; this method allows the use of 
sequences that may not have been annotated as orthologs of your query. You could 
explore further (or an instructor could assign further exploration) by using BLAST 
Explorer to collect additional EF-1a or Hsp70 sequences. 

 

Guided Programming Project: Phylogenetic Trees Using Agglomerative 
Clustering 

The programming projects in this chapter implement distance-based algorithms. In the 
Guided Programming Project, you will develop a program to perform agglomerative 
clustering using the single linkage method. The skills exercises will ask you to expand 
your program by producing the final tree in Newick format, allowing a user to choose 
between single and UPGMA linkage, printing branch lengths, and allowing the program 
to handle sequence input data. The On Your Own project will lead you to modify the 
solution further by implementing the NJ method. 



As you saw in Understanding the Algorithm, hierarchical clustering is a matter of 
determining distances between clusters using a linkage method, merging the two 
closest clusters, and iterating until all clusters have been merged. Initially, each 
sequence (species) is an individual cluster, with the distances between clusters 
calculated by alignment and the application of some distance metric. For this project, we 
assume that the input for our program is a set of calculated distances between 
sequences. You will read these data in from a Phylip-formatted input file. The 
discussion and pseudocode that follow use single linkage, paralleling the example given 
earlier, but this is easily modified to use UPGMA (see Putting Your Skills Into Practice). 

Let's take a moment to consider the data structures we might need. In Understanding 
the Algorithm, a distance matrix was used to represent cluster distances. We could use 
a two-dimensional array to hold this matrix, but it might be more efficient to use a nested 
hash structure. What happens, however, when we want to merge two clusters? Assume 
we merge clusters A and B. We could remove these two elements from the hash table 
and replace them with a merged element whose key is AB. But we need the original 
distances between A, B, and the other clusters when we apply our linkage method. 
Therefore, we might want to hold the original distances in one nested hash structure 
and use another nested hash structure to represent the working cluster distances, which 
would change as we merge. At the start of the algorithm, the original distances could be 
stored in a nested hash structure similar to the following (only a partial set is shown; 
keys C, D, E, and F are not included): 

Hash of Hash Table of Original Distances 
 

key = A, value = {key = A, value = 0}                    
{key = B, value = 1}                    
{key = C, value = 3}                    
{key = D, value = 7}                    
{key = E, value = 17}                    
{key = F, value = 19}   

 
key = B, value = {key = A, value = 1}                   

{key = B, value = 0}                   
{key = C, value = 2}                    
{key = D, value = 6}                    
{key = E, value = 16}                    
{key = F, value = 18}  

 

This structure would not change during the program, so we can always reference 
original distances. A copy should be made of this structure and used to represent 
merging clusters, similar to those in Figure 7.4. After the first iteration, the structure 
representing merging clusters would look as follows, assuming we use single linkage 
and merge clusters A and B (only a partial set is shown; keys D, E, and F are not 
included): 

 



 

Hash of Hash Table of Merging Clusters 
 

key = AB, value = {key = AB, value = 0}                    
{key = C, value = 2}                     
{key = D, value = 6}                    
{key = E, value = 16}                     
{key = F, value = 18}  

key = C, value = {key = AB, value = 2}                    
{key = C, value = 0}                    
{key = D, value = 4}                    
{key = E, value = 14}                    
{key = F, value = 16}  

 

We would continue to work with this nested hash structure, reducing the size by one 
with each iteration. At the end, we would be left with two keys in our nested hash 
structure, which would represent the final two clusters to merge. The following 
pseudocode presents a solution to cluster a set of items using the approach just 
described. This implementation assumes the data file is a Phylip-formatted file and with 
each iteration the merging clusters are printed. 
Algorithm 

 
Agglomerative Clustering Algorithm to Determine Evolutionary Relatedness 

• Goal: To cluster a set of data items 
• Input: A set of sequence distances in a Phylip formatted file 
• Output: Clusters merged at each step 

 
// Initialization – Read in data and build nested hash structures 
Open input file containing sequence distances: infile numSeq = read first 
line of infile 
clusterNames = array of size numSeq  
distances = array of size numSeq  
i = 0  
for each line of data in infile       
 

clusterNames[i] = first value in line      
distances[i] = remaining data in line split using space as      
delimeter   

 
// Build nested hash structure of original and cluster distances  
originalDist = nested hash structure  
clusterDist = nested hash structure  
for each i from 0 to numSeq-1      

for each j from 0 to numSeq-1 
originalDist[clusterNames[i]][clusterNames[j]] =  distances[i][j] 
clusterDist[clusterNames[i]][clusterNames[j]] =   distances[i][j]   

 
// STEP 1: Cluster   
while numClusters > 2      



shortestD = shortest distance in clusterDist      
shortestI = outer key of shortest      
distance in clusterDist shortestJ = inner key of shortest distance in 
clusterDist       

 
// merge clusters I and J      
newClusterName = shortestI + shortestJ      
remove shortestI from clusterNames      
remove shortestJ from clusterNames      
remove shortestI keys and nested keys from clusterDist      
remove shortestJ keys and nested keys from clusterDist 

 
singleLinkage(clusterDist, newClusterName, originalDist, clusterNames) 

append newClusterName to clusterNames       
 
output “merging clusters” shortestI and shortestJ       
 
numClusters—   

 
output remaining two clusters   
 
// function to calculate distances between new cluster and all  
// other clusters using single linkage  
function singleLinkage(clusterdist, newClusterName, originalDist, 
clusterNames)      

for each cluster in clusterNames          
smallestD = maximum integer          
for each c1 in cluster              

for each c2 in newClusterName                  
if originalDist[c1][c2] < smallestD                      

smallestD = originalDist[c1][c2] 
clusterDist[newClusterName][cluster] = smallestD         
clusterDist[cluster][newClusterName] = smallestD  

 
Putting Your Skills Into Practice 

1.  Download  Write a program in the language used in your course to implement 
the given pseudocode. Test your program using the sample data values for the 
six species (A–F) used as an example in Understanding the Algorithm. You can 
create your own distance matrix data file or download Phylip-formatted 
data(see Web Exploration) from the Understanding Bioinformatics website. Be 
sure your program correctly deals with the format of the data file. Ensure that the 
program merges the clusters as expected. 

2. Although an implementation of this pseudocode shows which clusters are 
merged at each iteration, a representation of the final evolutionary tree in Newick 
format would be much more useful. Modify your program to output a tree in 
Newick format; as discussed earlier, for our sample data, the output should 
be ((((A,B), C), D),(E,F));. 

3. Modify your program so it allows the user to choose between the single linkage 
and the UPGMA linkage method. 

4. As you may have observed when you obtained a UPGMA-based tree for input to 
TreeDyn in the Web Exploration, Newick format also allows for branch lengths to 
be explicitly specified. Adding branch lengths would not only convey additional 



information to the user but would also allow your program to output data that 
could be used directly by TreeDyn or another tree-rendering program. Modify 
your program to calculate branch lengths and include them in the Newick format 
output. Remember that these agglomerative clustering methods assume 
constant rates of evolution, so at each node (for example, where A diverges from 
B), the distances (from A to the node and from B to the node) should be the 
same. 

5. Currently, your program takes a distance matrix as input. A more flexible 
program would allow you to input sequence data, calculate distances, and then 
output the clustered data. To do this realistically would require a multiple 
sequence alignment algorithm, which is beyond the scope of this project. 
However, you already have programs that can do global alignment (Chapters 
3and 5) and apply distance metrics to pairwise alignments (Chapter 6); you could 
incorporate distances calculated by these methods into your phylogenetic tree. 
This requires two modifications to the program. (1) Read in nucleotide sequences 
from a text file and store them as the hash value of each species. Use alphabetic 
characters to represent the key for each species or cluster. (2) Align sequences 
and calculate distances, using either a nucleotide alignment with a choice of 
distance metrics (start with the code from the On Your Own Project in Chapter 6) 
or a protein alignment with a substitution matrix. 

On Your Own Project: The Neighbor-Joining Method 

Understanding the Problem: Determining Branch Lengths 
The agglomerative clustering algorithm discussed in Understanding the Algorithm, 
particularly when coupled with the UPGMA linkage method, was at one time widely 
used in constructing phylogenetic trees and is still used in many multiple sequence 
alignment algorithms. However, simple agglomerative clustering is rarely used in tree-
building today because of its limitations, notably the fact that it is ultrametric: It 
assumes a constant rate of evolution or a molecular clock that "ticks" at a constant rate. 
In the phylogenetic tree shown in Figure 7.6, for example, note that the distance from A 
to the node at y is the same as from B to y. You should have observed similar results for 
the branch lengths when you constructed a tree using the UPGMA method in the Web 
Exploration. There is a biological basis for this assumption: Because the two modern 
species A and B have been evolving for the same amount of time since they diverged 
from their common ancestor (y), the distance (i.e., number of substitutions) should be 
the same along each branch. 

Unfortunately, in reality, distances between sequences may not be ultrametric. As we 
saw in Understanding the Algorithm, our simple example tree fails when we attempt to 
label branch lengths. Our example resulted in the grouping ((A,B),C);, for instance, 
given the distances A–B = 1, A–C = 3, and B–C = 2. Assuming a constant rate of 
evolution, the distance from A to yand from B to y should be equal, 0.5 each. Then, the 
distances from A to C and from B to C should also be equal—but they are not! 
Therefore, although UPGMA is a convenient and easy-to-implement linkage method, it 
is not suitable for building phylogenetic trees under all conditions. 



Solving the Problem 
The NJ method is an alternative that does not require the assumption of a constant rate 
of evolution across all species. The NJ method is a variation of the agglomerative 
clustering technique and can be applied to a set of sequences for which distances have 
been calculated using any desired metric. As before, there is a merge step in which the 
two closest clusters are merged. The difference is in the linkage method: NJ calculates 
a transformed distancevalue when calculating the distances between the remaining 
clusters at each iteration. This allows the branch lengths to correspond to the observed 
distance between species, even when those branch lengths are not ultrametric, 
accounting for differences in the rate of evolution. 

Using NJ, each iteration of the clustering algorithm thus begins by calculating an r value 
for each cluster, representing the corrected net distance between it and all other 
clusters. This is essentially the average distance between a given cluster, x, and each 
other cluster (i); if there are n total clusters, we can use the following formula: 

 

The value dix is the distance between cluster x and cluster i as determined by the 
previous iteration (or the initial distance matrix, for the first iteration). This distance is 
determined for every cluster i other than x itself and summed. 

These r values are then used to compute transition distances (td) to be used in 
determining which cluster to merge at the merge step. The following formula shows how 
this is done given clusters x and y, where x != y: 

• tdxy = dxy - rx - ry 

The cluster pair that has the smallest transition distance is merged. Once the clusters 
are merged, new distances are calculated between the newly formed cluster (K) and all 
other clusters (the distances between unmerged clusters do not change). After a merge 
of clusters iand j, the distance from the new cluster to any cluster x is given by 

 

As before, this process repeats for additional clusters; we stop when only two clusters 
remain and join the last two based on calculated distance between them (see the next 
section). Finally, the branch lengths within the tree must be calculated; because the 
distances from anancestor to its descendants need not be the same, the distance from 
cluster i to j must be calculated as two branch lengths, from each of the clusters to their 
shared ancestor K: 



 

Now that we have the formulas, let's see how they work with a simple example. 
Suppose we have sequences from five species with initial distances as shown in Table 
7.1. The first step is to calculate transformed r values. For our first iteration, these are A 
= 13, B = 12, C = 11.34, D = 11, and E = 10. Using these values, we can compute 
transition distance values for our first iteration, resulting in the transition matrix in Table 
7.2A. The transition matrix is used to determine which clusters to merge. Because the 
lowest value in the transition matrix is in the cell represented by clusters A and B, these 
two clusters are merged. The new distance matrix is then populated with the initial 
matrix distances, except for the distances between the newly created cluster, 
represented by AB, and the other clusters, which must be calculated. These distances 
are shown in Table 7.2B. 
Table 7.1: Initial distances for the neighbor-joining example.  

 Open table as spreadsheet 

  A B C D E 

A 0         
B 5 0       
C 11 10 0     
D 12 11 7 0   
E 11 10 6 3 0 

 
Table 7.2: First transition matrix (A) and recalculated distance matrix (B) for the 
neighbor-joining example. 

A.  Open table as spreadsheet 

  A B C D 
B -20       
C -13.34 -13.34     
D -12 -12 -15.34   
E -12 -12 -15.34 -18 

B.  Open table as spreadsheet 

  AB C D E 
AB 0       



C 8 0     
D 9 7 0   
E 8 6 3 0 

 

 

Before moving on to the next iteration, let's look at the partial tree represented by the 
merge of clusters A and B. This merge implies these two species have a common 
ancestor (AB), and to obtain the branch length from the common ancestor to each 
species, we apply the branch length formula just given: 

 

This partial tree can now be drawn as shown in Figure 7.7A. Notice that the two branch 
lengths are unequal, something that would not have been possible using the UPGMA 
method. 

 
Figure 7.7: Merging of clusters to generate a phylogenetic tree from the data in the text 
using the neighbor-joining method. (A) Species A and B merge to form the first cluster, 
with a common ancestor designated by X. (B) Species C merges with the AB cluster, 
giving a common ancestor designated by Y. (C) Species D merges with the ABC 
cluster, giving a common ancestor designated by Z. (D) The finished tree after adding 
the branch to species E. 

Our next iteration begins by recalculating transformed r values: AB=12.5, C =0.5, D=9.5, 
and E=8.5. Table 7.3 shows the new transition matrix (A) and new distance matrix after 
the second merge (B). In this iteration, two cells contain the lowest value in the 



transition matrix. We can choose to merge cluster AB with C or cluster D with E; here, 
we arbitrarily choose to merge AB with C. The new distance matrix is populated with the 
previous iteration's distances, except for the distances between the newly created 
cluster, represented by ABC, and the other clusters. Calculating branch lengths and 
adding the results of this merge to our partial tree results in the tree shown in Figure 
7.7B. 

 
Table 7.3: Transition matrix (A) and recalculated distance matrix (B) after the 
second merge in the neighbor-joining example. 

 

A.  Open table as spreadsheet 

  AB C D 
C -15     
D -13 -13   
E -13 -13 -15 

B.  Open table as spreadsheet 

  ABC D E 
ABC 0     
D 4 0   
E 3 3 0 

 

 

With the next iteration, we obtain the transition matrix in Table 7.4A. According to this 
transition matrix, we could now merge any of the remaining clusters, because they have 
the same value. We choose to merge ABC and D, and again we recalculate distances 
(Table 7.4B) and branch lengths and then add our newly merged clusters to our partial 
tree (Figure 7.7C). Because we are now left with only two clusters, we can simply 
attach these two clusters using our distance information. In our example, notice that the 
final distance matrix (Table 7.4B) conveniently gives us the distance between species E 
and the cluster ABCD (or common ancestor of species A–D), and we get the final tree 
shown in Figure 7.7D. If we were merging two clusters at this point, the last distance we 
need for our tree would be the distance between two internal nodes (ancestral species), 
and we could calculate this by going back to the original distance matrix, finding the 
distance between a species in one cluster and a species in the other, and then 
subtracting the already calculated branch lengths to get the distance between the 
remaining internal nodes. 

 
Table 7.4: Transition matrix (A) and recalculated distance matrix (B) after the last 



merge in the neighbor-joining example. 

A.  Open table as spreadsheet 

  ABC D 
D -10   
E -10 -10 

B.  Open table as spreadsheet 

  ABCD E 
ABCD 0   
E 1 0 

 

 

Notice that the NJ method has produced an unrooted tree, whereas UPGMA produced 
rooted trees. The NJ branch length formula allows for the calculation of unequal branch 
lengths. If you compare the distances in the final phylogenetic tree (Figure 7.7D) with 
our original set of distances (Table 7.1), you will see that the tree matches the original 
distances, demonstrating the additivity property of the NJ method. 

Given the equations and example presented here, you should now be able to use the 
NJ algorithm to construct a phylogenetic tree with calculated branch lengths for the six 
sample species whose distance matrix is given previously in Understanding the 
Algorithm. How does the tree thus generated differ from the tree shown in Figure 7.6? 

 Download  If your course involves programming, your instructor may ask you to 
implement the NJ algorithm as described next. If it does not, a completed program 
implementing NJ can be downloaded from the instructor section of the Exploring 
Bioinformatics website and used to complete the exercises at the end of the 
Programming the Solution section without programming. 

Programming the Solution 
Using your solutions to the Guided Programming Project exercises as a starting point, 
implement the NJ method in the programming language of your choice. Depending on 
the exercises your instructor chose previously, you may have a program to carry out 
agglomerative clustering given a distance matrix or a more comprehensive program to 
generate a Newick format tree from nucleotide or aminoacid sequence data. Any of 
these solutions can be readily modified to implement NJ or offer NJ as a choice of 
method for the user. 

The initial steps (reading sequence or distance files, aligning sequences, calculating 
initial distances, etc.) will not change, but you will need to make changes to the decision 
process in the merge step and the calculation of intercluster distances thereafter, as 
well as a calculation of final branch lengths. Use the formulas given in the chapter to 
make these calculations. You will also notice some differences in the data that need to 



be stored. In the guided project, a nested hash table was used to hold cluster 
information. This was important, because we needed to keep track of each cluster 
element's value to determine distance. However, the NJ method recalculates distances 
at each iteration from the previous cluster distances. For troubleshooting purposes, you 
may wish to print out the clusters merged and the branch lengths as each merge 
occurs, but the final program should output results in Newick format, including branch 
lengths. 

Run your program on the following test data set using a simple nucleotide count as your 
distance metric and NJ as the linkage method: 

 
 (A) TCAT, (B) TCCT, (C) TCCC, (D) GCGT, (E) GCTT  

 

You should end up with the following tree: ((C:1,B:0):0.5,(A:0.5,(D:0.5, 
E:0.5):1));, after merging D with E, DE with A, and C with B. 

Then, try your program with the data from Understanding the Algorithm. You should get 
the same results as when you worked out the tree by hand. Compare your outcome with 
the results using UPGMA as a linkage method. Can you explain why there are 
differences? Finally, test your program on the eIF-1α and Hsp70 sequences from the 
Web Exploration. Which algorithm do you believe gives you the best picture of the 
actual evolutionary pathways? 

 
Connections: What Is a Species? 

Chapter 5 included the example of two salamander populations that became separated 
by California's Central Valley and had evolved into subspecies. Assuming continued 
separation, these subspecies may eventually become two distinct species. But just how 
do we define a species? One long-used biological definition is that two organisms are 
members of the same species if they are able to mate and have fertile offspring. 
Perhaps, however, you can already see problems with this definition. All domestic dogs, 
for example, are considered to be members of a single species—indeed, a single 
subspecies, Canis lupus familiaris—but it is obvious that successful mating between a 
St. Bernard and a chihuahua is unlikely. 

Where we find similar but distinct kinds of birds, such as the readily distinguishable 
Eastern Bluebird and Mountain Bluebird, do we have one species or two? What do we 
do about the many kinds of organisms that have no sexual reproduction? What about 
plants, where in some cases two quite different plants can mate and yield a new type of 
plant with twice as many chromosomes? (This happened naturally at least twice in the 
history of our modern red wheat.) And perhaps most puzzling of all, what about bacteria 
and archaea, where we find enormous biochemical and metabolic diversity despite very 
limited visually distinguishable features and a complete lack of genuine sexual 
reproduction? 



Bioinformatics and molecular evolution are central to research aimed at untangling 
difficulties in the concept of a species and in classifying organisms throughout the living 
world. Where morphology, ecology, physiology, and even biochemistry cannot resolve 
the question, bioinformatics can quantify differences in DNA and protein sequences and 
establish standards for how different two organisms need to be in order to be 
considered two species. Evolutionary journals are currently full of articles in which 
bioinformatic tools are used to investigate questions such as these, frequently resulting 
in splitting what was thought to be one species into two, or the reverse—sometimes 
producing heated debates. As more and more DNA sequences and complete genomes 
become available, we can anticipate ongoing progress in this area. 
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Chapter 9: Sequence-Based Gene Prediction: 
Annotation of a Resistance Plasmid 
Chapter Overview 

Assembling a genome sequence (Chapter 8) does not by itself reveal key information 
such as where the genes are within that sequence. This chapter and the next one focus 
on gene prediction: how to identify possible genes within a genome sequence. In this 
chapter, sequence-based methods suitable for gene prediction in prokaryotes are 
explored and their value and limitations in eukaryotic gene discovery examined; the next 
chapter will take up the more complex gene prediction methods needed for eukaryotic 
genome annotation. Students in both programming and nonprogramming courses will 
be introduced to algorithms for gene prediction. Using a variety of Web-based tools, 
students will be able to use sequence-based methods for gene prediction in 
prokaryotes. Students in programming courses will implement sequence-based 
algorithms for gene prediction in prokaryotes. The On Your Own Project will then 
examine the extent to which these algorithms can be applied to eukaryotes. 

• Biological problem: Prediction and annotation of genes in a resistance plasmid 
sequence 

• Bioinformatics skills: Sequence-based ORF finding and promoter prediction 
• Bioinformatics software: NCBI ORF Finder, NEBcutter, EasyGene 
• Programming skills: Pattern-matching algorithms, modularization, functions 

	  
	  
Understanding the Problem: Gene Discovery 
We have come a long way since the preantibiotic days when the risk of infection made 
surgery often more dangerous than the condition it was intended to cure. However, 
despite our many medical advances and modern methods of controlling infectious 
agents, in the United States approximately 1.7 million individuals per year acquire 
infections while hospitalized. Of these hospital-acquired, or nosocomial, infections, 
some 99,000 cause or contribute to the death of the patient. Control of nosocomial 
infections is difficult because of the high concentration of infectious agents in the 
hospital environment, the already compromised or immunodeficient state of the 
patients, and the close contact of medical personnel with many patients per day. 
Furthermore, the use of invasive measures such as surgical procedures, catheters, and 
intravenous tubes may grant pathogens access to areas of the body that are normally 
well protected. Among the most common agents of nosocomial infection 
are Enterococcus species (Figure 9.1), normally harmless residents of the human colon 
that can seize an opportunity to enter other parts of the body where they can be highly 
pathogenic. To make matters worse, many Enterococcus isolates are highly antibiotic 
resistant—even to "last resort" drugs such as vancomycin—and capable of transferring 
multiple resistance genes horizontally on large plasmids. Sequencing of plasmid DNA 
from these resistant strains is one way to learn more about the nature of the resistant 
organisms and their potential to spread resistance. 



 
Figure 9.1: Scanning electron micrograph of a group of vancomycin-resistant 
Enterococcus cells. Courtesy of Janice Haney Carr/CDC. 

Once a genome, chromosome, plasmid, or other large piece of DNA has been 
sequenced, the processes of gene discovery (also called gene prediction) 
and genome annotationbegin. By itself, a DNA sequence is just a bunch of As, Cs, Gs, 
and Ts with no obvious meaning; to use that sequence to cure a genetic disease or 
understand how a specialized cell type develops, we have to find the genes within that 
sequence and understand their functions. Many people are surprised that we still cannot 
say exactly how many genes there are in the human genome, let alone identify all their 
functions. The presence of introns, the existence of surprisingly short or long genes, 
and the difficulty of definitively identifying promoters and translational start sites are 
among the complexities involved. Furthermore, although we tend to focus on protein 
coding genes, genomes also include protein binding sites, genes for noncoding RNAs, 
regions important to chromatin structure, methylation sites, and more. 

Gene discovery is one of the major applications of bioinformatics to genomics. Although 
we often think of gene discovery as it applies to the analysis of major genome 
sequencing projects, it is also important on a smaller scale. Consider, for example, the 
major medical problems created by the horizontal transfer of antibiotic resistance. Often, 
resistance is due to large multi-drug resistance plasmids that by horizontal transfer can 
make another cell simultaneously resistant to many antibiotics—in some cases, even 
to all the classes of antibiotics in current use, including such "last resort" drugs as 
vancomycin. 

In this chapter, we apply gene prediction methods to a large plasmid isolated from a 
highly resistant Enterococcus faecium, a bacterium that is naturally resistant to some 
antibiotics, including the penicillin family, and can readily acquire additional resistance. 
The plasmid we examine was isolated from a patient with a life-threatening postsurgical 
abdominal infection. Using gene prediction methods, we can identify potential 
resistance genes within this plasmid sequence and annotate them by looking for 



conserved sequences, thus determining what resistances the bacteria have and 
potentially how best to treat infection. 
	  
	  
Bioinformatics Solutions: Gene Prediction 
Back in Chapter 2, we considered a gene to be a coding sequence within an mRNA (or 
cDNA) sequence; an AUG start codon and a UAG, UGA, or UAA stop codon identified 
this sequence, and the genetic code table allowed us to find the amino acid encoded by 
each three-nucleotide codon in between. This coding sequence is called an open 
reading frame(ORF). However, finding a gene is not as simple as finding an ORF. An 
ORF-like sequence could occur accidentally in noncoding DNA. Therefore, long ORFs 
are usually considered more likely to be real genes—but we also do not want to miss 
short but genuine genes that encode short proteins (sarcolipin, the shortest known 
protein in mice, is only 31 amino acids long). Additionally, genes for untranslated 
functional RNAs (tRNAs, rRNAs, snRNAs, and others) have no coding sequence. 
Predicting which sequences serve as promoters can help us recognize actual genes, 
but this is in itself complex, especially in eukaryotes. Intronsintroduce a huge amount of 
difficulty in eukaryotic genomes: An average protein coding sequence in the human 
genome is only about 1,500 base pairs long, but an average complete gene (typically 
including four to five introns) is nearly 10 times that long. 

No method exists yet that can comprehensively and unambiguously identify all the 
genes in a DNA sequence; indeed, the problem is usually approached from multiple 
directions by applying a variety of methods. Commonly used computational approaches 
to this problem fall into several categories: algorithms based on alignment, sequence, 
content, or probability. 

Alignment-based algorithms. If a region of a newly sequenced genome is orthologous to 
a previously identified gene in a well-studied organism such as mice, zebrafish, fruit 
flies, nematodes, or even bacteria or yeast, that would be good evidence that it is a 
gene. Indeed, even if no specific orthologous gene has yet been identified, strong 
conservation of a genome region over evolutionary time is strongly suggestive of its 
functional importance. Alignment-based algorithms look for genes based on conserved 
sequences; the alignment tracks in the UCSC genome browser (Chapter 1) gave you 
some idea of the value of this kind of comparison. 

Sequence-based algorithms. Searching for ORFs is an example of a sequence-based 
method of gene prediction: A simple ORF-finder program would look for the sequence 
AUG (the start codon) followed by some amino-acid codons and a UAG, UGA, or UAA 
stop codon. More complex variations would take into account additional sequence clues 
such as promoter sequences and intron–exon boundaries. These functional regions of 
DNA would be identified based on the development of consensus sequences (see 
BioBackground at the end of this chapter) that can then be computationally identified in 
a genome. Sequence-based methods do not require similarity to other organisms, but 
they can only find genes that include sequences matching known patterns, and they 
have difficulty with sequence patterns that are relatively loose, like the sequences at the 



boundaries of exons and introns. Sequence-based methods are the focus of this 
chapter. 

Content-based algorithms. Content-based methods do not look for specific sequences 
but rather for patterns such as nucleotide or codon frequency that are characteristic of 
coding sequences in a particular organism. These methods can identify novel genes 
and find coding regions that would be missed by sequence-based methods. One tool 
used in the Web Exploration in this chapter includes a content-based method (codon 
frequency); content-based methods will be discussed in more detail in the next chapter. 

Probabilistic algorithms. More sophisticated gene discovery methods may combine 
elements of both sequence-based and content-based gene prediction in algorithms that 
model the probability that a given sequence is part of a gene. Hidden Markov models 
and neural network algorithms are two major examples of probabilistic solutions; these 
will be discussed in the next chapter 

In this chapter's Web Exploration and Guided Programming Project, we see how 
sequence-based methods work and use them to identify genes involved in antibiotic 
resistance and virulence within the sequence of a large bacterial plasmid. In the On 
Your Own Project, we apply similar methods to eukaryotes and explore their limitations. 
A good understanding of gene structure is essential to the development and use of 
computational methods for gene discovery. The BioBackground section in Chapter 
2 introduced the structure of genes, and that introduction is extended in this chapter's 
BioBackground section, along with an introduction to how the sequences of promoters 
and other functional sites are identified. 
	  
BioConcept Questions 

1. Why are long ORFs sometimes considered to be the same as genes? In what 
ways is this definition insufficient? 

2. How does RNA polymerase find the transcriptional start site of a gene in 
prokaryotes? How can we use this information in a gene prediction algorithm? 

3. How does RNA polymerase find the transcriptional start site of a gene in 
eukaryotes? Why is it more difficult to develop an algorithm to find a eukaryotic 
promoter than a prokaryotic promoter? 

4. How does a prokaryotic ribosome find the correct start codon within an mRNA? 
How can we use this information in distinguishing which ORFs are genes? 

5. Why can't we use a similar strategy to distinguish which ORFs are genes in 
eukaryotes? 

6. A simple ORF-finding program would do a very poor job of predicting the amino-
acid sequences of the proteins encoded in the human genome. Discuss why this 
is the case. 

7. How might you identify a gene encoding a functional RNA (that does not encode 
a protein)? How does the discovery of key functions for very small RNA 
molecules complicate the issue? 

	  



Understanding the Algorithm: Pattern Matching in Sequence-Based 
Gene Prediction 
Learning Tools 

 
 Download  If you want to better understand how a consensus sequence for a promoter 
or other element is developed and why identification of these sequences is not as clear-
cut as it sounds, you can download an exercise from the Exploring 
Bioinformatics website that will take you through the generation of a prokaryotic 
promoter consensus sequence using data from sequenced genomes. 

 

Sequence-based methods of gene prediction examine DNA sequences for patterns 
(often called motifs) that provide clues about the existence of transcriptional or 
translational units. Sequence-based prediction methods rely on pattern-matching 
algorithms: Given a string to search (such as a plasmid or genome sequence) and a 
pattern to be matched (such as AUG), they can identify whether, how often, and where 
the pattern occurs. Indeed, content-based and probabilistic methods usually include 
elements of pattern matching as well. 

An ORF-finding program is a good example of pattern matching in gene prediction. This 
program could begin by traversing the searched text—that is, searching through the 
nucleotide string from beginning to end—examining each group of three nucleotides for 
the pattern ATG to find a potential start codon. Then, it would have to find an in-frame 
stop codon. The process of testing three-nucleotide groups for a match to the pattern 
would stay the same, so a single algorithm could be provided with different parameters. 
Parameters are values set when an algorithm starts that allow it to solve variations of a 
problem using the same main steps; in this case, our parameters would be the 
searched text, the pattern, start and stop locations, an increment value, and a threshold 
value. When looking for the start codon, the start location is the first nucleotide, the stop 
location is three nucleotides from the end (no point in looking at the last two), the 
increment value is one in order to search in all three possible reading frames (in the 
sequence CCATGGAC, look first at CCA, then CAT, thenATG, etc.), and the threshold 
value is 100%, because we need a perfect match to ATG. Once a start codon is found, 
we would change the increment value to three (after finding ATG, look 
at GAC but not TGG or GGA) and the pattern to TAG, TGA or TAA, again requiring a 
perfect match. 
Algorithm 

 
Pattern-Matching Algorithm 

1. Initialize parameters of algorithm: 
o pattern = search pattern 
o searchedText = text that will be searched for pattern 
o start = start location of search (assumes first character is position 1) 
o stop = stop location of search (this represents last location to search 

from) 



o increment = incrementing value (negative number for upstream search, 
positive number for downstream search) 

o threshold = minimum percentage match required 
2. Compare pattern to characters of searchedText starting at position start. If 

percentage of matching characters is >= threshold, output start position and end 
algorithm. If not, add increment to start and continue to step 3. 

3. If increment is positive and start is <= stop, repeat step 2. If increment is negative 
and start is >= stop, repeat step 2. If neither statement is true, pattern was not 
found, end algorithm. 

 

You can quickly see, however, that this straightforward algorithm will not make a great 
ORF finder. ATG is not just a start codon but is used every time the amino acid 
methionine occurs in a protein. That means the simple algorithm would find apparent 
ORFs that are actually within other ORFs. Furthermore, ORF-like sequences could 
occur by chance in noncoding DNA: The pattern ATGGGGTGA would occur at random 
once every 49 nucleotides, or about 19 times in the E. coli genome, but is clearly not an 
ORF. Thus, ORF-finding programs commonly allow the user to limit results to ORFs of a 
certain length, perhaps 100 codons. This would only require setting a start location 300 
nucleotides downstream to start looking for the stop codon after finding an ATG—but 
this modification also brings with it the danger of overlooking small but genuine genes. If 
you will not be completing the programming projects in this chapter, you may wish to 
download the sequence of the Enterococcus plasmid from the Exploring 
Bioinformatics website and look by hand for some potential ORFs to get an idea of how 
these parameters would affect the process. 

 Download  Despite these adjustments, a simple ORF-finding algorithm will not be a 
very reliable method of gene prediction: Even a reasonably long ORF might not really 
be a gene, and a short ORF possibly could be a gene. To help distinguish real genes, 
we can also look for regulatory sequences: In bacteria, genes are preceded by promoter 
sequences (-10 and -35 sequences) and the start codon is preceded by a Shine-
Dalgarno sequence (see Figure 9.2 and BioBackground). Unfortunately, finding these 
patterns is less straightforward. In E. coli, the Shine-Dalgarno consensus sequence 
is AGGAGG, but the match to this pattern can be imperfect. The end of this sequence 
should be approximately five nucleotides upstream of the start codon, give or take two 
positions (so, -5 ± 2 relative to the ATG). Promoters can also be inexact matches to the 
consensus -10 (TATAAT) and -35 (TTGACA) sequences; these sequences should be 17 
± 2 nucleotides apart but can occur anywhere from 50 to 500 nucleotides upstream of a 
start codon. (If you are familiar with prokaryotic molecular biology, you know that even 
this is a simplified view given the frequent use of operons and alternative sigma factors.) 
The pattern-matching algorithm can find these sequences given appropriate 
parameters, such as start and stop locations and threshold values. 

 
Figure 9.2: Elements of a prokaryotic gene that can be searched by a sequence-based 



algorithm include the coding sequence or ORF, the Shine-Dalgarno sequence, and the 
promoter sequence. 
	  
Test Your Understanding 

1. DNA is double stranded, and one strand may serve as the template (copied) 
strand for one gene (in one region) but the nontemplate (mRNA-like) strand for 
another (in another region). The algorithm given could find an ATG start codon in 
one of three reading frames by reading a sequence entered in the 5′ to 
3′direction, but really we should consider all six possible reading frames: three 
from the DNA as it was entered and three more on the complementary strand. 
What would we need to do to find ORFs in all six possible reading frames? 

2. As noted, the pattern-matching algorithm might find an ORF within another ORF, 
because within a gene there could be multiple ATG codons. How could your 
algorithm filter out these undesirable matches? 

3. Identify parameters that could be used in the pattern-matching algorithm to 
search for a Shine-Dalgarno sequence once an ATG is found. Assume an exact 
match to the consensus sequence. 

4. Identify parameters that could be used in the pattern-matching algorithm to 
search for a promoter once an ATG is found. Assume that five of the six bases in 
the -10 and -35 sequences must match their consensus. 

	  
	  
Chapter Project: Gene Discovery in a Resistance Plasmid 

This chapter's project focuses on sequence-based methods of finding genes within DNA 
sequence data. We consider only prokaryotic genes in the Web Exploration and Guided 
Programming Project, because the lack of introns and more clearly defined expression 
signals makes them easier from a practical standpoint. In the On Your Own Project, we 
consider how these principles apply to eukaryotes. Specifically, we look for genes within 
the sequence of a plasmid isolated from antibiotic-resistant Enterococcus and, in the 
Web Exploration, annotate those genes by looking for clues to function. 
	  
Learning Objectives 

§ Understand the structure of a gene and which features are useful in developing 
computational methods for identifying genes 

§ Appreciate the strengths and limitations of sequence-based methods for gene 
discovery 

§ Use Web-based gene discovery tools to annotate a plasmid 
§ Understand how pattern matching can be used in sequence-based computational 

solutions 
§ Apply sequence-based algorithms to the more complex problem of gene 

discovery in eukaryotes 



Suggestions for Using the Project 

This project provides an introduction to pattern matching in gene discovery for both 
programming and nonprogramming courses. The Web Exploration in this project guides 
students to predict and annotate genes in a plasmid sequence; the Guided 
Programming Project allows them to implement a pattern-matching algorithm that can 
be applied to the same problem. The On Your Own Project asks students to implement 
(in programming courses) or examine (in nonprogramming courses) the application of 
pattern matching to eukaryotic gene prediction clues. All tools described here could be 
applied equally well to any other question that the instructor wished to explore. 

Programming courses: 
§ Web Exploration: Use Web-based tools to identify likely genes within a plasmid 

sequence; complete either Part I or Part II (or both parts, in teams) and Part III. 
Optionally, annotate genes with BLAST. 

§ Guided Programming Project: Implement a pattern-matching algorithm and 
compare its output with the Web-based tools. 

§ On Your Own Project: Extend the pattern-matching algorithm to eukaryotic gene 
prediction. 

Nonprogramming courses: 
§ Web Exploration: Use Web-based tools to identify likely genes within a plasmid 

sequence and annotate the genes with BLAST. Complete either Part I or Part II 
(or both parts, in teams) and Part III. 

§ On Your Own Project: Consider how a pattern-matching algorithm could be used 
to identify sequence-based clues to eukaryotic genes. 

Web Exploration: Prokaryotic Gene Prediction and Annotation 

In this part of the project, we use Web tools to find genes within 
an Enterococcus resistance plasmid sequence. Sequence-based methods for gene 
prediction work well for prokaryotes, because they lack exons and have more easily 
predictable patterns for regulatory elements(see BioBackground). Parts I and II use two 
different simple ORF finders to accomplish the same task. It is suggested that pairs of 
students work on these exercises together: Each can use one of the tools and then the 
results can be compared. Alternatively, an instructor may choose to assign only Part I or 
Part II. Part II uses a more advanced tool to search for Shine-Dalgarno sequences to 
better identify actual genes. BLAST can be used to annotate genes with putative 
functions and potentially to further explore the nature of resistance and the evolution of 
resistance plasmids (see More to Explore later in the chapter); instructors may skip this 
part of the exercise if they wish. 

Part I: Sequence-Based ORF Identification Using the NCBI ORF Finder 
The simplest gene discovery program would simply look for an ORF as described in 
Understanding the Algorithm: a start codon followed by a coding sequence longer than 
some length specified by the user and terminating with a stop codon. The ORF could 
occur in any of the six possible reading frames (three on each strand). Such a program 



would actually be fairly effective in finding genes in a prokaryotic genome, given the 
absence of introns. There are many such programs; we use NCBI's ORF Finder to 
identify ORFs in the Enterococcusresistance plasmid. 

 Download  Start by downloading the sequence of the Enterococcus 
faecium resistance plasmid from the Exploring Bioinformatics website. Open 
NCBI's ORF Finder and paste the sequence into the input box. There are not a lot of 
parameters available; note that you could search only a portion of the sequence if 
desired, or you could change the genetic code used if you were working with something 
like mitochondrial DNA where a few codons are different. Run the program; you should 
see a display of ORFs similar to that in Figure 9.3. 

 
Figure 9.3: Sample output from the NCBI ORF Finder. Colored regions of bars 
represent ORFs, listed on the right. Only a portion of the ORF list is shown here. 
Generated from the NCBI ORF Finder. 

You may be surprised by the number of ORFs found by this program. How long is the 
DNA sequence? Click on View to find out. Does it seem reasonable to have this many 
genes in a sequence this long? How are the genes distributed on the two strands of 
DNA? Notice that the ORFs are listed by size and that some of them are pretty short. By 
default, ORF Finder shows any ORF longer than 100 nucleotides, or about 33 amino 
acids. Change the drop-down to view only ORFs that have at least 100 amino acids 
(300 nucleotides) and see how this changes the list. 

Gene prediction is more valuable if we can also annotate the genes with putative 
functions based on sequence comparison. Click on one of the ORFs either in the list or 
the graphical view to see its nucleotide and amino-acid sequences. Notice that you can 
then directly submit the sequence of just this ORF for either a protein (blastp) or 
nucleotide BLAST search. Try a protein search and try to find a putative function for 
each ORF. Some should match known antibiotic-resistance genes; for these, find out 
what antibiotic the gene confers resistance to and try to find the mechanism of action for 
the resistance protein (for example, does it inactivate the antibiotic, modify the cellular 
target of the antibiotic, or perhaps pump the antibiotic out of the cell?). For those that do 
not appear to be antibiotic-resistance genes, do they have functions that make sense in 
the context of this resistance plasmid? Remember that some of the ORFs may not be 
real genes at all. In addition to annotating the genes, notice that this BLAST search step 
effectively adds an alignment-based gene discovery method to increase the accuracy of 
our sequence-based predictions. 



When you are satisfied with what you have learned about an ORF, use the Back button 
on your browser to return to the ORF Finder view of the gene. If you are convinced that 
the ORF is a genuine gene, click Accept and notice that the program changes the 
color of the gene in the graphical view and of its symbol in the list. This will help you 
keep track of the genes you have identified. 

Part II: Sequence-Based OFR Identification Using NEBcutter 
 Download  Another program that is useful for finding and annotating ORFs is New 
England Biolabs' NEBcutter. The primary goal of this program is to identify restriction 
endonuclease cut sites (useful, for example, in gene cloning; see References and 
Supplemental Reading), but it also identifies ORFs and places them on a map of the 
DNA in relation to the restriction sites. Find the NEBcutter page and paste 
the Enterococcus plasmid sequence into the input box. This is the complete 
sequence of a plasmid, so choose the option to show a circular DNA molecule 
(plasmids are always circular). Notice that you can change the minimum length of the 
ORF displayed from this page and set other options (you can even customize the colors 
of the output if you wish). Submit the sequence; you should get a result similar to the 
sample data shown in Figure 9.4. 

 
Figure 9.4: Sample output from NEBcutter showing a plasmid map with restriction sites; 
ORFs are represented by the gray arrows and listed by size in the box at left. 
Generated from NEBcutter; Vincze, T., Posfai, J. and Roberts, R. J. "NEBcutter: a 
program to cleave DNA with restriction enzymes." Nucleic Acids Res. 31: 3688–3691. 
(2003). 

 Link  Like NCBI's ORF Finder, NEBcutter shows the number and size of ORFs that 
met the specified criteria graphically and in a list. The NEBcutter display, however, does 
not separate the ORFs by the strand or reading frame in which they were found; notice 
that this might help you decide which genes might be grouped into operons. You can 



choose options to see a list of the ORFs with more detailed information. As with ORF 
Finder, you can change the minimum length of the ORF displayed based on your 
expectations. 

To annotate genes in the plasmid, click on an ORF either in the list or graphical view to 
see its amino-acid sequence and find a link for a protein BLAST search. Use the BLAST 
results to find a putative function for each ORF. Some should match known antibiotic-
resistance genes; for these, find out what antibiotic the gene confers resistance to and 
try to find the mechanism of action for the resistance protein (for example, does it 
inactivate the antibiotic, modify the cellular target of the antibiotic, or perhaps pump the 
antibiotic out of the cell?). For those that do not appear to be antibiotic-resistance 
genes, do they have functions that make sense in the context of this resistance 
plasmid? Remember that some of the ORFs may not be real genes at all. In addition to 
annotating the genes, notice this BLAST search step effectively adds an alignment-
based gene discovery method to increase the accuracy of our sequence-based 
predictions. 

Close the BLAST window when you are satisfied with your investigation of the ORF. If 
you are convinced it is a real gene, you can click Edit to name the gene (you might 
give it the same name as its orthologs: for example, β-lactamase proteins involved in 
penicillin resistance are named bla in many organisms) and describe its protein product. 
These data will then show up in the ORF list and in the description when you click on 
the ORF. When you have finished annotating genes, you can use the Print option to 
save your map to a PDF or GIF file. 

Part III: Shine-Dalgarno Prediction and Codon Usage Analysis with EasyGene 
Using ORF Finder or NEBcutter, we got a long list of potential genes we had to narrow 
down by hand. We were able to eliminate many ORFs from the list by requiring that the 
ORFs be at least 100 amino acids long. NEBcutter also ignores overlapping ORFs in its 
main display. However, we might have missed some genes this way: What if some of 
the short ORFs also encode functional genes? What if two genes do overlap (rare in 
eukaryotes but not infrequent in bacteria and common in viruses)? We could improve 
our ability to find authentic genes by determining whether the start codon is preceded by 
a Shine-Dalgarno sequence (a sequence similar to 5′ AGGAGG located 5 ± 2 
nucleotides before the start codon). This is still a sequence-based method of gene 
prediction, because we are still looking for a match to a specific sequence pattern; 
however, to use it effectively, we have to relax the stringency of the search to allow for 
imperfect matches. 

We can use EasyGene (see References and Supplemental Reading) to add this 
element of sophistication to our prokaryotic gene prediction. EasyGene looks for ORFs 
and examines the region just before the putative start codon for a possible Shine-
Dalgarno sequence. It also adds a content-based method of gene prediction: It asks 
whether the codons used in the ORF match the typical codon usage for the organism of 
interest. For example, six different codons all specify the amino acid leucine, but CTG is 
the codon actually used in E. coli genes more than 50% of the time. Table 9.1 shows 
the codon usage frequencies for E. coli. EasyGene compares the codons in each ORF 



to a training set taken from whichever prokaryotic genome the user selects and 
calculates a significance score representing the likelihood that it is a genuine gene. Only 
ORFs scoring above a selected threshold are displayed. 
Table 9.1: Codon usage table for Escherichia coli.  

 Open table as spreadsheet 

Codon 
(aa) 

Freq.[1] Codon 
(aa) 

Freq. Codon 
(aa) 

Freq. Codon 
(aa) 

Freq. 

UUU (F) 19.7 UCU (S) 5.7 UAU (Y) 16.8 UGU 
(C) 

5.9 

UUC (F) 15 UCC (S) 5.5 UAC (Y) 14.6 UGC 
(C) 

8 

UUA (L) 15.2 UCA (S) 7.8 UAA (*) 1.8 UGA (*) 1 
UUG (L) 11.9 UCG 

(S) 
8 UAG (*) 0 UGG 

(W) 
10.7 

CUU (L) 11.9 CCU (P) 8.4 CAU (H) 15.8 CGU 
(R) 

21.1 

CUC (L) 10.5 CCC (P) 6.4 CAC (H) 13.1 CGC 
(R) 

26 

CUA (L) 5.3 CCA (P) 6.6 CAA (Q) 12.1 CGA 
(R) 

4.3 

CUG (L) 46.9 CCG 
(P) 

26.7 CAG 
(Q) 

27.7 CGG 
(R) 

4.1 

AUU (I) 30.5 ACU (T) 8 AAU (N) 21.9 AGU (S) 7.2 
AUC (I) 18.2 ACC (T) 22.8 AAC (N) 24.4 AGC (S) 16.6 
AUA (I) 3.7 ACA (T) 6.4 AAA (K) 33.2 AGA (R) 1.4 
AUG 
(M) 

24.8 ACG (T) 11.5 AAG (K) 12.1 AGG 
(R) 

1.6 

GUU 
(V) 

16.8 GCU 
(A) 

10.7 GAU 
(D) 

37.9 GGU 
(G) 

21.3 

GUC 
(V) 

11.7 GCC 
(A) 

31.6 GAC 
(D) 

20.5 GGC 
(G) 

33.4 

GUA (V) 11.5 GCA (A) 21.1 GAA (E) 43.7 GGA 
(G) 

9.2 

GUG 
(V) 

26.4 GCG 
(A) 

38.5 GAG 
(E) 

18.4 GGG 
(G) 

8.6 

Data from: Codon Usage Database. 
[1]Frequency of codon per 1,000 codons 



 Link  Navigate to the EasyGene site. You will want to compare your EasyGene results 
with what you found with ORF Finder and/or NEB Cutter, so you may want to open this 
site in a new window or tab. Paste your Enterococcus plasmid sequence into the input 
box. From the list of organisms, choose the most closely related available species; this 
organism is used to determine what Shine-Dalgarno sequence to search for as well as 
the codon usage pattern to use for comparison. Note the lack of an option to limit the 
size of ORFs; given the additional features of EasyGene, it is preferable to limit results 
by the significance score rather than an arbitrary size cutoff. 

Examine the EasyGene results and compare them with your results from ORF Finder. 
We might expect EasyGene to ignore ORFs that lack Shine-Dalgarno sequences or that 
do not match codon usage data; does this appear to be the case? How does 
EasyGene's list compare with ORF Finder's when ORF Finder is limited to 100-amino-
acid ORFs? What if ORF Finder is allowed to find 30-amino-acid ORFs? Does 
EasyGene identify any of the short ORFs excluded by the length limit as actual genes? 
Does EasyGene fail to identify any genes that you annotated as genuine based on your 
ORF analysis and BLAST searches? (If so, does lowering the significance score cut-off 
allow it to find these genes?) 

Looking at the EasyGene results, you should see a column showing the initiation codon 
for each gene it found; do you see any surprises here? In fact, ATG is not the start 
codon for every gene: tRNA carrying methionine can in some cases bind to a bacterial 
ribosome positioned at a GTG or TTG codon. Take a look at the ORFs EasyGene 
identified as having an alternative start codon, and then find the same ORF in ORF 
Finder. How long was the ORF that ORF Finder identified? What happens if you 
click Alternative Initiation Codons? Why is this result better, biologically? 
Why did EasyGene's algorithm, even though it is still sequence based, find the longer 
ORF instead of the shorter one with the more obvious start codon? Does BLAST 
confirm that this is a better result? 
	  
	  
Web Exploration Questions 
Report your findings regarding antibiotic resistance in the E. faecium strain isolated from 
the abdominal infection. Discuss whether this strain is multidrug resistant and to what 
antibiotics it is resistant. Then, provide an annotated list of genes on the plasmid for 
which you have solid evidence: Name them if possible (refer to them by the starting 
position of the ORF where you cannot find a suitable name), give their start and stop 
positions and their length in amino acids, and list their functions briefly but specifically. 
More to Explore: Evolution of Antibiotic Resistance and a Resistance Plasmid 

 
If you would like to use your gene prediction data to dig deeper into the nature and 
evolution of this resistance plasmid, try answering the following questions: 

1. Multidrug-resistant bacteria are often capable of transferring resistance to 
multiple antibiotics on a single plasmid. Such resistance plasmids have 
frequently evolved when resistance genes become associated with transposons, 
mobile pieces of DNA able to move from place to place within a genome. If a 



transposon carries a resistance gene from the chromosome to a plasmid, that 
gene can now be more easily passed to another strain. As resistance plasmids 
are passed around among bacteria, there is a good chance they will eventually 
be in a cell carrying a different transposon-associated resistance gene, so that 
the resistance plasmid can "collect" additional genes over time. Transposons 
have repeated sequences at their ends and transposase genes that carry out the 
reaction of "cutting and pasting" the transposon DNA. Is there evidence to 
suggest that this resistance plasmid evolved in this manner? 

2. Vancomycin is considered a "last resort" antibiotic for infections caused by gram-
positive bacteria such as Enterococcus. Resistance to this drug is known, but it 
has developed more slowly than other antibiotic resistances, and most bacteria 
can still be killed by vancomycin. Physicians therefore do not use it unless it is 
the only drug that will work in a given situation, so that further spread of 
resistance is not encouraged. Based on what you have been able to learn about 
the genes in this resistance plasmid, can you suggest why it is more difficult for 
bacteria to develop resistance to this antibiotic than to others? 

 

Guided Programming Project: Pattern Matching for Sequence-Based Gene 
Prediction 

Sequence-based gene discovery methods are really quite simple in concept: As you 
saw previously in the Understanding the Algorithm, they simply search a string (DNA 
sequence) for a match to a pattern (start codon, stop codon, Shine-Dalgarno sequence, 
etc.). We can use parameters to limit the range of the search and whether to consider 
imperfect matches. In this guided project, you are asked to write the code to implement 
the ORF finder algorithm. We again limit our scope to prokaryotic gene prediction, 
where we can use sequence-based methods most effectively. 

In Understanding the Algorithm and Web Exploration, you saw that a good gene 
prediction program must be able to search for multiple patterns—for example, to find a 
start codon and then look upstream in the same sequence for a Shine-Dalgarno 
sequence. The pattern-matching algorithm described previously can be used repetitively 
by changing its parameters, so a good programming approach is to modularize your 
code by implementing a subroutine or function to search the sequence for the pattern. 
For this chapter's exercise, the focus is on reusing the function to find different kinds of 
patterns. Therefore, let's review how this might work. To write a function, we need to 
know the main task of the function, the parameters we need to pass to the function, and 
the information the function needs to return to the calling routine: 

§ Main task: The main task of our pattern-matching function is to traverse an input 
sequence searching for a pattern. 

§ Parameters passed in: For a flexible and reusable function, we should use 
parameters to pass in the distinctive information for a particular search: the 
pattern, the searched text, the start and stop locations, the increment value, and 
the threshold value. 

§ Information returned: For a gene prediction program, we need to know the 
location where the pattern was found. If we use 0 to represent the location of the 



first character in the sequence, then -1 is an invalid location and we can use this 
value to represent a failed search. The calling program can determine whether 
the function returned a positive number (location of a successful match) or a 
negative number (pattern not found). In some situations, we might also need to 
return additional information such as the number of matched nucleotides or the 
number of matches. 

The following pseudocode shows a solution for our function. 
Algorithm 

 
Pattern-Matching Function 

Goal: A function that can be used to find a pattern within a search text. 

Parameters: pattern, searched text, start location of search (assumes 0 is the first 
position in the search text), stop location of search, increment, threshold 

Return Value: The location of the pattern in the search text (assumes first character 
represented by location 0) or -1 if pattern not found. 

 
//  Function findPattern  
findPattern(pattern, searchText, startLoc, stopLoc, increment, 
threshold)      

textLen = length of searchText      
patternLen = length of pattern      
for each i from startLoc to stopLoc by increment          

ctr = 0          
j = i          
// count number of matching characters          
for each k from 0 to patternLen              

if searchText[j] == pattern[k]                  
ctr ++              

j++         
// compare number of matched characters to threshold          
if ctr/patternLen >= threshold              

return i      
return -1  

 
 

Notice in this example that a return statement appears within the loop, so that the 
loop terminates as soon as a match is found. Some programmers prefer to exit a loop 
only when the conditional statement of the loop fails, a technique that improves 
readability in long, complex programs. In this short function, however, the return will not 
detract from readability and saves unnecessary looping as well as an additional flag 
variable. If the loop ends (reaches the end of the sequence without finding the pattern), 
the search has failed and -1 is returned. The function just given can be used to find any 
of the patterns necessary for gene prediction in prokaryotes and can be called multiple 



times within a complete gene prediction program. Your main program should carry out 
the following steps, calling the pattern-matching subroutine to look for each pattern: 

1. Search for a start codon. If found, continue; otherwise, end. 
2. Search for a stop codon in the same reading frame as you found the start codon. 

Determine if the number of codons between the start and stop codons is >= a 
user-defined minimum value. If a large enough ORF is found, continue; 
otherwise, end. 

3. Search for a Shine-Dalgarno sequence no less than three and no more than 
seven bases upstream of the start codon. The sequence should match at least 
five nucleotides of the six-nucleotide consensus. If found, the ORF is a possible 
gene: continue; otherwise, end. 

4. Search the 500 nucleotides upstream of the Shine-Dalgarno sequence for a 
promoter sequence: TTGACA located 15–19 nucleotides upstream of TATAAT, 
allowing at most one mismatch in each sequence.  

 
Putting Your Skills Into Practice 

1. Implement the pattern-matching algorithm within a complete prokaryotic gene 
prediction program as described earlier. You may wish to review the Test Your 
Understanding questions, where you should have already considered parameters 
that would allow your algorithm to search for these elements. Generate a short 
test sequence with clearly defined promoter and Shine-Dalgarno sequences to 
ensure your program works as expected. 

2. Modify your program to allow the user to choose the match threshold for the 
Shine-Dalgarno and promoter sequences. Test the program using 
theEnterococcus plasmid sequence. Because this is a large sequence, you might 
want to start by testing only the ORF-finding routine on a segment of the plasmid 
sequence. Use your ORF Finder results for comparison. Then add the Shine-
Dalgarno and promoter prediction and compare your results with those obtained 
using EasyGene. Can the program find the genes and promoters EasyGene 
found? What happens if the thresholds for the consensus sequences are 
relaxed? 

3. Modify your program so it searches all six reading frames. Did you modify your 
function or the calling routine? 

4. On any sizeable piece of DNA, there will probably be more than one ORF; 
however, the previous steps stopped searching after any step failed. Modify your 
program so it continues to search until all possibilities are exhausted. 

5. Modify your program to discard an ORF if it has the same stop codon as an ORF 
already found and is shorter. 

6. In prokaryotes, ORFs that are part of operons (see BioBackground) may not be 
directly preceded by promoters: One promoter is used for the entire operon. 
However, each ORF will still be preceded by a Shine-Dalgarno sequence. Modify 
your program to take this information into consideration: For example, you might 
check for upstream ORFs oriented in the same direction and then look for 
promoters, or you might look farther upstream for a promoter first. 



7. How do the genes identified by your program in the Enterococcus sequence 
compare with those found by EasyGene? Your program uses a sequence-based 
search for promoters, whereas EasyGene uses a content-based analysis of 
codon usage; which mechanism seems to have worked best in terms of 
identifying the genes you classified as genuine in the Web Exploration? 

On Your Own Project: Sequence-Based Gene Discovery in Eukaryotes 

 Download  In the Web Exploration, you used—and in the Guided Programming Project 
developed— programs to find genes in prokaryotes using ORFs and sequence clues 
like promoter and Shine-Dalgarno sequences. In this project, you will apply these skills 
to predicting genes in eukaryotic genome sequences such as the human genome. If you 
are taking a nonprogramming course, there are exercises dealing with how sequence-
based methods can be applied to eukaryotes, and your instructor can make 
a completed gene prediction program available for you from the Exploring 
Bioinformatics website. 

Understanding the Problem: Sequence-Based Pattern Matching in Eukaryotes 
Clearly, our gene prediction program from the guided project does not care whether the 
input sequence is from a prokaryote or a eukaryote; it can just as well find eukaryotic 
patterns. Unfortunately, it is more difficult to determine what patterns to search for in 
eukaryotes. Although the start and stop codons are identical, there is no Shine-
Dalgarno sequence to identify the correct start codon, nor is there a single, clear 
promoter sequence (see Bio-Background). Worse, the ORFs are usually interrupted by 
introns, so we cannot start with simple ORF finding. However, we do have some 
options. 

In eukaryotes, the start codon is almost always the first AUG from the 5′ end of the 
mRNA and thus the first one after the transcriptional start site. Furthermore, in about 
75% of cases, the transcriptional start can be identified by the presence of a core 
promoter pattern. Thus, you should be able to modify your solution to the Guided 
Programing Project to look for a start codon (not an entire ORF, because of the intron 
problem) preceded by the core promoter pattern. Subsequent analysis could then 
identify the ORF by looking for splice sites and predicting where the exons are (much 
more on this topic in Chapter 10). 

The core promoter can be recognized by a consensus sequence called the TATA box, 
a sequence similar to 5´ TATA(A or T)A(A or T) followed by three additional 
nucleotides that are rarely cytosine or guanine. The TATA box is usually found within 
about 150 nucleotides upstream of the start codon and at about the -25 position relative 
to the +1 nucleotide (first nucleotide transcribed into mRNA). The transcriptional start 
site itself (+±1) commonly lies within an additional consensus sequence, the initiator 
sequence (Inr). Inrconsists of six nucleotides: The first two are usually C or T, the last 
two are usually G or A, and the middle two are CA, where the C is usually the +1 
nucleotide. We can write this sequence more easily by using code letters to represent 
combinations of nucleotides (so-calledambiguous nucleotides): Y (for pYrimidine) to 
represent C or T and R (for puRine) to represent G or A. The Inr sequence is 



then YYCARR. Similarly, in the TATA sequence, W is used to represent A or T, and the 
sequence is written TATAWAW. Table 9.2 shows the complete set of ambiguous 
nucleotide codes. 
Table 9.2: One-letter code for ambiguous nucleotides.  

 Open table as spreadsheet 

Code Meaning 
N A, T, C or G (aNy base) 
R A or G (puRine) 
Y C or T (pYrimidine) 
W T or A (Weak) 
M C or A (aMino) 
K T or G (Keto) 
S C or G (Strong) 
B C, T, or G ("not A") 
D A, T, or G ("not C") 
H A, C, or T ("not G") 
V A, C, or G ("not T") 

We can think of the core promoter as the minimal requirement for eukaryotic 
transcription. Unlike prokaryotic RNA polymerase, which binds directly to the -10 and -
35 promoter sequences, eukaryotic RNA polymerase II (the form of RNA polymerase 
that transcribes mRNA) binds to transcription factors: proteins that in turn bind to the 
DNA sequences. The transcription factors that bind the core promoter (e.g., TFIID, 
which binds the TATA box) direct RNA polymerase to the correct location for 
transcription, but a gene with only these promoter elements is only very weakly 
transcribed. Higher-level transcription requires additional transcription factors bound to 
additional sequences. Some transcription factors bind to sequences common at many 
different promoters, such as the CAT box (5´ CAAT) and the GC box (5´ GGGCGG), 
both of which usually occur within about 100 bp of the +1 site. Other transcription 
factors promote the transcription of genes only in a specific cell type or in response to 
some particular condition; their binding sites may be hundreds or even thousands of bp 
upstream. Examples include the estrogen response element (ERE; 5´ 
AGGTCANNNTGACCT) bound by the estrogen receptor in response to the hormone 
estrogen, the NF-κB site (5´ GGGRNNYYCC) used to activate growth and genes of the 
immune system, and the heat-shock element (5´ AGAAN repeats) activated in response 
to elevated temperature. Finding binding sites like these in a putative promoter region 
not only strengthens the case that a transcribed region has been identified but also 
provides clues about how the gene is regulated. 



Solving the Problem 
The questions in this section should help students in programming courses develop 
their implementation of a eukaryotic gene prediction program. Students in 
nonprogramming courses may wish to use these questions as exercises to test their 
understanding of the algorithms involved in sequence-based gene prediction. 

The pattern-matching algorithm discussed earlier uses a threshold parameter to decide 
how closely a sequence must match the pattern. How is this different from matching 
ambiguous nucleotides? If the eukaryotic gene prediction algorithm can match 
ambiguous nucleotides, does it still need the threshold parameter? Which of the 
sequence patterns discussed previously would you want to require a program to find to 
identify a gene, and which would be optional or perhaps user-selected? 

ATG codons used as start sites occur most commonly within a consensus sequence 
known as the Kozac sequence: 5′ gccRccATGG. In this sequence, capital letters 
represent highly conserved bases and lower case letters represent bases that are 
common but not as highly conserved. How could the algorithm be modified to account 
for the Kozac sequence? A short distance past the stop codon, eukaryotic genes have a 
polyadenylation site where the mRNA is cleaved and the poly(A) tail added. Although 
this sequence, 5′ AAUAAA, is known, why would it probably not be worthwhile to search 
for this sequence as a marker for the end of a predicted gene? 

Programming the Solution 
Your eukaryotic gene prediction program should search for start codons preceded by a 
core promoter sequence and allow users the opportunity to select other regulatory 
patterns from a list or read them in from a file (for example, one user might want to find 
estrogen-regulated genes but someone else might be interested in heat-shock genes). 

Your program will need to recognize the codes for ambiguous nucleotides such as Y 
and W. Suppose you are searching for YYCARR (the Inr sequence). One approach is to 
search for the unambiguous bases CA and then search backward and forward for valid 
nucleotides. Or, you could create a list of all possible values 
(CCCAGG, CTCAGG, TCCAGG, TTCAGG, CCCAGG,CTCAGG, etc.) and then search for an 
exact match with any one of those values. Regular expressions or character classes 
could be used to help with this search if appropriate for your language. Your program 
will also need to allow for some variation from the consensus sequence. 

Running the Program 
 Download  Create some short sample sequences to test your program; include ATGs 
that are and are not preceded by core promoter sequences or other promoter elements. 
Once you have a working version of your program, download a test 
sequence containing a eukaryotic chromosome region with one predicted gene from 
the Exploring Bioinformatics website. How does your program fare with this complex 
sequence? After completing the Web Exploration inChapter 10, you may wish to 
compare your program's output to that of a program with more sophisticated prediction 
methods. 
 



More to Explore: Transcription Factor Binding Sites 
 

 Link  Although most currently popular eukaryotic gene prediction programs incorporate 
content-based or probabilistic methods (Chapter 10), sequence-based methods remain 
important for exploring how predicted genes might be regulated by identifying binding 
sites for known transcription factors. If you would like to explore this idea further, you 
may want to look at the Jaspar database of transcription factor binding sites or 
the TFSEARCH or MAST search tools that can look for binding sites in a sequence you 
provide. 

 
 

Connections: Ongoing Need for Gene Discovery 
With the human genome "finished" since 2003, you might wonder if the need for gene 
discovery is fading. On the contrary, gene prediction remains a thriving part of 
bioinformatics for a number of reasons. Next-generation sequencing offers more 
sequences faster and cheaper than ever before, and new genomes—from viruses and 
bacteria to vertebrates—are being sequenced at the rate of dozens per month. Although 
there are often related genomes that allow annotation by alignment, each genome is 
unique and has genes never previously sequenced. Sequencing of metagenomes 
(seeChapter 8) of completely unknown organisms is resulting in the identification of 
many genes unlike anything in the databases. Even within sequenced genomes, gene 
discovery is an ongoing process; as discussed in Chapter 10, no one yet knows with 
certainty the actual number of genes in the human genome—let alone how many total 
proteins (considering alternative splicing and other complications) they encode. 

The study of small RNAs has become a key area of molecular genetics within the past 
few years, with the increasing recognition that short functional RNA molecules play 
important roles in the lives of cells. In addition to tRNAs, small RNAs are found as 
components of the ribosome, the spliceosome, and some enzymes ("ribozymes" such 
as telomerase, the enzyme that constructs the ends of chromosomes). Genes encoding 
the extremely small (20–25 nucleotide) short-interfering RNAs (siRNAs) and micro 
RNAs (miRNAs) recently shown to regulate gene expression and contribute to antiviral 
defenses are especially difficult to predict, and some estimates suggest there may be 
tens of thousands of such genes in the human genome. It is certain that the need for 
gene discovery will not soon disappear. New kinds of genes require the development of 
new computational algorithms and bioinformatic techniques, and similarity and structure 
analyses will continue to be needed to uncover the functions of newly discovered 
genes. 

 
 

BioBackground: ORFs, Consensus Sequences, and Gene Structure 
There are many ways to define a gene. One that covers most bases is that a gene is 
atranscription unit: a segment of DNA that can be transcribed into RNA. Although we 
most often think about genes encoding proteins, this definition also covers genes that 
encode functional RNAs, such as tRNAs and rRNAs used in the process of translation, 
as well as small regulatory RNAs and components of various enzymes. A transcription 



unit must have a promoter: DNA sequences allowing RNA polymerase to identify and 
transcribe the gene. If it is a protein coding gene, then within the transcribed region, 
there must be an open reading frame: a start codon (ATG, or AUG in RNA), a set of 
codons encoding various amino acids, and a stop codon (TGA, TAG or TAA). 

For a protein coding gene, the eukaryotic ribosome begins translating at the first start 
codon of an mRNA. Thus, the eukaryotic transcription unit can contain only a single 
ORF. However, this ORF may occur in segments called exons broken up by noncoding 
regions called introns. In a prokaryotic cell, the ribosome finds the correct start codon 
by binding to a sequence known as the Shine-Dalgarno sequence or ribosome 
binding site that precedes the start codon by a few bases. Thus, a prokaryotic 
transcriptional unit may contain multiple ORFs, each encoding a distinct protein and 
each preceded by a Shine-Dalgarno sequence. A transcription unit containing two or 
more ORFs is known as an operon, and the proteins encoded by genes in an operon 
often function together in some cellular process. Figure 9.5 compares eukaryotic (A) 
and prokaryotic (B) transcription units. 

 
Figure 9.5: Comparison of (A) a prokaryotic transcription unit, showing a three-gene 
operon with a single promoter and individual Shine-Dalgarno sequences marking the 
start codon for each ORF; and (B) a eukaryotic transcription unit, showing a single gene 
interrupted by introns and preceded by a core promoter region and additional 
transcription factor binding sites. 

Because prokaryotes lack introns, we can readily identify unbroken ORFs by looking for 
start and stop codons; the amino acids encoded by the codons between the two can be 
identified by reading the nontemplate (mRNA-like) strand and applying the genetic code 
(Chapter 2). Certainly, long ORFs are likely to be genes, but it is harder to tell if a short 
ORF might encode a short protein. An ORF preceded by a Shine-Dalgarno sequence 
and (farther upstream) a promoter sequence can be identified as a gene with more 
confidence, although the possibility that an ORF may be separated from its promoter by 
one or more other genes in the same operon must be considered. 

Eukaryotic DNA lacks Shine-Dalgarno sequences to conveniently mark start codons, 
and an intron-interrupted ORF may be spread over tens or hundred of thousands of 
nucleotides. Promoter regions still serve as useful clues, but whereas prokaryotes have 
clear consensus sequences for promoters, eukaryotic RNA polymerase looks not for a 



specific sequence but rather for an assembly of transcription factors bound to sites that 
may be near the transcriptional start site or hundreds of base pairs away. Some 
transcription factors bind most promoters, whereas others are specific to a particular cell 
type or condition. Furthermore, in both prokaryotes and eukaryotes, variation among 
species can be seen in the binding proteins and thus the sequences they bind. 
Promoters are also used to initiate transcription of genes for noncoding RNAs, but in 
eukaryotes, there are three distinct RNA polymerases (I, II, and III) that transcribe 
different kinds of genes (rRNA, mRNA, and tRNA/small RNAs, respectively), each with 
its own distinct promoter structure. 

Table 9.3 shows some DNA sequences that are important in gene expression in 
prokaryotes and eukaryotes. These are referred to as consensus sequences, because 
they are not as precise as might be imagined. The prokaryotic promoter, for example, is 
defined by two six-nucleotide sequences. One, the 210 sequence, is centered at about 
10 bp upstream of the transcriptional start site and is similar to 5′ TATAAT. The other, 
the 235 sequence is centered at about 35 bp upstream of the start site and is similar to 
5′ TTGACA. However, few if any natural promoters contain exactly these two 
sequences. Genes expressed at a high level tend to have closely matching promoter 
sequences, whereas weaker promoters are farther from the consensus sequence, but 
even strongly expressed promoters typically vary from these "canonical" sequences by 
a nucleotide or two. The consensus sequences were developed by sequencing and 
aligning the promoter regions (determined by biochemical and molecular experiments) 
of multiple genes and looking for the sequences that are conserved among them 
(Figure 9.6A). The nucleotides in the consensus are those that occur most frequently; 
ambiguous nucleotide codes (Table 9.2) are used when two or more occur with nearly 
equal frequency. A graphical representation called a sequence logo (Figure 9.6B) 
gives a better idea of the relative occurrences of the four nucleotides at each position. 
The sequences given in this chapter for the Shine-Dalgarno site, TATA box, Inr site, 
transcription factor binding sites, and so on are all consensus sequences derived from 
studying the sequences found in many genes. 

 

 

 

 

 

 

 



Table 9.3: Consensus sequences for gene expression in prokaryotes and 
eukaryotes.  

 Open table as spreadsheet 

Sequence Consensus (5' →3′) Function 

Prokaryotes 

-10 sequence TATAAT RNA polymerase binds to start 
transcription 

-35 sequence TTGACA 17±2 from -
10 

RNA polymerase binds to start 
transcription 

Shine-Dalgarno AGGAGG 5±2 from 
ATG 

Ribosome binds to find start codon 

Eukaryotes 

TATA box TATAWAW Core promoter; binds TFIID 
Inr sequence YYCARR Core promoter; contains +1 

sequence (C) 
GC box GGGCGG Transcription factor binding site 
CAT box CAAT Transcription factor binding site 
Kozak consensus gccRccATGG Context of start codon 
5' splice site MAG | GTragt Bound by spliceosome to remove 

introns 
3' splice site cAG | G Bound by spliceosome to remove 

introns 
intron branch site CTRAY 3' end of intron binds to mark for 

degradation 
polyadenylation 
site 

AAUAAA Cleavage of mRNA for poly(A) tail 



 
Figure 9.6: Generation of a consensus sequence. (A) The prokaryotic promoter 
consensus sequence derived from sequences of individual promoters. Conserved 
regions are shaded, with individual nucleotides that match the consensus in bold. (B) 
Sequence logo showing the occurrence of the four nucleotides at each position in the -
10 promoter consensus, generated with WebLogo from a subset of the data published 
by Harley and Reynolds (see References and Supplemental Reading). Sequence logo 
generated from WebLogo: Crooks et al., Genome Res. 14:1188 (2004). 
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Chapter 10: Advanced Gene Prediction: 
Identification of an Influenza Resistance 
Chapter Overview 

This chapter builds on the sequence-based gene prediction methods discussed 
in Chapter 9and examines content-based and probabilistic methods of gene discovery. 
These methods are of particular importance in eukaryotic gene prediction: The division 
of eukaryotic coding sequences into multiple exons separated by variable-length introns 
with poor consensus sequences at their boundaries greatly increases the difficulty of 
identifying coding sequences computationally. Codon usage and CpG island 
identification are introduced as content-based algorithms contributing to gene 
prediction, and neural networks and hidden Markov models are presented as examples 
of probabilistic gene prediction. The Web Exploration gives students the opportunity to 
use some of these prediction methods, whereas the Guided Programming Project 
enables programming students to experiment with prediction of CpG islands. In the On 
Your Own Project, students explore the design of a gene prediction method based on a 
hidden Markov model. 

• Biological problem: Identification of an influenza-resistance gene 
• Bioinformatics skills: Exon–intron prediction, neural networks, hidden Markov 

models 
• Bioinformatics software: GENSCAN, AUGUSTUS, Sequence Manipulation 

Suite (CpG island prediction), Neural Network Promoter Prediction 
• Programming skills: Frequency matching and sliding windows, hidden Markov 

modeling 
	  
Understanding the Problem: Exon Prediction 
Among the priorities for influenza research laid out by the World Health Organization in 
2009 is the investigation of genetic factors affecting susceptibility of individuals to 
influenza virus infection. Understanding how individual genetic variation might result in 
either increased susceptibility to influenza or increased resistance to the disease could 
lead to new preventative or therapeutic measures, either conventional or genetic. To be 
useful, however, recognition of heritable factors altering resistance must be followed by 
identification of specific genes and alleles. Methods such as genomewide association 
studies (GWAS; see Chapter 1) can identify general areas of the genome connected to 
a phenotype, but gene prediction methods may be needed to identify specific genes 
located in the identified region. 

One of the surprises in the "rough draft" of the human genome announced in June 2000 
was the small number of protein coding genes: Whereas many researchers had 
predicted 80,000 to 100,000 genes in the human genome, the actual number appeared 
to be less than 30,000. Indeed, by the time a "finished" genome sequence was 
announced in April 2003, the estimate of protein coding genes had been further revised 
downward to between 20,000 and 25,000. Even today, the exact number of genes in 
the genome remains uncertain. Annotation of the genome, the identification of genome 



elements and their functions (Figure 10.1), is an ongoing effort. A 2012 report from the 
ENCODE consortium, whose goal is to definitively catalog the human genomes, 
identified 20,687 protein coding genes, but further studies are likely to change that 
number. Gene discovery software plays an importantrole in this continuing process. 

 
Figure 10.1: A map of the human X-chromosome, showing locations and identities of 
some of its genes. 

As discussed in Chapter 9, sequence-based methods of gene prediction are the most 
straight-forward and are quite reliable in prokaryotes. In eukaryotes, however, a number 
of problems arise. First, there is no Shine-Dalgarno sequence to mark the start codon; 



eukaryotic translation begins at the first start codon in the mRNA, and unambiguous 
identification of the transcriptional start site is difficult. Second, eukaryotic promoters are 
a collection of transcription factor binding sites rather than the more consistent -10 and -
35 sequences of prokaryotes; many include the TATA box and Inr sequences of the 
core promoter, but this is not universally the case. Third, most importantly, there are 
very few unbroken ORFs: Nearly all genes in eukaryotes, especially higher eukaryotes, 
are split into multiple exons separated by introns. Finally, the sequence patterns at the 
intron–exon boundaries lack the clarity needed for reliable sequence-based prediction; it 
is clear from the sequence logos for the 5′ (or splice donor; Figure 10.2A) and 3′ (or 
splice acceptor; Figure 10.2B) sites that only a dinucleotide is truly conserved at each 
boundary, surrounded by a weak consensus. Thus, we need to consider additional 
methods of gene discovery in annotation of eukaryotic genomes. 

Gene prediction is used to identify genes within a newly sequenced genome but is also 
valuable in identifying genes when a particular genome region has been associated with 
a disease or phenotype of interest. In this chapter, we see how gene 
discovery algorithms designed to distinguish exons from introns can lead to the 
identification of a potential influenza resistance gene within a large DNA region 
correlated with inherited resistance. The gene examined in this chapter is known to 
interact with the influenza virus and has been suggested by Wolff et al. as a possible 
resistance gene (see References and Supplemental Reading); however, the 
identification of its chromosomal region with resistance is hypothetical. 

 
Figure 10.2: Sequence logos showing the poor consensus sequences found at the (A) 
5' (splice-donor) and (B) 3'(splice-acceptor) sites between introns and exons. Sequence 
logo generated from WebLogo: Crooks et al.,.Genome Res. 14:1188 (2004). 
	  
Bioinformatics Solutions: Content- and Probability-Based Gene 
Prediction 
If we cannot rely on ORFs and consensus binding sites to clearly define the set of 
genes in a eukaryotic genome, how else can we approach this problem? In Chapter 9's 
Web Exploration, we used one method that did not depend on identifying particular 
sequence patterns: EasyGene combines sequence-based searches for ORFs and 
Shine-Dalgarno sequences with an examination of codon-usage patterns. Codon usage 
is an example of a content-based method of gene prediction: A putative sequence is 
examined to see if the frequency of usage of different codons matches that observed for 
the organism as a whole. In reality, there could be reasons why some genes have a 
different codon bias than others (for example, some genuine genes may have been 
acquired by horizontal gene transfer), but, in general, authentic genes all show similar 



codon usage within one organism. This technique can also be applied to prediction of 
introns and exons within a presumed transcription unit: Where codon usage changes 
noticeably from the norm, a boundary between an exon and an intron has probably 
been crossed. Another content-based method is looking for CpG islands (see 
BioBackground), structures associated with transcribed regions. 

A problem with content-based methods is that they are not very precise. We may be 
able to find regions where codon usage matches the expected frequency well or poorly, 
for example, but this is unlikely to tell us exactly where an exon–intron boundary lies. 
Combining two methods, such as looking for a consensus exon–intron boundary 
sequence within the region where codon usage changes, can yield a better prediction 
than either the sequence- or content-based method alone. 

Better predictions still can be achieved by probabilistic methods such as hidden 
Markov models (HMMs). These are not truly distinct methods, but rather they use 
sequence and content data to calculate probabilities, such as the probability that any 
given nucleotide lies within an exon. Points where that probability declines sharply are 
likely to mark the boundaries between exon and intron, whereas points where it 
increases sharply mark intron–exon boundaries. This chapter considers some content- 
and probability-based methods to see how they are used to identify the segments of a 
coding sequence within a larger sequence. In the Guided Programming Project, you will 
experiment with how to identify CpG islands, and in the On Your Own Project, you will 
try your hand at designing an HMM to identify introns and exons. 
	  
BioConcept Questions 

1. Why is codon usage a poor predictor of the point where an exon and intron are 
joined? Why is the 5′ splice site consensus also a poor predictor? 

2. How much of a typical human gene is usually coding sequence, versus intron 
sequences that are spliced out (you may wish to recall the gene displays you 
saw in the UCSC Genome Browser in Chapter 1)? How does this pattern affect 
the difficulty of predicting introns and exons? 

3. Why are CpG islands considered valuable for gene prediction? Where would you 
expect to find one with respect to a eukaryotic transcription unit? What other 
elements might you look for in connection with the CpG island to increase the 
strength of a gene prediction? 

4. How could alignment of a sequence with orthologous sequences contribute to the 
prediction of exons and introns? How could expression data (e.g., cDNA 
sequences) contribute? 

	  
	  
	  
	  
	  
	  
	  



Understanding the Algorithm: Codon Usage, Frequency Matching, 
HMMs, and Neural Networks 
Learning Tools 

 
 Link  The Exploring Bioinformatics website has a link for an online hidden Markov 
model demo that you can use to get a better idea of how this model chooses the most 
likely hidden states given a set of probabilities. 

 

This section briefly considers algorithms for two content-based methods of gene 
prediction: codon usage and identification of CpG islands. We then spend some time on 
understanding hidden Markov models and briefly cover neural networks, two 
probabilistic methods that can be applied to gene prediction but are also used in many 
other areas of bioinformatics, including protein structure prediction and sequence 
alignment. 

Using Codon Frequencies in Gene Prediction 

In a protein coding sequence, codons are not used with equal frequency. Some amino 
acids are much more common in proteins than others: Serine is the most common 
amino acid in vertebrate protein sequences (about 8% of all amino acids), whereas 
tryptophan is the least common (only 1%). Additionally, the genetic code is redundant, 
and where there are multiple synonymous codons for one amino acid, they are not used 
with equal frequency. This idea was discussed briefly in Chapter 9, with the codon 
frequency table for E. coli given in Table 9.1. 

How might we apply the idea of codon frequency to predicting which sequences are 
exons and which are introns? An exon–intron boundary would be expected to separate 
a region where the codon frequency closely matches the expected frequency for the 
organism from a region where the frequency matches poorly, and an intron–exon 
boundary would do the reverse. As shown in Figure 10.3, we could examine a range or 
"window" of nucleotides, perhaps 75 nt (illustrated with a short sequence as window 1A 
in Figure 10.3), break it into codons (25 codons, in this case), and measure codon 
usage. Several codon usage measuresare in common use; one is the codon bias 
index (CBI) proposed by Bennetzen and Hall (see References and Supplemental 
Reading) that compares the usage of "preferred" (most common codons) to the random 
occurrence of those codons, giving a number between 0 (random codon usage) and 1 
(exclusive usage of preferred codons). The same procedure is then repeated for the 75 
nucleotides immediately downstream (window 1B in Figure 10.3) and the difference 
between the two is determined. The two windows are then shifted by one nucleotide 
(windows 2A and 2B in Figure 10.3), and the difference in CBI is computed again; note 
that the codons examined here are in a different reading frame. 



 
Figure 10.3: Sliding-window approach to exon prediction by codon-usage bias. Codon 
usage is compared for two adjacent same-length sequence windows (1A and 1B); a 
large difference suggests an exon–intron boundary. The windows slide along the 
sequence (2A and 2B) to identify potential boundaries in different reading frames along 
the length of the sequence. 

Continuing through the sequence with this sliding window approach, we expect to find 
points at which the boundary between the "A" and "B" windows corresponds to a drop in 
CBI to near zero (exon–intron boundary) or a sudden increase in CBI from near zero to 
a larger number (intron–exon boundary). Additional constraints can be added to the 
algorithm based on our understanding of gene structure. For example, the putative 
boundaries can be rejected if the conserved GT and AG pairs are not present. 
Additionally, the first exon must start with ATG and should not be preceded by a splice 
consensus, and the last exon ends with a stop codon and is not followed by a splice 
consensus. 

Prediction of CpG Islands 

Given the difficulty of unambiguously recognizing a eukaryotic promoter region based 
on consensus sequences, identification of CpG islands (see BioBackground) adds 
valuable corroboration and can be used in combination with sequence-based methods 
and exon prediction techniques to help identify the first exon of a gene. We can find 
CpG islands with afrequency matching algorithm. This algorithm uses a sliding 
window approach like the one just discussed (except that only one sliding window is 
needed) combined with elements of a pattern-matching algorithm (Chapter 9), counting 
up CG pairs within each window and computing a CpG ratio. The steps of this algorithm 
are outlined next. Notice that the CpG ratio is really an odds ratio: The result is 1.0 if the 
number of CpG pairs found in a window is the same as the number that would be 
expected by chance. Figure 10.4 shows the result of graphing the CpG ratio as the 
window slides through a DNA sequence. 



 
Figure 10.4: Sample of graphical output from a CpG island prediction program, with the 
CpG ratio (1.0 if the CpG frequency is the same as expected by chance) measured for 
each window as a sliding window moves across a sequence. A region of consistently 
high CpG ratio values represents a CpG island. 
Algorithm 

 
Frequency-Matching Algorithm 

1. Determine window size and set start position to the first nucleotide in the 
sequence. 

2. Count the number of CG pairs, C nucleotides, and G nucleotides in the window. 
3. Calculate the ratio of observed to expected CpGs for the window: 

 

4. Increment the start position by 1. If the window is not longer than the remaining 
sequence, repeat step 3; otherwise, continue. 

5. Examine the CpG ratios for all the windows and identify areas of CpG islands 
where the ratio is higher than a threshold. 

 

HMMs for Gene Prediction 

The difficulties with eukaryotic exon prediction discussed previously in combination with 
the explosion of genomic information available (especially with the advent of faster, 
cheaper next-generation sequencing) have driven the development of gene discovery 
algorithms to be more powerful even than combinations of sequence- and content-
based methods. Many popular gene prediction programs are now based on 
implementations of hidden Markov modeling, probability-based algorithms that use 
sequence and content data to inform a calculation of the likelihood that a given 
sequence is part of an intron or exon. 



Simply put, an HMM seeks to draw a conclusion about something that cannot be 
directly observed ("hidden") based on a set of observations and a set of known 
probabilities. A commonly given example is someone who wants to determine the 
weather in a certain city based on an observation such as umbrella sales or the 
activities a friend chooses. Given these observations and some basic data, such as the 
overall frequency of sunny and rainy days in that city, an HMM can compute the highest 
probability for the actual weather, which is the hidden state. 

Applying an HMM to gene prediction, the nucleotides of a DNA sequence would 
represent the input observations. In a simple model for an exon–intron boundary 
( Figure 10.5), the nucleotides could exist in one of three hidden states: exon (E), intron 
(I), or splice site (S). For each state, we have an alphabet of possible symbols that 
could be output. A position in an exon, for example, could be any nucleotide from the 
alphabet A, C, G, and T. We then use the data we have about genes in the organism 
being studied to determine emission probabilities (e): the likelihood of each output. 
For example, we might assume that As, Cs, Gs, and Ts occur with equal frequency 
within an exon and assign each one an emission probability of 0.25. Given more 
information, however, we could refine the probabilities further: It turns out that in human 
exons, codon bias and other factors increase the likelihood of a G or C (see References 
and Supplemental Reading), so a better set of emission probabilities for the exon or E 
state would be 0.3 for G and C and 0.2 for A and T (Figure 10.5). 

 
Figure 10.5: A hidden Markov model for the transition between an exon and an intron 
through a splice site (defined as the two nucleotides at the 5′ end of the intron). Black 
boxes show the four possible states in this model, with emission probabilities (e) in the 
white boxes below each state and transition probabilities (t) shown by the arrows 
between states. Below the model are the nine possible paths for a short DNA sequence 
and the probability of each; the highest probability is boxed and corresponds to a GT 
splice site. 



We also know there is a nucleotide bias at the splice-donor site (Figure 10.2A). A more 
realistic HMM could take into account all the data depicted in this sequence logo, but to 
keep our example simple, let's only use the data for the first two nucleotides of the 
intron, which are almost always G and T. Knowing the frequencies with which each 
nucleotide is found at these two positions ( Table 10.1), we can construct a list of 
emission probabilities for each nucleotide of a two-nucleotide splice-donor site (the 
S1 and S2 states in Figure 10.5). Finally, we need emission probabilities for the intron or 
I state. Human introns tend to be slightly AT rich, with T (0.3) favored over A (0.27) and 
G (0.23) favored over C (0.2). 

 
Table 10.1: Nucleotide frequencies for the first two intron positions.  

 Open table as spreadsheet 

Nucleotide Position 1 Position 2 
A 0.0005 0.0001 
C 0.0001 0.0069 
G 0.9993 0.0001 
T 0.0001 0.9929 

The last parameters needed for our model are the transition probabilities (t): the 
likelihood of changing from one state to the next versus the likelihood of remaining in 
the same state. A genuine splice-donor site is always followed by an intron, never an 
exon or another splice site, so we can assign S2→I a transition probability of 1.0. The 
probabilities for S2→E and S2→S1 are zero and therefore not shown in Figure 10.5. 
Similarly, we require a two-nucleotide splice-donor site, so S1→S2 would also have a 
transition probability of 1.0. For this example, we set the transition probability for 
E→S1 at 0.1, with E→E (remaining in the exon state) at 0.9. E cannot go to I without 
going to S1 first, so E→I is zero. Finally, we set the probability of continuing in an intron, 
I→I at 0.9 as well, with the probability of ending the intron at 0.1. These transition 
probabilities are shown as arrows in Figure 10.5. Notice that the entire model can be 
easily represented with a picture; many authors have commented that the ability to 
make a statistical model for anything you can represent visually is a strength of hidden 
Markov modeling. 

Now, our HMM can examine all possible states for each nucleotide in our input 
nucleotide sequence and then determine the overall probability of each outcome, or 
path through the states. Suppose we have a sequence that represents a two-codon 
exon followed by a GT splice site and four more intron nucleotides: ATGCGCGTATTC. In 
our simple model, because we have to start in an exon, end in an intron, and the splice 
site is a dinucleotide pattern, there are nine possible paths for this short sequence, as 
shown in Figure 10.5. For each, we can determine the probability at each position and 
then multiply to get the total probability. For example, for ES1S2IIIIIIIII, the 



emission probability of A in an exon position is 0.2, and the transition probability for 
E′S1 is 0.1. Then, the emission probability for T as the first nucleotide of a splice-donor 
site is 0.0001, the transition probability for S1′S2 is 1.0, and the emission probability for 
G at S2 is 0.0001. Next, the transition probability from S2→I is 1.0, the emission 
probability for C in an intron position is 0.2, the transition probability for I→I is 0.9 and so 
on. The total probability, P, is the product of all these individual probabilities: 0.2 × 0.1 × 
0.001 × 1.0 × 0.001 × 1.0 × 0.2 × 0.9…, which works out to 2.7 × 10-17. Taking the 
natural log of P gives a log probability value of -38.2. 

After computing the probability for each of the nine possibilities (see Figure 10.5), it is 
easy to determine which probability is the greatest (largest log P). In this example, the 
result matches the design of our test data, with a splice site following the two-codon 
exon. 

In our simple model, we are not considering what happens downstream of the intron. In 
reality, there would be another transition to another splice site and then to another 
exon—which we could similarly model by adding additional states with corresponding 
transition and emission probabilities. We also used somewhat arbitrary transition 
probabilities; a better model would base these on the typical length of exons and introns 
in the organism. We also have not yet accounted for the fact that the first exon begins 
with an ATG and is not preceded by an intron, whereas the last exon ends with a stop 
codon and is not followed by an intron. We can further strengthen the model by explicitly 
including the probabilities of other nucleotides surrounding the two splice sites. 
Additional sophistication could be built into the model in many ways: The CG bias in the 
promoter region could also be taken into account; for example, our codon bias data 
could be calculated into the exon emission probabilities. Some HMMs even include 
advanced statistical methods such as Bayesian statistics to calculate the emission and 
transition probabilities at each step. You will use existing HMM-based gene prediction 
software in this chapter's Web Exploration, and the On Your Own Project will give you 
an opportunity to design an HMM that is a little more complex than our initial example. 

Neural Network Modeling 

The neural network (NN) algorithm is one more important gene prediction method that 
we touch on briefly here. It takes its name from the network of neurons in the brain, 
which clearly recognizes patterns better and faster than a computer can. You 
immediately recognize a friend's face regardless of its setting, for example, whereas 
face-recognition software can readily be fooled by a hat or sunglasses. Although no one 
knows exactly how neural processing works, we know that each of your neurons is 
connected to many other neurons and fires when the sum of its many inputs, positive 
and negative, exceeds some threshold. It is this behavior that neural network algorithms 
attempt to mimic. 

The decision-making process illustrated in Figure 10.6 is a simple example of a neural 
network: We decide whether to go to a movie based on the sum of four inputs. Each 
input is given a different weight, and the sum must exceed a threshold (2) to make the 



choice to see the movie. Similarly, inputs for a neural network to predict exons might 
include codon bias, CG content, consensus sequences, length, and so on. 

 
Figure 10.6: Decision making with a neural network. Four inputs, each weighted 
differently, contribute to deciding whether or not to see a movie. The sum of the inputs 
must exceed 2 in order to see the movie; this is not true in the left diagram but is true in 
the right diagram. 

The hardest part of developing a neural network algorithm is deciding how to weight the 
inputs and set the threshold. Often, this is accomplished by adding a machine learning 
algorithm. An initial model is developed and used to classify a training set of known 
sequences as intron or exon sequences; the algorithm "learns" by adjusting weights and 
threshold until it can classify the training set with minimal errors. You will use a neural 
network algorithm in this chapter's Web Exploration. 
	  
	  
Test Your Understanding 

1. Suppose you use the sliding window algorithm described to analyze codon bias. 
At several points in a DNA sequence, you see a high score in your first window 
and a low score in your second window. But, when you slide the window by one 
or two nucleotides, you get low scores in both windows. How would you explain 
this pattern? How might you want to account for it in deciding where your exon–
intron boundaries are? 

2. Explain why the codon-usage method is likely to be imprecise in defining exon–
intron boundaries. 

3. CpG island prediction algorithms generally require not only a higher-than-
expected frequency of CG pairs but also that the region under examination has 
an overall higher percentage of G+C than the average in the genome. What is 
the value of this constraint? 

4. CpG islands are associated with promoter regions. How can this help with exon 
prediction? 

5. Draw an HMM that requires an ATG followed by some exon nucleotides, a 
splice-donor site, and then some intron nucleotides. 

6. How might the first exon be distinguished from internal exons in an HMM? 



7. Suggest some qualities of a DNA sequence that you would weight positively and 
some that you would weight negatively in developing a neural network model to 
identify an exon. 

	  
Chapter Project: Identifying an Influenza Resistance Gene 
Often, the study of a genetic disease or another genetic trait leads to a general region of 
the genome but does not immediately identify a particular gene. Chapter 1 dealt with 
how SNPs can be identified in GWAS experiments; as you saw in that chapter, the 
extensive human genome data now available often allows us to simply browse a 
genome region to look for genes of potential interest. But what happens when there is 
less information with which to work? This chapter's projects focus on a hypothetical but 
realistic scenario involving a chromosome region suspected of including an influenza 
resistance gene. 
	  
	  
Learning Objectives 

§ Understand how eukaryotic genes introduce additional complexity into the 
problem of gene prediction and recognize the limitations of sequence-based 
methods 

§ Know some content-based methods of gene prediction and appreciate their 
strengths and limitations 

§ Be able to combine content-based and probabilistic methods of gene discovery 
to identify the most probable locations of introns and exons in a eukaryotic DNA 
sequence 

§ Know how to design an HMM to integrate sequence and content data for a more 
precise and accurate determination of exon–intron boundaries 

Suggestions for Using the Project 

In the Web Exploration for this project, students analyze a large DNA sequence to look 
for potential genes using several different gene prediction techniques. The different 
methods have different strengths, and the value of combining multiple methods will be 
recognized. If time is limited, the first part of the Web Exploration gives the most 
comprehensive look at gene prediction. In the Guided Programming Project, students 
implement a sliding window algorithm for a content-based gene prediction method, 
identifying CpG islands. In the On Your Own Project, students design (and, in 
programming courses, implement) an HMM that builds on the discussion in 
Understanding the Algorithm and includes a splice-acceptor site. 

Programming courses: 
§ Web Exploration: Use existing tools including CpG island prediction, HMMs, and 

neural networks to identify exons, introns, and transcriptional units within a 90-kb 
segment of human DNA sequence. Part I could be used alone if needed. 

§ Guided Programming Project: Implement an algorithm to identify CpG islands 
using a sliding window algorithm. 



§ On Your Own Project: Design an HMM that incorporates both splice-donor and 
splice-acceptor sites and implement the HMM in a desired programming 
language. Optionally, increase the sophistication of the model by incorporating 
start codons and the potential for multiple exons. 

Nonprogramming courses: 
§ Web Exploration: Use existing tools including CpG island prediction, HMMs, and 

neural networks to identify exons, introns, and transcriptional units within a 90-kb 
segment of human DNA sequence. Part I could be used alone if needed. 

§ On Your Own Project: Design an HMM that incorporates both splice-donor and 
splice-acceptor sites and then increase the sophistication of the model by 
incorporating start codons and the potential for multiple exons. 

Web Exploration: Finding Genes in a Eukaryotic Genome Sequence 

As an influenza researcher, you have become interested in a small number of 
individuals you know were unvaccinated and repeatedly exposed to the 2009 
H1N1 influenza virus but did not become ill. When immunological testing showed they 
were not actually immune to the virus, you began to seek a genetic link that might 
explain their resistance to this disease. Using next-generation sequencing, you were 
able to identify common transcripts from respiratory epithelial cells that are missing in 
your resistant patients. This leads you to sequence a particular genome region in one 
patient, some 90,000 bp (90 kb) from the 1q25.3 region of chromosome 1. You would 
now like to analyze that genome fragment to identify genes within it that might be 
involved in susceptibility or resistance to influenza. 

Part I: Gene Prediction with Genscan and Augustus 
The number of available tools for gene prediction is somewhat mind-boggling. Several 
popular gene prediction programs are comprehensive in nature, bringing together 
several kinds of analysis in one piece of software; these would be a good place to start 
the analysis of a genome sequence or segment. We initially work with two such gene 
prediction programs, GENSCAN and AUGUSTUS. 

 Download  GENSCAN (see References and Supplemental Reading) combines HMM-
based models for coding-region and splice-site prediction with models that attempt to 
account for additional factors that affect splice-site choice as well as observed changes 
in splice sites and gene density in low-GC versus high-GC regions of human DNA. 
GENSCAN claims to correctly identify 70–80% of known exons. This comprehensive 
program produces clear and compact graphical output, making it easy to compare other 
programs' results. 

 Link  Start by downloading 1q25.txt, containing 90 kb of DNA sequence from human 
chromosome 1, from the Exploring Bioinformatics website. Navigate to a Web-based 
implementation of GENSCAN (there are several available) and input or upload your 
sequence in FASTA format. Choose a training set appropriate to analyzing human DNA 
from the drop-down menu: the GENSCAN implementation at the Pasteur Institute 
providesHumanIso, suitable for humans and other vertebrates and Drosophila (click the 



help icon to see this information), whereas other implementations provide a vertebrate 
training set. The Pasteur implementation includes additional options for Verbose 
output, providing some additional information in the output file and to Create 
Postscript output, giving a graphical representation of the results; set these 
options to get the most useful output. Other parameters can be left at their defaults for 
now; if needed, they could be set to reduce the stringency of the criteria for exons or to 
scale the output. Run the program. 

When the results appear, you will see a window containing text output (make this 
window full screen to make it easier to see). The output includes the specific locations 
of the predicted introns and exons, information on reading frames and splice sites, and 
translations for the putative coding regions. There is also useful information about the 
reliability of the predictions. You may want to save this output to a text file (from which 
you could copy protein sequences for later alignment, for example) and/or print it for 
later reference. 

There will also be a window for graphical output. If you are using a Macintosh, you can 
simply right-click the small visible region of the graphical output and choose Open 
with Preview. PCs unfortunately lack built-in software to deal with Post-Script files; 
alternatives include uploading the file to Google Drive, downloading the free Ghostscript 
viewer, opening with a graphics program such as Inkscape or Photoshop, installing a 
utility that makes PostScript files viewable with Adobe Reader, or finding an online 
conversion program. Choose one of these options as appropriate to view your graphical 
results. Figure 10.7 shows an example of the kind of output expected from GENSCAN. 

 
Figure 10.7: Sample output from GENSCAN, showing a single gene with four exons. 
Graphical output produced by GENSCAN. J. Mol. Biol. 268:78, 1997. 
	  
Web Exploration Questions 

1. List the genes that GENSCAN found within the sequenced region, along with 
their lengths and the approximate length of the processed mRNAs. Why do the 
gene arrows point in different directions? 

2. What is the difference between an exon marked Init and an exon marked Intr (in 
the text output)? Why is this difference significant in predicting genes? 

3. Look at how the predicted proteins begin. Does this information strengthen or 
weaken the case for any of the genes? 

4. What other features did GENSCAN identify (look in the text output)? Do these 
provide additional support for any of the predicted genes? 

Unfortunately, there is no perfect gene prediction algorithm. Not only will most prediction 
programs return some potential genes that aren't "real," but they may place introns and 



exons at different positions. However, we might imagine that "real" genes should be 
detected by a variety of algorithms while false positives might tend to be more program 
specific. So, it is useful to run other prediction programs on the same sequence and see 
how their results compare. 

 Link  AUGUSTUS is another popular gene prediction program that combines multiple 
kinds of prediction into a single piece of software (see References and Supplemental 
Reading). The core of AUGUSTUS is an ab initio prediction algorithm that uses HMMs 
to find the most likely sequence of hidden states (i.e., exon or intron for each nucleotide) 
that accounts for the sequence as a whole. The program can be "trained" by uploading 
sets of data (e.g., known genes from the organism being studied) and can incorporate 
user-defined information (such as locations of known expressed sequences) to improve 
its accuracy. 

 Download  Navigate to the Web-based implementation of AUGUSTUS. Choose the 
Web interface, then upload the sequence from 1q25.txt. Choose the correct organism 
from the drop-down menu; this will change the dataset used to "train" AUGUSTUS, so 
the training set should match the organism from which the sequence being analyzed 
originates. Note that you have some options for where AUGUSTUS will look for genes, 
as well as some "expert" options you can leave alone for now. Run the program to look 
for genes in your sequence. 

AUGUSTUS will initially show text output that is quite similar to the output from 
GENSCAN: lists of predicted initial, internal, and terminal exons and translations of the 
predicted genes. Use the link provided to get to a list of available files containing 
graphical and text output, then choose graphical browsable results, which will 
show the results in a genome browser format similar to the UCSC Genome Browser 
(see Figure 10.8A). Exons are shown in color, with darker colors representing greater 
confidence in the predictions. Hovering over or clicking on regions of predicted genes 
will display details such as the coding sequence or predicted amino-acid sequence. 

Will two different gene prediction programs give the same results? By now, you should 
realize there are no perfect criteria to identify exons, so you can probably guess that 
different programs using different algorithms will not necessarily identify the same 
sequences as exons. Indeed, if an exon is identified as such by more than one method, 
it would strengthen the evidence that it's a genuine exon. Thus, it's useful to compare 
the results of GENSCAN and AUGUSTUS. You could do this by examining the text 
output (importing it into a spreadsheet could make it easier to line up the exons 
identified by each program) or by using the graphical output. One approach would be to 
print the graphical output of one of the two programs and draw in the exons found by 
the other. 

AUGUSTUS has a feature that makes this comparison easy: because its output is in 
genome browser format, custom tracks can be added. For example, you could add a 
track listing exons found by GENSCAN and compare them side by side with the 
AUGUSTUS results.Figure 10.8B shows the format of a text file listing a series of 
exons that could be added to AUGUSTUS as a track; you can easily manipulate your 



GENSCAN text output into this format. Unfortunately, the Web implementation of 
AUGUSTUS does not support the addition of custom tracks, so to use it would require 
that you install AUGUSTUS locally. If you choose this option, you could also upload 
tracks with your data on CpG islands or predicted promoters (see part II) as shown in 
Figure 10.8B. 

 
Figure 10.8: (A) Sample output from AUGUSTUS. Exons (rectangles) and introns (thin 
lines connecting rectangles) are shown in a format similar to a typical genome browser. 
Potential splice variants are identified, and the overall G+C content of the DNA is shown 
in the bottom track. (B) Format of a text file in Feature File Format (FFF) to add two 
custom tracks to AUGUSTUS. Bracketed text is the name of the track; each line 
requires the name of the track, gene, or feature name and its location in the sequence. 
Graphical output produced by AUGUSTUS (Bioinformatics 19S2:215, 2003). 

After comparing the two programs' output (by any method), you should be able to 
identify one major gene on which the two programs agree to a significant degree 
(though not perfectly). This would represent a gene on which further efforts to 
understand influenza resistance should be concentrated. 
	  
Web Exploration Questions 

5. How does the number of genes predicted by AUGUSTUS compare to the results 
from GENSCAN? 

6. How does the structure (i.e., length, number of introns and exons, position in the 
DNA) of the genes predicted by AUGUSTUS compare to GENSCAN? 

7. How do the predicted proteins compare? Clearly, they're not identical, but do 
they appear related? For example, are they basically the same protein with 
perhaps some different splicing choices, or do they come from entirely different 
reading frames or even regions of the DNA? (You can of course use EMBOSS or 
BLAST to directly compare the proteins or their exons if you wish.) 



8. Describe the gene that you conclude may be important in influenza resistance: 
total length, number of exons, processed length, number of amino acids, etc. 

Part II: Evidence of Gene Expression 
GENSCAN and AUGUSTUS served to identify at least a candidate gene of interest that 
might be responsible for the observed resistance to influenza infection. Clearly, 
however, the matter is not settled. At this point, the investigator might turn to less 
comprehensive programs to look for some specific features that might support the 
existence of a gene in this region and hopefully clarify its specific location. Indeed, we 
do not yet know for sure whether any gene expression occurs in this region: The 
putative coding sequence could turn out to be a pseudogene. Therefore, let's look for 
evidence that something could be expressed from this region of interest. 

 Link  CpG islands are commonly found in the promoter regions of expressed genes, so 
let's start with a content-based method to see if there are CpG islands within the 
sequenced fragment. The Sequence Manipulation Suite includes a simple CpG island 
prediction program. Navigate there and paste or upload your sequence and submit it. At 
first, the resulting long list of CpG islands may seem daunting. However, notice that 
many of the results overlap: As discussed earlier in the chapter, CpG prediction uses a 
sliding window, and SMS shows results for each 200-bp window that meets the criteria. 
Therefore, consider how many nonoverlapping islands the program found. Given a set 
of overlapping sequences, one island would extend from the first nucleotide of the first 
sequence found to the last nucleotide of the last sequence in that set. It may also be 
useful to apply more stringent criteria; although the definition of a CpG island is 
operational, islands at least 500 bp in length with an overall GC content of at least 55% 
and a ratio of observed to expected CpG pairs exceeding 0.65 are considered most 
likely to genuinely function in gene expression. 

 Link  Next, we might look at whether programs specifically designed to identify 
promoters would find any transcriptional signals in reasonable locations relative to the 
putative genes in our sequenced region. Neural Network Promoter Prediction 
(NNPP) looks for core promoter features using a neural network algorithm based on 
training sets containing known promoters. Promoter prediction, however, often returns 
too many putative promoters to be useful from any large region of DNA. It is thus 
desirable to cut down the size of the DNA sequence to be examined. Using your 
GENSCAN and/or AUGUSTUS map, decide how much sequence to use. Include the 
first exon and all upstream sequences for the putative gene on which you are focusing. 
To avoid having to count nucleotides, use the Group DNAoption in the Sequence 
Manipulation Suite to number the sequence. Then cut the numbered sequence down to 
the nucleotides you decided on and use the Filter DNA option to get rid of the 
numbers again. Save your cut-down DNA, now the potential promoter region, to a new 
file. 

Finally, submit your potential promoter region to NNPP for processing and view the 
results. Remember to consider whether you need to look at both strands or can focus 
on just one. You may be surprised by the number of potential promoters predicted; this 
should give you some insight into the complexity of eukaryotic genome data. 



 Link  Again, we can increase our confidence in the results by comparing them with the 
results from other programs using different algorithms. TSSG claims to be the most 
accurate mammalian promoter prediction program; it uses a combination of sequence 
motifs and nucleotide composition analysis to identify promoters. Submit your putative 
promoter region to this program for analysis. You may wish to print the results for easy 
comparison with NNPP. If you have time and are interested, you may also wish to try 
analyzing your sequence with TSSW, which is very similar to TSSG but is based on a 
different database of protein sequence motifs. 
	  
Web Exploration Questions 

9.  Link  Do the CpG islands within the sequenced region support your hypothesis 
about the genes that are found here? Do they provide any information that might 
help distinguish between the GENSCAN and AUGUSTUS results? 

10.  Link  Higher scores in the NNPP results mean putative promoters that better 
match the criteria. Note on your map where the strongest predicted promoters 
are. The large letters represent the predicted transcriptional start sites. Can you 
see good matches to the consensus TATA box sequence (tATAWAW) upstream 
of potential translational starts? 

11. How does the number of promoters returned by TSSG compare with the NNPP 
results? What else is different about the TSSG results, and how might this 
difference be useful? 

12. Higher scores from TSSG again represent better promoter predictions. Do any of 
the high-scoring promoters match up (at least approximately) with high-scoring 
promoters from NNPP? 

13. Does your expression analysis help to reconcile the differences between the 
GENSCAN and AUGUSTUS predictions? 

14. Choose the gene you believe is founded on the most solid evidence, obtain its 
coding sequence, and use BLAST and OMIM to find out what is known about this 
gene. Have you actually identified a gene that makes sense in the context of 
influenza resistance? 

More to Explore: Further Analysis 
 

You could further pursue the discrepancies in identification of introns and exons 
between GENSCAN and AUGUSTUS by using additional analyses. Two programs in 
common use that focus more specifically on splice site identification are HMMgene and 
the neural network-based NetGene2. NetGene2 integrates a variety of rules that affect 
identification of exons, including nucleotide and codon bias, splice site consensus 
sequences, reading frame predictions, and lengths of introns and exons. This program 
claims to detect 95% of donor and acceptors sites with less than 0.4% false positives. 
HMMgene, as its name suggests, uses an HMM algorithm to predict gene structure. It 
only finds splice sites that make sense in the context of a whole gene, leading to fewer 
predicted genes but better predictions. 

Once a putative gene has been identified and we have a hypothesis about the locations 
of its exons, promoter, and other features, we still need confirming data, which usually 
come from "wet lab" experiments. We might, for example, obtain complementary DNA 



from cells of interest and carry out a microarray or deep sequencing experiment to 
identify all the expressed genes and determine whether any match our putative gene. 
Given the wealth of available information about the human genome, we can also take 
advantage of experiments done by others. One way to find out if our putative gene is 
actually expressed is to compare it with the Expressed Sequence Tag (EST) database 
to see if a unique expressed sequence has been identified within our gene. Another 
method is to use a BLAST search with output limited to sequences that 
include "mRNA" in their titles to look for DNAs from this region and compare them with 
our predicted exons. 

 

Guided Programming Project: Predicting CpG Islands 

Rather than searching DNA for a particular site or sequence, content-based gene 
prediction methods look at the DNA sequence more broadly for clues to which 
sequences are genes (or, more precisely, which are within exons). Here, we work with 
one specific example of a content-based algorithm to search sequences for CpG islands 
(see BioBackground) that may indicate a nearby promoter. An increase in the frequency 
of CG pairs has been observed between nucleotides -1,500 and +500 relative to a 
transcriptional start site; finding such a CpG island appropriately positioned upstream of 
a putative gene would strengthen the case that it is an actual gene. 

In a random DNA sequence, we would expect CG dinucleotides to occur once in every 
16 nucleotides (1 of every 4 nucleotides should be a C, and the next nucleotide will be a 
G one-fourth of the time). To identify CpG islands, we will not merely search for the 
sequence pattern (CG) but will also need to determine how frequently it occurs. As 
described in Understanding the Algorithm, a frequency-matching algorithm is a variation 
on the pattern-matching algorithm (Chapter 9) that can accomplish this. We use a 
sliding window to traverse our sequence, counting up CG pairs within each window and 
looking for higher than average CpG ratios. The following pseudocode shows how this 
could be done. In this example, all CpG ratios are stored and displayed; however, if a 
CpG ratio is >1.5 (strong indicator), stars (***) print next to the value to highlight the 
ratio. Of course, another alternative is to only print the windows where the ratio is >1.5. 
In the skills exercises, we explore other options. 
Algorithm 

 
CpG Island Prediction Algorithm 

• Goal: To identify regions of CpG islands 
• Input: A FASTA formatted input file containing a sequence 
• Output: Window start positions, CpG ratios, and text indicating high ratios. 

 
// Initialization—Read in sequence data  
Open input file containing sequence: infile  
Input window size from user: window  
read and discard first line (fasta comment) from infile  
for each remaining line of data in infile      

seq = seq + line   
 



// Step 1: Determine CpG ratios  
lenSeq = length of seq ratios = array of size lenSeq-window+1 (holds CpG 
ratio of each window)  
for each i from 0 to lenSeq-window+1      

cCtr = gCtr = cgCtr = 0      
for each j from 0 to window-1          

if seq[j+i] == 'C'              
cCtr++              
if seq[j+i+1] == 'G'                  

cgCtr++          
else if seq[j+i] == 'G'              

gCtr++      
if cCtr*gCtr != 0          

ratios[i] = cgCtr/((cCtr*gCtr)/window)      
else          

ratios[i] = 0   
 
// Step 2: Print window start position and CpG ratios  
for each i from 0 to length of ratios      
 if ratios[i] > 1.5          
  output i+1, ratios[i], '***'      
 else          
  output i+1, ratios[i]  
 
	  
Putting Your Skills Into Practice 

1.  Download  Write a program to implement the CpG island prediction algorithm in 
the language of your choice as outlined in the given pseudocode. You should 
read in a sequence from a file and produce a tabular list of high-CpG regions with 
their scores. Devise some simple test sequences to test your program, and then 
try it on the long sequence (1q25.txt) used in the Web Exploration. 

2.  Link  Compare the output of your program with the output of the CpG island 
prediction program from the Sequence Manipulation Suite. How similar are the 
predictions of the two programs? Can you suggest an explanation for any 
discrepancies? You may also want to look for additional CpG island prediction 
programs for comparison, such as CpGProD. 

3. The initial program as described here has the same problem we saw when we 
used the CpG island prediction program from the Sequence Manipulation Suite 
(Web Exploration, earlier): because it shows each window where the CpG ratio 
exceeds a threshold value, it produces a long list of overlapping CpG islands. 
Make the output of your program more user-friendly by merging overlapping CpG 
islands into single entries in the results table. 

4. To make your program even more effective, you might apply additional criteria. 
CpG islands associated with actual promoters are usually at least 500 bp in 
length and have an overall G+C content greater than 55% and a ratio of 
observed to expected CpG pairs exceeding 65%. Implement these additional 
criteria as part of your program. 



On Your Own Project: Hidden Markov Modeling in Gene Prediction 

Understanding the Algorithm introduced HMMs as a very flexible means of identifying 
coding segments by calculating the most probable match between an observed 
sequence and an exon–intron pattern based on our understanding of content and 
sequence cues. A fairly simple model accounting only for an exon–intron junction was 
presented there (Figure 10.5). This On Your Own Project asks you to design (and, for 
programming courses, implement) an HMM that also considers the 3′ splice-acceptor 
site. 

Understanding the Problem 
Our original HMM example included four states: exon nucleotides, a two-nucleotide 
splice site (the GT nucleotide pair occurring at nearly all 5′ intron boundaries), and 
intron nucleotides. We determined emission probabilities based on observed nucleotide 
frequencies in human introns and exons and established the probability of a transition 
from exon to splice site at 10%. Clearly, there are many more parameters that should 
be considered for a program to accurately identify exons and introns. 

Solving the Problem 
Although an HMM could become very complex indeed, let's add only a moderate level 
of complexity to our model. First, let's consider the difference between the first exon and 
an internal exon. The first exon begins with the ATG start codon, and in eukaryotes this 
is essentially the only possible start codon. Therefore, we could require an invariant 
ATG as the states of the first nucleotides of our model. The next states could be exon 
nucleotides, a splice-donor GT site, and intron nucleotides as described in 
Understanding the Algorithm. 

The splice-acceptor site can be defined for the purposes of this model as a near 
invariant AG occurring as the last two nucleotides of the intron. To determine the 
emission frequencies, use the following data: A occurs with a frequency of 99.98% at 
the first position, with all other nucleotides occurring at equal frequency. G occurs with 
99.93% frequency at the second position, C with 0.05% frequency, and A or T with 
equal frequency. This leaves the transition probabilities to be considered. For this 
exercise, allow an intron to transition to a splice-acceptor site with a 10% probability, 
similar to the original model. The splice-acceptor site always transitions to an exon—but 
not to the start codon, which is only in the first exon. Exons should have a 10% 
probability of transitioning to a splice-donor site but also a 10% probability of being the 
last exon and terminating the gene. Based on these parameters, design an HMM using 
a diagram similar to Figure 10.5 that will find a multiple-exon gene. 

Programming the Solution 
Once you have developed an appropriate design for your HMM, it should be relatively 
easy to implement in a programming language, if you are in a programming course. The 
first task is to generate the list of possible paths for the observed sequence. A recursive 
approach is appropriate because a state may be able to transition to any number of 
possible states, including itself. You should consider how you will deal with the start 
codon, because it is not expected to be the first three nucleotides of the input sequence. 



The end of the gene is also a problem. For this project, we assume any exon could be 
the last exon, and thus we need to assign a low transition probability from E→end, such 
as 0.001. 

Then, for each path, the emission and transition probabilities are calculated for each 
nucleotide and multiplied to give an overall probability, P. The natural log of P is then 
stored for each possibility, and the maximum value for log(P) is chosen as the best way 
to classify the observed sequence into exons, splice sites, and introns. 

You certainly do not want to turn your program loose on the entire 90-kb sequence from 
the Web Exploration without testing it carefully first. Develop some short test sequences 
with obvious start codons and splice sites (similar to the very short sequence used as 
the example in Figure 10.5) to test the program. Then, test it with longer sequences—
perhaps a single gene as predicted by GENSCAN or AUGUSTUS. If your program 
proves capable of handling these longer sequences, you may then want to try it on the 
full-length sequence and compare its results with those of the programs you used in the 
Web Exploration. 
More to Explore 

 
To make your HMM even more realistic, you could incorporate the observed 
frequencies of nucleotides at other positions within the splice site (Figure 10.2). If you 
would like to try this,Table 10.2 gives the nucleotide frequencies for the dataset used to 
make the sequence logos. 
Table 10.2: Nucleotide frequencies for the 5′  and 3′  splice sites.  

 Open table as spreadsheet 

  Splice-donor (5′) Site Splice-acceptor (3′) Site 

Positio
n 

A C G T A C G T 

-21         0.22 0.31 0.10 0.37 
-20         0.28 0.15 0.25 0.32 
-19         0.13 0.37 0.29 0.21 
-18         0.08 0.44 0.11 0.37 
-17         0.16 0.22 0.22 0.40 
-16         0.08 0.26 0.16 0.50 
-15         0.08 0.31 0.20 0.41 
-14         0.16 0.20 0.11 0.53 
-13         0.03 0.24 0.13 0.60 
-12         0.07 0.26 0.12 0.55 
-11 0.30 0.25 0.27 0.17 0.04 0.41 0.09 0.46 
-10 0.36 0.27 0.28 0.08 0.05 0.37 0.20 0.38 



Table 10.2: Nucleotide frequencies for the 5′  and 3′  splice sites.  
 Open table as spreadsheet 

  Splice-donor (5′) Site Splice-acceptor (3′) Site 

Positio
n 

A C G T A C G T 

-9 0.16 0.23 0.29 0.31 0.11 0.32 0.11 0.46 
-8 0.16 0.31 0.36 0.16 0.04 0.35 0.17 0.44 
-7 0.34 0.23 0.25 0.17 0.08 0.36 0.15 0.41 
-6 0.30 0.22 0.22 0.25 0.03 0.31 0.08 0.58 
-5 0.45 0.23 0.13 0.18 0.07 0.36 0.04 0.53 
-4 0.29 0.28 0.25 0.17 0.27 0.20 0.17 0.36 
-3 0.22 0.45 0.11 0.21 0.04 0.69 0.00 0.27 
-2 0.61 0.09 0.10 0.20 0.98 0.00 0.02 0.00 
-1 0.17 0.05 0.60 0.18 0.00 0.02 0.98 0.00 
+1 0.0005 0.0001 0.9993 0.0001 0.16 0.21 0.56 0.07 
+2 0.0001 0.0069 0.0001 0.9929 0.38 0.19 0.07 0.36 
+3 0.59 0.02 0.38 0.01 0.32 0.15 0.25 0.28 
+4 0.68 0.18 0.06 0.08 0.18 0.25 0.20 0.37 
+5 0.02 0.04 0.83 0.11 0.14 0.29 0.29 0.28 
+6 0.03 0.15 0.19 0.63 0.15 0.22 0.37 0.26 
+7 0.31 0.31 0.27 0.10 0.17 0.28 0.23 0.32 
+8 0.25 0.24 0.30 0.20 0.33 0.17 0.30 0.20 
+9 0.16 0.34 0.23 0.26 +0.19 0.40 0.13 0.28 
+10         0.09 0.21 0.45 0.25 
+11         0.32 0.34 0.18 0.16 
+12         0.20 0.36 0.26 0.18 
+13         0.27 0.30 0.14 0.29 
+14         0.21 0.14 0.42 0.23 
+15         0.14 0.35 0.33 0.18 
+16         0.25 0.20 0.30 0.25 
+17         0.34 0.20 0.23 0.23 
+18         0.18 0.43 0.26 0.13 
+19         0.22 0.22 0.36 0.19 

 
 

 
 
 



BioBackground: Splicing and CpG Islands 
mRNA Splicing in Eukaryotes 

When a gene is expressed, it is transcribed in the nucleus to make a single-stranded 
RNA complementary to the entire template strand of the DNA for that gene: the pre-
mRNA. A methylated G nucleotide is added to the 5′ end of the mRNA by an unusual 
5′-to-5′ linkage; this 5′ cap is the structure by which a ribosome recognizes the mRNA. 
At the 3′ end, cleavage occurs at a polyadenylation site (consensus sequence 
5′AAUAAA), and a poly(A) tail of 200–300 A nucleotides is added to protect the mRNA 
from rapid degradation. 

Splicing is carried out by the spliceosome, a large complex made up of several small 
nuclear ribonucleoproteins (snRNPs, pronounced "snurps"): functional units 
composed of both RNA and protein. The snRNPs direct the binding of the spliceosome 
to sites at the beginning and end of an intron to cut an mRNA, remove the intron, and 
rejoin the ends (see Figure 10.9). At the 5′ end of an intron (5′ splice site), the exon 
usually ends with a consensus sequence close to MAG, and the intron almost invariably 
begins with GU, usually followed by RAGU. On the other end, the 3′ splice site is 
defined by an AG sequence, most often CAG, at the end of the intron, with G as the first 
base of the next exon. Within the intron itself is a branch site with the consensus 
sequence CURAY 20–50 bases from the 3′ end of the intron; after cutting the mRNA, 
the 3′ end of the intron is joined to this site, forming a "lariat" structure that marks the 
intron for degradation rather than transport to the cytoplasm. The exons are joined 
together, and when splicing is complete, the mature mRNA moves to the cytoplasm for 
translation. 

CpG Islands 

Although each species has a characteristic ratio of G and C nucleotides in its DNA to A 
and T nucleotides, the frequencies of these nucleotides are not constant across the 
genome. A pattern noted in the study of genomes is that the promoter regions of known 
genes tend to be higher in G and C nucleotides than A and T nucleotides. Furthermore, 
the dinucleotide CG—which molecular biologists call CpG, with the letter p representing 
the phosphate in the sugar-phosphate DNA backbone—occurs in these regions much 
more frequently than would be expected by chance. Because the C in a CG pair is a 
target for methylating enzymes, the concentration of methylated nucleotides is higher in 
promoter regions that overlap CpG islands, altering gene expression patterns. The 
identification of CpG islands is therefore one marker for a promoter region. Remember 
that the promoter region for a eukaryotic gene can be long, and it is not precisely 
defined with regard to the translational start site. Similarly, CpG island(s) are not 
precisely aligned with a particular promoter element but can occur anywhere within the 
broadly defined promoter region. However, CpG-rich regions in an area where there is 
other evidence of gene expression can add credibility to the prediction of a promoter 
and a downstream first exon. 



 

 
Figure 10.9: The process of mRNA splicing in a eukaryotic cell, showing the consensus 
sequences occurring at the two splice junctions and the internal branch site. 
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Chapter 11: Protein Structure Prediction and 
Analysis: Rational Drug Design 
Chapter Overview 

Thus far, we have worked with the sequences of proteins: we have viewed them as 
simple chains of amino acids. But, a protein is actually a folded, three-dimensional 
structure (see BioBackground at the end of the chapter), and this structure is crucial to 
the protein's function. In this chapter, we use Web-based software to model protein 
structure and see how such molecular modeling can aid in drug design. We learn to 
"align" protein structures and observe that even when sequence similarity is limited, 
proteins can be very similar in structure and thus function. In the Web Exploration we 
also examine how a protein's structure might be predicted from its sequence, and in the 
Guided Programming Project and On Your Own Project, we implement one algorithmic 
solution to this complex problem. 

• Biological problem: Designing an HIV protease inhibitor 
• Bioinformatics skills: Protein structure modeling and structural comparison, 

structure prediction 
• Bioinformatics software: Jmol, SWISS-MODEL, PDBeFold, PSIPRED 
• Programming skills: Chou-Fasman algorithm, sliding windows, hash tables 

	  
	  
Understanding the Problem: Structure Prediction 
When HIV-1, the virus that causes AIDS, was discovered in 1984, it was commonly 
assumed a vaccine, effective antiviral drugs, or both would be found within a few years. 
However, 2012 marked the 25th World AIDS Day, and the pandemic is still going 
strong, with an estimated 34 million living with HIV or AIDS worldwide and nearly 2 
million annual deaths ( Figure 11.1). Despite two and a half decades of intensive 
research, we still have no vaccine and no drugs that can cure the infection. Perhaps this 
is less surprising when we realize no antiviral drug exists that can cure any viral 
disease, and indeed there are few effective antivirals on the market. Part of the reason 
for this is that unlike bacteria, viruses replicate within our own cells and use our own 
cellular machinery to copy their genomes and synthesize their proteins, leaving us few 
virus-specific targets to attack with pharmaceuticals. 



 
Figure 11.1: World Health Organization (WHO) data on the global HIV pandemic as of 
the end of 2010, with a drawing showing the structure of the HIV virus. Data from: 
WHO. 

A detailed understanding of the three-dimensional structure of virus proteins may be 
one route to new breakthroughs in antiviral research. The two key goals of any 
antimicrobial drug are (1) to be effective against the disease-causing agent and (2) to 
be selectively toxic: able to kill or inhibit the microbe without causing harm to the 
patient. Viruses have no metabolism outside host cells and few proteins of their own; 
this makes it difficult to identify effective and selective antiviral drugs by the standard 
approach of testing libraries of potentially bioactive molecules. Rational drug 
design provides an alternative: By examining the three-dimensional structure of a viral 
protein, one should be able to design a molecule to precisely fit some part of that 
protein and block its function. Two of the first examples of commercially available 
antiviral agents designed this way are anti-HIV drugs: raltegravir (Isentress), an inhibitor 
of the HIV integrase enzyme, and enfuvirtide (Fuzeon), which blocks entry of HIV into 
cells. 

Unfortunately, rational drug design poses its own difficulties. Determination of the 
detailed three-dimensional structure of a protein requires crystallizing that protein and 
then measuring how the crystal scatters x-rays, a process called x-ray 
crystallography. Many proteins are difficult to crystallize, particularly if they have 
hydrophobic regions that insert into membranes, and this process is slow and labor 
intensive. Once a crystal structure is known, there remains the problem of accurately 
determining the shape of a molecule that fits into some part of the structure, 
synthesizing that molecule, and then testing it to see if it has the desired biological 
effect. Furthermore, although our skills in these areas are improving, it still remains 
difficult to predict potential toxicity of a prospective therapeutic molecule as well as how 
quickly it will be metabolized by the patient and lose its effect. Fortunately, today's 
bioinformatic techniques are improving our ability to predict and model protein structure. 



In addition to its application to drug development, we can use protein structure in many 
other ways. For example, a key functional region of a protein may actually be made up 
of amino acids scattered throughout its primary sequence but brought together by 
folding and thus not recognized in ordinary alignments. Furthermore, we are becoming 
increasingly aware that changes in macromolecular structure are important components 
of many diseases, both genetic and infectious: For example, the F508 mutation causes 
cystic fibrosis (Chapter 2) by interfering with the folding of the CFTR protein, and prion 
diseases such as "mad cow disease" result from "contagious" misfolding of a specific 
protein (see References and Supplemental Reading for more on protein folding in 
human disease). 
	  
	  
Bioinformatics Solutions: Predicting and Modeling Protein Structure 
Molecular biology and bioinformatics have worked together to make great strides in 
sequencing genes and even entire genomes, identifying genes within genomes, 
predicting amino-acid sequences of proteins, and comparing sequences to obtain clues 
to function and evolutionary relatedness. However, determining the nucleotide 
sequence of a gene allows us to predict only the primary structure (amino-acid 
sequence; see BioBackground) of the protein it encodes. An actual cell is a three-
dimensional arena where molecules with specific structures interact, and the three-
dimensional structure of a protein (Figure 11.2) determines what interactions it can 
have with other molecules. An enzyme must have the correct shape to bind a specific 
substrate and exclude nonsubstrate molecules, for example, whereas a transport 
protein on the surface of a cell must have a specific structure to selectively allow 
specific molecules to enter or exit. 



 
Figure 11.2: Three-dimensional structure of the HIV protease, showing its two folded 
protein chains (gray and white) and a protease inhibitor in its active site (black). 
Structure from the RCSB PDB (www.pdb.org): PDB ID 1AID E. Rutenber et al. (1993) 
Structure of a non-peptide inhibitor complexed with HIV-1 protease: Developing a cycle 
of structure-based drug design. J. Biol. Chem. 268:15343–15346. 

To date, no experimental methods for determining the structure of either proteins or 
nucleic acids can keep up with the tremendous rate at which their primary sequences 
are being determined. Although we have successfully determined tens of thousands of 
protein structures, genome sequencing projects have given us tens of millions of 
primary sequences of nucleic acids and proteins. One goal of computational structural 
biology is to solve this problem by predicting the structure of a protein given only its 
primary sequence. The possible conformations any protein can assume are determined 
by its amino-acid sequence, and its final, folded state is thus determined to a large 
degree by its primary structure (see BioBackground). Thus, given sufficient 
understanding of individual amino acids and the conditions under which they are folding, 
this should be possible. However, it is a big problem: We might know that a particular 
amino acid has an –OH group that can form a hydrogen bond with an amino group on 
another amino acid, but how do we know which two amino acids to pair up in a protein 
hundreds or thousands of amino acids long? 

The number of possible folded structures for a protein is enormous, so algorithms that 
predict folding from sequence rely on structural rules to arrive at a likely folded 
structure. Many of these rules originated with Linus Pauling's pioneering work on protein 



structure (see References and Supplemental Readings), which defined the nature of the 
chemical bonds between amino acids and how bond angles, rotation of atoms, and 
flexibility of chains limit the structures that can be formed. Pauling predicted the 
structure of the a-helix (see BioBackground) as a major component of folded proteins, 
later confirmed by x-ray crystallography. In an α-helix, the C=O group of one amino acid 
must be able to form a hydrogen bond with the amino group of an amino acid located 
four residues farther down the chain. However, not just any amino acid can be included 
in the helix; proline, for example, introduces a turn into the protein backbone and 
disrupts helical structure. Similar rules can be worked out for amino acids likely to 
form β-sheets (see BioBackground) and other elements of protein secondary structure. 
Anfinsen (see Refer-ences and Supplemental Reading) and others then went a step 
further, explaining that the thermodynamics of the cellular environment determines how 
these structures fold into a three-dimensional tertiary structure. Bioinformatic algorithms 
use secondary structure rules and thermodynamic optimization algorithms to predict 
how a protein folds into an overall stable structure. 

Our ability to effectively predict tertiary structure from sequence alone (ab initio or de 
novo prediction) is unfortunately quite limited at present. However, the combination of 
increasing numbers of experimentally determined protein crystal structures with the 
enormous explosion in genomic data has given rise to two additional bioinformatic 
techniques that are very important in modeling protein structure. Homology 
modeling (Figure 11.3A) is used to find the structure of a protein when an ortholog or 
paralogs with a known structure can be identified. To construct a homology model, the 
protein of interest is aligned with the sequence of a similar template protein, and the 
alignment is used to map its amino acids onto a structural model based on the template 
structure. If there is no closely related protein with a known structure, threading (Figure 
11.3B and C) can be used instead. Threading takes advantage of the observation that 
most proteins whose structures are known are built on a limited number of basic folded 
units. For example, the immunoglobulin fold shown in Figure 11.3B is a basic structural 
unit found one or more times in dozens of different proteins; although many of these 
proteins function in the immune system, their molecular functions are very diverse. As 
shown in Figure 11.3C, new protein sequences can be "threaded" onto common 
structural units, allowing at least a partial structural model to be constructed. 

This chapter's projects explore protein structure prediction and modeling in the context 
of rational drug design. In the Web Exploration, we use modeling software to examine 
the structure of the HIV protease, examine how its structure relates to function, and then 
construct a homology model of a drug-resistant protease mutant. In the Guided 
Programming Project, we examine de novo structure prediction and compare predicted 
secondary structure with experimentally verified protein conformation, implementing a 
more complete solution in the On Your Own Project. 



 
Figure 11.3: Predicting protein structure based on similarity to known structures. (A) 
Homology modeling: protein of unknown structure (blue) is an ortholog or paralog of a 
protein of known structure (black), allowing structure to be modeled from a sequence 
alignment. Courtesy of Tim Vickers. (B) The immunoglobulin fold, a common protein 
structural domain. (C) Threading: sequence comparison allows part of a protein of 
unknown structure (blue) to be threaded onto a protein of known structure (black), 
showing that it contains an immunoglobulin domain. Structures created from MOLMOL. 
	  
	  
BioConcept Questions 

1. Why is it valuable to know the three-dimensional structure of a protein? 
2. Both secondary and tertiary structures of proteins are three-dimensional 

structures; what is the difference between the two? 
3. What characteristics of amino acids help determine how they will participate in 

the folding of the protein? 
4. Sickle-cell anemia results from changing a single hydrophilic amino acid (glycine) 

found on the surface of the folded protein to a hydrophobic amino acid (valine). 
Discuss how the hydrophobicity of the amino acid could be so important in this 
disease. 

5. The amino-acid sequence of a protein clearly must determine what folded 
structures are possible for that protein. What other factors contribute to the 
structure that is actually chosen? What complications arise in trying to predict a 
folded structure from an amino-acid sequence? 

	  
	  
Understanding the Algorithm: The Chou-Fasman Algorithm for 
Secondary Structure Prediction 
Learning Tools 

 
 Link  The Protein Data Bank (PDB), managed by the Research Collaboratory for 
Structural Bioinformatics, is the major repository for proteins whose structures have 



been determined experimentally. The PDB's long-standing "Molecule of the Month" 
series is an excellent way to improve your understanding of the relationship between 
protein structure and function. Every month, a protein important to some key biological 
process is discussed from a structural perspective and illustrated by molecular models 
made from structures available in the PDB; the site's archives now include hundreds of 
proteins. 

 

The ab initio prediction of the three-dimensional (tertiary) folded structure of a 
polypeptide structure from its amino-acid sequence is a "holy grail" of structural biology. 
Because of the enormous complexity of proteins and the many factors that could affect 
amino-acid interactions, this is a very difficult problem to solve. Indeed, even accurately 
predicting the folding of the amino-acid chain into the secondary structures (e.g., α-
helices and β-sheets) that underlie tertiary structure remains an open problem in 
bioinformatics. 

Many of our ideas about secondary structure prediction stem from an algorithm 
proposed by Peter Chou and Gerald Fasman in 1974 (see References and 
Supplemental Reading). At that time, a handful of protein crystal structures were known, 
and Chou and Fasman developed the idea of examining these known structures to 
determine which specific amino acids within the proteins contributed to each secondary 
structure. Using this information, they developedpropensity values (the likelihood that 
an amino acid would appear within a particular secondary structure) and frequency 
values (the frequency with which an amino acid is found in a hairpin turn) for each 
amino acid ( Table 11.1). These values were updated in 1978 (see References and 
Supplemental Reading) using new training data and became known as the Chou-
Fasman parameters. 
Table 11.1: The Chou-Fasman parameters.  

 Open table as spreadsheet 

Amino Acid P(a) P(b) P(turn) f(i) f(i + 1) f(i + 2) f(i + 3) 
Alanine 142 83 66 0.060 0.076 0.035 0.058 
Arginine 98 93 95 0.070 0.106 0.099 0.085 
Asparagine 67 89 156 0.161 0.083 0.191 0.091 
Aspartic acid 101 54 146 0.147 0.110 0.179 0.081 
Cysteine 70 119 119 0.149 0.050 0.117 0.128 
Glutamic acid 151 37 74 0.056 0.060 0.077 0.064 
Glutamine 111 110 98 0.074 0.098 0.037 0.098 
Glycine 57 75 156 0.102 0.085 0.190 0.152 
Histidine 100 87 95 0.140 0.047 0.093 0.054 
Isoleucine 108 160 47 0.043 0.034 0.013 0.056 
Leucine 121 130 59 0.061 0.025 0.036 0.070 



Table 11.1: The Chou-Fasman parameters.  
 Open table as spreadsheet 

Amino Acid P(a) P(b) P(turn) f(i) f(i + 1) f(i + 2) f(i + 3) 
Lysine 114 74 101 0.055 0.115 0.072 0.095 
Methionine 145 105 60 0.068 0.082 0.014 0.055 
Phenylalanine 113 138 60 0.059 0.041 0.065 0.065 
Proline 57 55 152 0.102 0.301 0.034 0.068 
Serine 77 75 143 0.120 0.139 0.125 0.106 
Threonine 83 119 96 0.086 0.108 0.065 0.079 
Tryptophan 108 137 96 0.077 0.013 0.064 0.167 
Tyrosine 69 147 114 0.082 0.065 0.114 0.125 
Valine 106 170 50 0.062 0.048 0.028 0.053 
Data from: Chou & Fasman, Adv. Enzymol. Relat. Areas Mol. Biol. 47:45-148 (1978). 

Chou and Fasman calculated three different propensity (P) values for each amino 
acid: P(a),P(b), and P(turn), representing the likelihood of finding the amino acid within 
an α-helix, β-strand, and β-turn, respectively. These values are log-odds ratios, 
where P > 1.0 indicates the amino acid has a greater than average chance of 
contributing to that particular structure, P < 1.0 means it has a less than average 
chance, and P = 1.0 means it is no more likely to contribute to that structure than any 
randomly chosen amino acid. Each amino acid also has four frequency (f) values: f(i), f(i 
+ 1), f(i + 2), and f(i + 3), the frequencies with which it is found at each of the four 
positions of a hairpin turn (β-turn). From these parameters, Chou and Fasman 
developed rules to predict the locations of α-helices, β-strands, and β-turns. Different 
implementations of this algorithm vary in the threshold values for the parameters or the 
criteria for designating a region an α-helix or a β-sheet. One imple-mentation is 
presented here. 
Algorithm 

 
Chou-Fasman Algorithm 

1. Identify α-helices 
a. Find a region of six contiguous residues where at least four haveP(a) > 

103. 
b. Extend the region until a set of four contiguous residues with P(a) < 100 is 

found. 
c. If the region's average P(a) > 103 and ΣP(a) > ΣP(b) for the region, then 

that region is predicted to be an α-helix. 
2. Identify β-strands 



a. Find a region of five contiguous residues where at least three have P(b) > 
105. 

b. Extend the region until a set of four contiguous residues with P(b) < 100 is 
found. 

c. If the region's average P(b) > 105 and ΣP(b) > ΣP(a) for the region, then 
that region is predicted to be a β-strand. 

3. Determine β-turns 
a. For each residue j, determine the turn propensity or P(t) for j as follows: 

P(t)j = f(i)j × f(i + 1)j + 1 × f(i + 2)j + 2 × f(i + 3)j + 3 
b. A turn is predicted at position j if P(t) > 0.000075, and the averageP(turn) 

for residues j to j + 3 > 100, and ΣP(a) < ΣP(turn) > ΣP(b). 
4. Handling overlaps 

If an α-helix region overlaps with a β-sheet region, the region's summed values 
for P(a) and P(b) are used to determine the overlapping region's most likely 
structure. If ΣP(a) > ΣP(b) for the overlapping region, then it is considered an α-
helix. If ΣP(b) > ΣP(a), then the overlapping region is considered a β-sheet, and 
if ΣP(b) = ΣP(a), then no valid determination can be made. 

Neural network methods (see Chapter 10) are common in secondary structure 
prediction programs such as PSIPRED, which we will use in the Web Exploration 
Project. However, although the Chou-Fasman algorithm is sometimes denigrated for its 
accuracy of only 50–60%, the ideas behind it underlie many of these newer methods. 
Indeed, some methods in current use are much more complicated yet only slightly more 
accurate. The Chou-Fasman algorithm remains very valuable for understanding the 
principles of protein structure prediction. 
	  
	  
Test Your Understanding 

1. Find an α-helix in the short sequence N-MDGPDFWEAMKRISTQTYSNGHKMPS-C 
using the Chou-Fasman rules. 

2. Examine the Chou-Fasman rules carefully, and look at the P(a) and P(b) values 
for various amino acids in Table 11.1. What can you see that might reduce the 
ability of this algorithm to clearly distinguish between α-helices and β-sheets? 

3. How do we define a β-turn in a protein structure? Given this definition, can you 
think of a simple rule you could add to the algorithm for identification of β-turns 
that might increase its accuracy? 

4. Would it improve the predictive ability of the algorithm to specify that a region 
should be identified as a β-strand only if it is either preceded or followed by a β-
turn? Why or why not? 



5. Proteins that are part of the cell membrane or an organelle membrane typically 
have one or several α-helical domains about 20 amino acids long that pass 
through the membrane. These membrane-spanning helices consist almost 
entirely of very hydrophobic amino acids such as L, I, V, F, and W and are 
anchored in place by hydrophilic amino acids on their two ends. If you applied the 
Chou-Fasman algorithm to a membrane protein, why would it likely fail to predict 
the membrane-spanning helices? 

	  
	  
Chapter Project: Protein Structure Prediction 
This chapter's projects address the problem of identifying potential anti-HIV drugs that 
block the action of the viral protease and of overcoming the rapid development of drug 
resistance. We examine both ab initio and homology-based methods of predicting 
protein structure and examine how changes to the structure of a protein may affect its 
function. 
	  
	  
Learning Objectives 

§ Understand how protein structure and function are related and why structure 
prediction is important 

§ Know how to use available tools to examine the experimentally determined 
structures of proteins and visualize structural and functional features 

§ Use homology-based tools to compare a novel protein sequence with a well-
studied one and identify potentially significant differences 

§ Appreciate the value and limitations of ab initio approaches to protein structure 
prediction 

§ Understand how protein structure prediction and analysis can inform drug design 

Suggestions for Using the Project 

In the Web Exploration for this chapter, students start by using Web-based structure 
visualization tools to explore protein structure and understand the value of different 
ways of showing protein structure. They then use homology-based methods to compare 
an HIV protease mutant to the unmutated protein and see how mutation can affect drug 
effectiveness. They then experiment with ab initio structure prediction, comparing these 
results with the known structure of the protein. In the Guided Programming Project, they 
develop a solution for part of the Chou-Fasman algorithm and then completely 
implement this algorithm in the On Your Own Project. 

Programming courses: 
§ Web Exploration: Use Web-based tools to become familiar with protein structure, 

model a mutant protein, and test ab initio structure prediction. If time is limiting, 
we recommend completing at least Part I to become familiar with protein 
structure and Part III to generate comparison data for the programming projects. 



§ Guided Programming Project: Implement the Chou-Fasman algorithm to find α-
helices in an amino-acid sequence and compare results with known sequences 
and predictions from other ab initio tools. 

§ On Your Own Project: Fully implement the Chou-Fasman algorithm to find α-
helices, β-strands, and β-sheets in an amino-acid sequence and compare 
results. 

Nonprogramming courses: 
§ Web Exploration: Use Web-based tools to explore protein structure, homology 

modeling to examine the structure of a mutant protein, and ab initio methods to 
predict secondary structure from amino-acid sequence. Parts I, II, and III are 
independent enough to be used separately to match the focus of a particular 
course. 

§ On Your Own Project: Download an implementation of the Chou-Fasman 
algorithm for ab initio secondary structure prediction. Compare its results with 
those of prediction programs used in Part III of the Web Exploration and to 
experimentally determined structures. 

Web Exploration: Protein Structure Modeling and Drug Design 

Traditionally, new drugs have been discovered by performing initial testing of a huge 
number of molecules that might possibly affect some process of interest (for example, 
inhibiting bacterial growth, blocking pain receptors, or halting allergic responses). 
Pharmaceutical companies maintain large libraries of potentially useful chemicals for 
this reason; once a candidate molecule is found, it can then be chemically modified to 
increase its activity, reduce its toxicity, and so on. In many cases, the new drug needs 
to interact with an enzyme or other protein, and this is where rational drug design could 
drastically improve the selectivity and effectiveness of our pharmaceuticals and the 
speed with which we can identify new candidate drugs. If we were able to easily and 
quickly determine the structure of the protein and connect structural domains with 
protein functions, we could design a drug to "fit" precisely in an appropriate spot. 

HIV and AIDS have been a major focus of pharmaceutical discovery for more than 25 
years, and indeed we have developed an unprecedented number of new antivirals, 
some of which resulted from the study of protein structure and rational design. In this 
project, we focus on the HIV protease. When HIV infects a cell (Figure 11.4), one of 
the earliest steps is to make a DNA copy of the virus' RNA genome, a process called 
reverse transcription that does not occur in uninfected cells. To accomplish this, the 
virus must carry the enzyme reverse transcriptase (also a target of drug therapy). The 
HIV integrase protein then inserts the DNA into one of the host cell's chromosomes, 
where the viral genome behaves just like any ordinary gene. There is only one promoter 
within the HIV genome, so a single mRNA is made by transcription (although it can be 
spliced in more than one way to produce a few different mature mRNAs for translation). 
Because eukaryotic ribosomes begin translation with the firstAUG on an mRNA, only 
one protein can be made from any particular mRNA, so to produce all the proteins HIV 
needs, the polyprotein product of translation is cleaved by the HIV protease into 



individual functional protein units (see References and Supple-mental Reading). For 
example, it cleaves a single polypeptide to become the functional reverse transcriptase, 
integrase, and protease proteins required for viral replication. Blocking the function of 
the HIV protease therefore inhibits the replication of the virus. The first protease inhibitor 
was approved for use in treating HIV and AIDS in 1996, and today 10 such drugs are on 
the market. 

 
Figure 11.4: Replication of the HIV virus: After interacting with a cellular receptor, the 
virus fuses with the host cell membrane and RNA is reverse transcribed to DNA. The 
viral DNA integrates into the host chromosome and is then transcribed and translated to 
produce polyproteins. Viral protease cleaves the polyproteins to yield functional virus 
proteins. 

Part I: Exploring the Structure of the HIV Protease 
 Link  When the structure of a protein is "solved," we know where the atoms that make 
up its amino acids are found in space, allowing us to generate representations that 
show the locations of the various amino-acid side chains and how they interact to form 
secondary andtertiary structures. X-ray crystallography is the current gold standard for 
protein structure and can under the best conditions distinguish the positions of atoms 
less than 1 Å (10-10 m) apart. More flexible proteins may form less perfect crystals and 
generate structures with lower resolutions of 3 Å or more. Other techniques, such as 
nuclear magnetic resonance (NMR), can also be used to determine the structures of 
proteins; they typically generate lower-resolution structures but may have other 
advantages. NMR, for example, can be applied to uncrystallized proteins in solution. 
Structural data are deposited in public data-bases, most notably the Protein Data Bank 
(PDB), in a standardized format that can be read by various kinds of software to 
visualize and work with the structure. 

A text search of PDB for the HIV-1 protease (note that HIV-1 is the proper name of HIV 
and will return the best search results) will return a large number of results, mostly 



variations in which the protein is bound to various inhibitors. We want to see the 
protease interacting with more natural substrates, so search instead for a specific 
accession number, 1KJF, to see a structure where a peptide substrate is used. You 
may wish to explore some of the features of the PDB entry for a protein; like many of 
the DNA and protein databases, many resources are brought together at this site, and 
you can find the sequence of the protein, information about the methods used to 
produce the structure, biochemical information about the enzyme, references, and 
more. On the right side of the page, you can see a graphical representation of the 
protein structure (discussed in more detail later in the chapter). However, the actual 
PDB data are not graphical at all: Take a look at what is actually stored in the PDB 
database by using the Display Files drop-down menu to examine the PDB 
file for the protease. As you can see, this is purely a text file. If you scroll down, you 
will realize that the heart of the file is simply a list of atoms, the amino acids to which 
they belong, and coordinates describing their spatial position (Figure 11.5). This is all 
the information required to minimally describe the protein's structure. Additional 
information in the file includes the amino-acid sequence of each polypeptide chain (look 
for SEQRES), locations of secondary structures (HELIX, SHEET, etc.), comments 
(REMARK), and references (JRNL). 

 
Figure 11.5: A segment of the PDB file for the HIV protease describing the locations of 
the atoms in the protein. Data from: PDB. 

Many programs can produce interactive three-dimensional visualizations based on PDB 
files. Web-based software is usually based on Jmol (see References and Supplemental 
Reading), a scriptable open-source viewer that runs within a browser as a Java applet. 
Indeed, a Jmol viewer can be invoked directly from the PDB entry page by clicking on 
the View in 3D link. For this exercise, we use FirstGlance in Jmol, which includes 
both a full-featured Jmol viewer and scripts to facilitate viewing of key structural 
features. Alternatively, you may wish to use one of the more powerful viewers listed 
in Table 11.2, which can be downloaded to run from a desktop computer; the activities 
in this section could equally well be completed with one of these programs. 



 Link  From the FirstGlance in Jmol start page, enter 1KJF to see the HIV protease 
model you found at PDB. When the applet loads, you should see the protease structure 
in a"cartoon" view similar to Figure 11.6, where α-helices are shown by spiral ribbons 
(arrows point toward the C-terminus of the protein) and β-sheets by parallel flat ribbons. 
Unstructured (random coil) areas of the protein look like thin ropes. When the program 
starts, the protein is rotating to show you the three-dimensional view; click on the menu 
at left to halt it. Notice that three different colors are used. The HIV protease functions 
as a homodimer, that is, the functional protease is composed of two identical 
polypeptides (quaternary structure). You should see that two colors represent two 
polypeptides with the same structure joined together. The third color shows a short 
peptide that represents a segment of a protein substrate in the active site of the 
enzyme. 
Table 11.2: Desktop software for protein structure visualization.  

 Open table as spreadsheet 

Program Description 
Cn3D NCBI's protein structure viewer; structures can be downloaded from 

NCBI databases in Cn3D format. Free. 
DeepView Viewer comparable to Cn3D maintained by the Swiss Institute of 

Bioinformatics. Free. 
PyMOL Powerful Python-based visualization tool known for creation of 

publication-quality images. Source code and a limited prebuilt 
educational version are free; fully supported prebuilt versions require a 
paid subscription. 

Chimera Developed by a molecular visualization group at the University of 
California San Francisco. Free for academic and nonprofit use. 

RasMol One of the first popular visualization tools. Requires use of command-
line commands. Free open-source and user-supported versions 
available. 



 
Figure 11.6: Cartoon structure of the HIV protease (monomers shown in dark and light 
gray) with a short peptide ligand (white) in its active site. Structure from the RCSB PDB 
(www.pdb.org): PDB ID 1KJF: M. Prabu-Jeyabalan et al., Substrate shape determines 
specificity of recognition for HIV-1 protease: analysis of crystal structures of six 
substrate complexes. Structure 10:369–381 (2002). 

Jmol is an interactive program that allows the user to control how the protein is 
visualized. Notice that by clicking and dragging on the structure, you can rotate it to any 
desired position. Try rotating the molecule so you get a clear view of the substrate 
peptide. Can you see the distinct cleft where the substrate binds? This is where the 
active site of the enzyme is located. You can zoom in and out by clicking on the 
molecule and rotating the scroll wheel on your mouse or by holding shift while you click 
and drag. Holding shift also constrains the rotation of the molecule so it moves around a 
fixed point instead of in three dimensions. You can identify any amino acid in the protein 
by hovering over it. 

Notice the links on the menu at the left. These run preset scripts to show you the kinds 
of information a typical user would want. Start by clicking on Secondary 
Structure to change the color scheme. Now, the α-helices, β-sheets, and random 
coils have distinct colors. Likewise, Hydrophobic/Polar allows you to see the 
hydrophobicity of the amino acids that make up the protein (you can click on Water to 
see where water molecules have access to the protein) and Charge lets you see amino 
acids colored by their charge. Notice these last two options change the view of the 
molecule to a space-filling model, which helps demonstrate that the protein is really not 
just a ribbon of amino acids but a three-dimensional structure. However, now it is hard 
to see the two chains and the substrate. Click onContacts to see these highlighted in 
color again; does this change your understanding of how the peptide fits in the active-
site cleft? 



In addition to these preset shortcut links (unique to FirstGlance), there are two other 
ways to interact with Jmol (in any implementation): by menu or by using a command-
line console. Right-click on the structure window to access the menus. Suppose, for 
example, you want to see only the peptide backbone. Open the menu and 
choose Style | Structures | Backbone (if nothing happens, choose Select | 
All and try again). But now you cannot see the individual chains, so choose Color | 
Structures | Backbone | By Scheme | Chain to change this. Many options 
here will allow you to look even at individual atoms and amino acids. For example, 
choose Style | Scheme | CPK Spacefill to show the space-filling model 
and Color | Atoms | By Scheme | Chain to highlight the individual chains 
again. Now, click on some of the atoms that seem like they are in close contact with the 
substrate and watch the display at the bottom to see which amino acids you have 
chosen and where they are on which chain. 

The HIV protease is a member of the aspartyl protease family: The catalytic mechanism 
for these proteases involves an aspartate in the active site that can be recognized by 
the three-amino-acid motif Asp-Thr-Gly. Normally, HIV protease contains this motif, but 
to obtain a crystal structure with a peptide in the active site, a mutation changing the 
Asp to structurally similar asparagine (Asn) was used for the 1KJF structure. This 
mutation does not change the structure of the protein but prevents it from cleaving the 
substrate. Use Select | Protein | By Residue Name followed by Color | 
Structures| Cartoon (if you are in cartoon mode) or Color | Atoms (if you are in 
spacefill mode) to highlight asparagines. Then explore the adjacent amino acids by 
mousing over them (this is easier in cartoon or backbone view) or by selecting and 
coloring them and see if you can identify the Asn-Thr-Gly combination at the 1KJF 
active site. 

It might be easier to see how the protease and substrate interact if we could get one of 
the chains out of the way. It is tricky to select a whole chain from the menus but easy 
from the command line. Show your protein in spacefill mode and choose Console from 
the menu to open the command-line interface. The two protein subunits and the peptide 
sub-strate are labeled A, B, and P, respectively (you could find this out by looking at the 
first few lines of the PDB file). Select all the atoms in the A subunit and color them blue 
by typing select *:A; color atoms blue. Then, color the B subunit red and the 
substrate yellow. Now hide the A subunit by simply typing hide *:A and rotate the 
molecule to get a good view of how the substrate fits in the cleft. Select and color your 
three active-site amino acids with commands similar to select 10:B; color atoms 
white and see how they interact with the substrate; hide the substrate if needed to see 
them better. 
	  
Web Exploration Questions 

1. The HIV protease functions as a dimer. Some enzymes that form dimers then 
have two active sites. Is this the case for the HIV protease? Briefly describe the 
relationship of the active site and peptide-binding cleft to the subunits of the 
enzyme. 



2. What kinds of amino acids do you find in the areas of the protein exposed to the 
water around it (e.g., when the protein is in solution in the cytoplasm)? 

3. If you were to design an inhibitor of the HIV protease, where would you want it to 
bind? What kind of molecule might you use as the prototype to develop the 
structure of a good inhibitor? 

4. Using the cartoon or ribbon view, you should be able to identify where a long β-
strand on each subunit of the protease makes a hairpin turn, forming flexible 
flaps that cover the active site cleft. These flaps control access of the substrate to 
the active site. Which amino acids form the flaps (just give the range of 
numbers)? Although this region is very important to protease function, why are 
the flaps not likely to make a good target for rational drug design? 

5. What are the numbers of the amino acids on each chain that form the Asp-Thr-
Gly (Asn-Thr-Gly in this mutant) aspartate protease motif in 1KJF? 

Part III: Predicting Secondary Structure from Amino-Acid Sequence 
One of the major obstacles to pharmaceutical control of HIV is the virus' rapid rate of 
mutation. The DNA polymerases that replicate DNA in our cells "proofread" during 
synthesis, reducing their error rate to about one nucleotide in a billion. Reverse 
transcriptase, however, does not proofread and in addition appears to be much less 
accurate than other nonproofreading polymerases, producing one mutation for 
approximately every 10,000 nucleotides of DNA it synthesizes. Combined with its long-
term residence in a single host and rapid rate of replication (up to 1010 new viruses per 
infected patient per day), this gives HIV extraordinary genetic variability and many 
strains can be in competition within a single patient, leading to the rapid evolution of 
variants that can escape from immune system controls as well as drug-resistant strains. 
Current drug therapies combine three or more individual antivirals in an attempt to stave 
off resistance, but even so, patients must be closely monitored and their drug regimens 
altered in response to the inevitable rise of resistance. 

 Download  How do changes in HIV proteins lead to drug resistance? From 
the Exploring Bio-informatics website, you can download the amino-acid sequence of 
a drug-resistant mutant HIV protease. Because this protease variant has not been 
crystallized, its exact structure is not known. We expect, however, that its structure will 
vary only in specific locations and probably in minor ways (especially because this 
variant does function as a protease) from the protease we have already examined. 
Homology modeling is therefore an appropriate method of structure prediction: The 
sequence of the mutant can be aligned with the original sequence (template) and a 
structure generated that follows the template wherever the amino acids are identical. 
Where the two sequences are different, the program attempts to predict the effect of the 
substituted amino acids on the structure based on their properties. 

 Link  SWISS-MODEL is a Web-based homology modeling program suitable for 
analysis of the mutant protease; its automated mode provides an easy way to model a 
protein expected to closely match the template. From the SWISS-MODEL home page, 
choose AutomatedMode and enter the mutant protease sequence. Although the 
program can search the entire PDB to find a suitable template by similarity, in this case 
we know the identity of our protein. A suitable template would be an HIV protease 



structure that also does not include a substrate (because there is no substrate in our 
mutant sequence); we can use PDB structure 1ODW. Enter this accession number at 
the bottom of the page to be used as the template; you can enter either chain A or B, 
because both are the same. You can wait for the results (usually only a few minutes) or 
provide an email address to be notified when the analysis is complete. 

 Link  The output of SWISS-MODEL is a PDB file for the mutant protein—a model 
structure, because it is based not on crystallography but on homology. This structure 
can be visualized with a Jmol-based viewer, such as the basic AstexViewer linked on 
the results page (go ahead and try this; the result should look very familiar). However, it 
would be more instructive to directly compare the mutant structure with the unmutated 
protease. Download the PDB model for the mutant using the appropriate link and save it 
as a local file. Then navigate toPDBeFold, a Web interface to a program capable of 
constructing a pairwise structurealignment. 

Use the mutant protease PDB file you just downloaded as the query sequence 
(chooseCoordinate file from the drop-down menu to upload it) and enter the 1KJF 
accession number as the target. Chains can be set to *(all). Uncheck match 
individual chains—because our two chains are identical, there is no point in doing 
an A versus B and B versus A comparison. Leave the rest of the options at their 
defaults. Submit the alignment for processing. A single match should be returned; click 
on its number to see a detail page. Scroll down the page to see how the two proteins' 
amino acids matched up: In red are query amino acids matched with the same amino 
acid in the template, whereas blue shows those that aligned with a different amino acid. 
Back near the top of the page, you should see a button to superpose the two structures 
(there are two; use the top one); be sure superpose whole entries is checked (so 
we see both chains) and click on the button to see the structures in a Jmol viewer. 

The default view is in cartoon format, with the two chains of the unmutated protease 
shown in cyan and the two chains of the mutant shown in gray. Set Screen to 80% or 
90% to see the molecule better and then explore the structure. As you rotate the model, 
in most places the two structures are so similar that you see a single ribbon or rope, but 
you should be able to recognize some places where they are quite distinct. Let's focus 
on how the mutations affect the area of the active site. PDBeFold has essentially 
produced a composite PDB file in which the two chains of the mutant protease are A 
and B and the two chains of the original protease are D and E, with the substrate as 
chain F. To make it easier to see the overall outline of the structure, set Rendering to 
Backbone. Now let's use the console to highlight a couple of specific areas near the 
active site: Try select 48-53:A; color backbone blue,select 48-53:B; 
color backbone blue and select 76-83:B; color backbone blue to 
highlight regions of the mutant protein in blue, and then color amino acids 48–53 red on 
chains D and E and 76–83 red on chain E to show the unmutated protein. Explore the 
model to see how these regions relate to the location of the substrate; how might the 
mutations affect the fit of an inhibitory drug in the active site? To make this clearer, 
tryselect *:F; spacefill to make only the substrate chain spacefilling and color 



atoms white to make the colors less distracting. Of course, you are free to explore 
further with different views and color schemes. 
	  
	  
Web Exploration Questions 

6. How many mutations are there in the mutant protease sequence, as compared 
with the sequence of the protease you examined in Part I? Use pairwise 
alignment to find out. 

7. In the regions you highlighted, how would you characterize the effect of the 
mutations on the structure of the protein, in general? 

8. How would these structural changes affect the binding of a small inhibitor 
molecule to the protease active site? Why would they have less effect on the 
binding of the natural substrate? 

9. If you wanted to design a drug that would inhibit this mutant protease, what 
characteristics would you want it to have? 

10. Change the colors of your model so that everything is white except the three 
amino acids of the aspartyl protease motif (make the substrate gray for contrast). 
Make these three amino acids blue on the mutant chains, and then see what 
happens when you color them red on the nonmutant chains. Does their position 
change in the mutant relative to the unmutated protein? Is this what you 
expected? Certainly changes in the sequence or structure at these positions 
could lead to drug resistance; why then do we not observe them among drug-
resistant HIV isolates? 

More to Explore: Binding of the Mutant Protease to Inhibitors 
 

The previous exercise allowed you to formulate a hypothesis about why this mutant 
protease is drug resistant. As you saw, PDB has many examples of protease structures 
with various inhibitors bound to the protease. You could use PDBeFold to make 
alignments of the mutant protease with some of these structures to see the structural 
changes in the mutant relative to actual inhibitor binding. 

 

Part III: Predicting Secondary Structure from Amino-Acid Sequence 
 Link  Finally, let's look at the ability of bioinformatic software to predict secondary 
structure ab initio—from an amino-acid sequence unassisted by a known structure. 
Because we know the crystal structure of the HIV protease, we can try predicting 
secondary structures using its sequence and then compare the results with the known 
locations of α-helices and β-sheets; use the 1KJF sequence, which you can download 
from its PDB page. For the structure prediction, we use PSIPRED to look for regions of 
the protein likely to form α-helices, β-sheets, or random coils. PSIPRED uses a neural 
network algorithm and integrates both a Chou-Fasman–like prediction algorithm and 
comparative data obtained by searching for orthologous sequences with PSI-BLAST 
(see References and Supplemental Reading). 



From the PSIPRED page, choose Predict Secondary Structure. (Notice that the 
same server offers two other structure prediction options.) Enter the protease sequence 
and your email and submit your request. You should get an email within half an hour or 
less indicating the job is complete. You can examine the results either in text form in the 
email or graphically by clicking the emailed link. Either way, you should see that each 
amino acid in the protein has been assigned a letter indicating whether it is predicted to 
be in an alpha (H)elix, a strand of a beta sh(E)et, or a random (C)oil. Each also has a 
number indicating the statistical level of confidence in the prediction (nine is highest). In 
the graphical version ( Figure 11.7; the PDF file provides the nicest view), the 
confidence value is replaced by a bar whose height shows the level of confidence, and 
the α-helices and β-strands are shown graphically with cylinders and arrows, 
respectively. Save or print your results for easy comparison. 

 
Figure 11.7: Sample output from the PSIPRED server. The bars at the top represent 
the confidence level of each prediction. Arrows and cylinders in the next line represent 
predicted β-strands and α-helices, respectively, followed by text showing whether each 
amino acid is within a predicted β-strand (E), α-helix (H), or random coil (C). Data from 
PSIPRED server: McGuffin et al., Bioinformatics 16:404 (2000). 

Now, return to FirstGlance in Jmol to visualize the HIV protease structure 1KJF. Color 
the structure by secondary structure so you can see the α-helices and β-strands clearly. 
You may want to hide one of the chains and the substrate for convenience. Now, 
identify the start and end points of the α-helices and β-strands in the crystal structure 
and note them on the PSIPRED results. How does PSIPRED's prediction compare with 
the actual structure? 
	  
	  
Web Exploration Questions 

11. How well did PSIPRED predict the secondary structures in the HIV protease? 
Give specific examples of structures predicted accurately by PSIPRED, predicted 
structures not found in the actual structure, and actual structures that were not 
predicted. 

12. PSIPRED uses a prediction algorithm not unlike the Chou-Fasman algorithm we 
will use in the Guided Programming Project. However, instead of applying its 
algorithm directly to your input sequence, it first does a PSI-BLAST search to get 
a collection of sequences related to your input. It then applies its prediction 
algorithm to the results. Why might this method be advantageous in improving 
the program's ability to identify genuine secondary structure? 

More to Explore: More Structure Tools 



 
We have barely scratched the surface of protein structure prediction and analysis 
tools. Table 11.3 lists a number of additional tools you may wish to apply to these or to 
other protein structure questions. 

 
Table 11.3: Additional recommended protein structure analysis software.  

 Open table as spreadsheet 

Program Description 
Ab Initio Protein Structure Prediction 
Jpred3 Secondary structure prediction, multiple neural network 

methods 
PEP-FOLD Tertiary structure prediction based on hidden Markov modeling 
ROBETTA Tertiary structure prediction: structure generation for short 

fragments followed by energy minimization 
Membrane Protein Prediction 
MEMSTAT Neural network-based prediction of transmembrane domains 
HMMTOP Hidden Markov model-based prediction of transmembrane 

domains 
Homology Modeling 

ESyPred3D Alignment and model generation; uses MODELLER algorithm to 
examine a probability density function for each atom 

FoldX Homology modeling and prediction of effects of mutations; 
useful to design protein variants with desired effects on 
structure 

Threading 

GenTHREADER Threading based on secondary structure prediction 
HHpred Based on multiple sequence alignment of related sequences 

identified by PSI-BLAST 

Guided Programming Project: Structure Prediction with the Chou-Fasman 
Algorithm 

As described in Understanding the Algorithm, the Chou-Fasman algorithm looks at the 
likelihood that each amino acid in a protein sequence occurs within an α-helix, β-strand, 
or β-turn. In this project, you will develop a program that implements the first step of this 
algorithm: finding α-helices. The complete Chou-Fasman algorithm will be implemented 
in the On Your Own Project. 

Before you begin to write code, think about the data structures you need to store the 
Chou-Fasman parameters. You may want to consider hash table structures for easy 



and quick access using amino-acid names as keys. The following pseudocode presents 
a solution for finding α-helices. 
Algorithm 

 
Chou-Fasman Algorithm for Predicting Protein Structure 

• Goal: To predict the location of α-helices. 
• Input: An amino-acid sequence in FASTA format 
• Output: The location of α-helices. 

 
// Step 1: Initialization and Read in Sequence   
open input file 1: infile1  
aminoSeq = ""  
read and ignore first line of data in infile1   
 
for each line of data in infile1      
 concatenate line of data to aminoSeq   
 
// Step 2: Find Alpha Helices  
// find region of six (step 1a)  
lenSeq = length of aminoSeq  
window = 6  
pScore = 103  
minWindow = 4  
paHash = map of all amino acids to P(a) values  
pbHash = map of all amino acids to P(b) values   
 
for each i from 0 to (lenSeq—window)      
 ctr = paSum = pbSum = 0      
 // find possible alpha helices      
 for each j from 0 to window-1          
  paSum = paSum + paHash[aminoSeq[i+j]]          
  pbSum = pbSum + pbHash[aminoSeq[i+j]]          
  if paHash[aminoSeq[i+j]] > pScore               
   ctr++      
 if ctr >= minWindow         
  output "Possible alpha helix region found at" + (i+1) 
 
  // extend region left (step 1b)         
  extend = i-1         
  done = false         
  while extend >= 0 and !done             
   if extend >= 3               

    …… paHash[aminoSeq[extend]] < 100 

    …… paHash[aminoSeq[extend-1]] < 100 

    …… paHash[aminoSeq[extend-2]] < 100 

    …… paHash[aminoSeq[extend-3]] < 100 
     done = true 
   else 
    paSum = paSum + paHash[aminoSeq[extend]] 
    pbSum = pbSum + pbHash[aminoSeq[extend]] 
    extend— 
  left = extend + 1 



  // extend region right (step 1b continued) 
  extend = i + window 
  done = false         
  while extend < lenSeq and !done             
   if extend <= lenSeq - 3               

    …… paHash[aminoSeq[extend]] < 100 

    …… paHash[aminoSeq[extend+1]] < 100 

    …… paHash[aminoSeq[extend+2]] < 100 

    …… paHash[aminoSeq[extend+3]] < 100 
    done = true 
  else 
   paSum = paSum + paHash[aminoSeq[extend]] 
   pbSum = pbSum + pbHash[aminoSeq[extend]] 
   extend++  
right = extend - 1  
// see if step 1c fulfilled  
lenRegion = right - left  
if paSum/lenRegion > pScore and paSum > pbSum      
 output "Alpha Region:" + (leftStart+1) + "to"          
  + (rightStart+1)  
 
	  
Putting Your Skills Into Practice 

1.  Download  Write a program to implement the given pseudocode in the 
programming language used in your course. Short amino-acid sequences can be 
downloaded from the Exploring Bioinformatics website and used to test your 
program. 

2. The PSIPRED secondary structure prediction program gives text output showing 
the predicted secondary structure for each position in the amino-acid sequence 
(Figure 11.7). Modify your program to produce output similar to PSIPRED, using 
H to represent helices and a dash (–) to indicate amino acids that are not in 
an α-helix. 

3. Each chain of the HIV protease contains one α-helix. Identify the amino acids in 
one chain of the 1KJF structure that are within the α-helix, and then run your 
program on this sequence and compare its prediction with the actual crystal 
structure and to the PSIPRED prediction. 

On Your Own Project: A Complete Chou-Fasman Program 

 Download  In this project, you will complete the implementation of the Chou-Fasman 
algorithm that you started in the Guided Programming Project. If your course does not 
involve program-ming, you can download a completed Chou-Fasman program from 
the Exploring Bio-informatics website and use it to answer the questions that follow. 

Understanding the Problem 
The Guided Programming Project showed how to implement step 1 of the Chou-
Fasman algorithm, finding all possible α-helices. Understanding the Algorithm 



introduced the remaining steps of the algorithm: predicting β-strands and β-turns, as 
well as dealing with overlaps where the same amino acid is within two structures. Amino 
acids not within any of these structures are considered to be within random coils. 

Solving the Problem 
A straightforward approach to code the entire algorithm is to traverse the sequence 
three times, each time searching for a particular structure (steps 1–3). You could then 
compare the results to handle overlaps (step 4). However, storing all the information 
from steps 1–3 before tackling step 4 may not be the most efficient approach, because 
many overlap-ping areas would require more storage than necessary. Additionally, 
making a separate pass through the sequence to find each structure adds unnecessary 
complexity. 

Alternatively, your program could find all possible α-helices and then look for β-sheets, 
checking for overlaps as each is found before continuing. It could then continue on to 
find β-turns. To accomplish this, you would need to change your guided project solution 
so that each α-helix is stored rather than simply printed. Think carefully about what data 
you need to store as you find each α-helix. 

Programming the Solution 
Extend your solution to incorporate steps 2–4 of the Chou-Fasman algorithm. Your 
program should display text output similar to that of PSIPRED ( Figure 11.7), showing 
the predicted structure for each amino acid: H for α-helices, E for β-strands, T for β-
turns, and C for random coil. 

 Download  Test your program with the short test sequence you can download from 
theExploring Bioinformatics website. Then, run it on the 1KJF protease sequence and 
see if it finds the known locations of the α-helix and the β-strands. 

1. How did your Chou-Fasman prediction compare with the actual structure of the 
HIV protease? 

2. How did your prediction compare with that of PSIPRED? PSIPRED is a much 
more sophisticated program; does it give significantly better results? 

3. You may also want to test your program on other proteins to better evaluate its 
capabilities. Try, for example, the HIV reverse transcriptase or the HIV capsid 
protein. For a bigger challenge, try it on the HIV envelope protein, which is a 
transmembrane protein. 

4. It is possible that where Chou-Fasman fails to make an accurate prediction, it 
may be making the wrong choice between α-helix and β-strand in overlap 
regions. If you are in a programming course, you could modify your program so it 
reports overlaps and shows the decision it made, allowing you to see if the 
opposite decision would have led to a better prediction. 

 
 



Connections: Distributed Computing to Improve Ab Initio Protein Structure 
Prediction 

By now you have an appreciation for the complexity of protein folding and how hard it is 
to predict the final three-dimensional conformation of a protein based on its primary 
structure. Even our best computational algorithms for predicting secondary structure 
can do so with only moderate confidence. The enormous number of possible ways in 
which these secondary structures might fold into a tertiary structure compounds the 
problem. Furthermore, folding occurs differently in different environments—such as for a 
membrane protein, which is typically inserted into the membrane as it is being 
synthesized. Computational power is one limiting factor in coping with this complexity: 
Protein folding algorithms can be refined by comparing predicted structures with the 
increasing number of known protein structures, but a great deal of computer time is 
necessary to process the huge numbers of possible models. 

 Link  Distributed computing offers an intriguing approach to this problem. At least 
two current projects, Folding@home and Rosetta@home, use software that can be 
downloaded freely by anyone and used like a screensaver, working on folding models 
when the computer is idle. A central server parcels out pieces of the problem to 
individual computers that process data and return the results to the server, thus 
harnessing the unused capacity of hundreds of thousands of individu-al computers. This 
yields total computing power much greater than any single computer and at very low 
cost. Both projects focus on structures important to understanding human disease, 
particularly diseases such as Huntington disease, Alzheimer disease, and prion 
diseases, which involve misfolded proteins. 

 
 

BioBackground: Protein Structure 
A protein's function depends on both its amino-acid sequence and its conformation, or 
folded structure. The three-dimensional shape of a protein determines the interactions it 
can have with other molecules. For example, a DNA-binding protein such as a 
transcription factor (Figure 11.8A) needs structural regions (domains), allowing it to fit 
into the grooves of a DNA molecule. In these binding domains, positively charged amino 
acids are needed to interact with the negatively charged DNA backbone, and additional 
amino acids interact with specific DNA bases to determine the DNA sequence to which 
the transcription factor binds. A channel protein (Figure 11.8B) has long helices that 
pass through the membrane; the exterior of these helices consist of amino acids with 
hydrophobic side chains to interact with the hydrophobic membrane lipids, but the 
interior contains hydrophilic amino acids that can interact with some molecule to be 
transported across the membrane. 

How a protein can fold depends on its amino-acid sequence, known as 
its primary (18)structure (Figure 11.9A). Folding results from the interaction of amino-
acid side chains, mostly weak noncovalent interactions such as hydrogen bonds (the 
attraction of a hydrogen attached to an oxygen or nitrogen atom for a nearby oxygen or 
nitrogen), ionic bonds (attraction between positively and negatively charged side 
chains), or hydrophobic interactions. Where two cysteine amino acids are close 



together, a covalent disulfide bond can be formed, as well. Thus, we can think of protein 
conformation as being "encoded" in its gene in some sense, but folding is also 
influenced by the environment in which the protein folds (such as the cytoplasm or 
endoplasmic reticulum) and in some cases by interactions with other proteins. 

Folding begins while the protein is still being synthesized, as soon as the amino-acid 
chain begins to emerge from the ribosome. Local interactions among amino acids, often 
driven by the instability of hydrophobic amino acids exposed to the surrounding watery 
environment, result in the formation of secondary (28) structures (Figure 11.9B). The 
two most common forms of secondary structures are α-helices and β-sheets. In an α-
helix, hydrogen bonds between amino acids spaced along a contiguous region form a 
regular, relatively rigid spiral-shaped structure. A β-sheet is formed by hydrogen bonds 
among extended, uncoiled stretches called β-strands; β-sheets create relatively flat 
surfaces in the folded protein. The β-sheet may form from β-strands that follow each 
other in the primary structure—if so, the strands are separated by hairpin b-turns—or 
may result from β-strands from different parts of the primary structure coming together. 
Stretches of amino acids with no particular secondary structure are referred to simply 
asrandom coil regions (Figure 11.9B). 

As protein synthesis proceeds, secondary structures can interact with each other, 
folding the protein into an overall three-dimensional shape called its tertiary (38) 
structure(Figure 11.9C). Most proteins fold into a shape that is roughly spherical 
(globular), but some form long fibers or other configurations appropriate to their 
function. Within the tertiary structure of an enzyme, there is a binding pocket called 
the active site where the enzyme's substrate fits selectively, and there may also be 
binding pockets or clefts for other molecules that interact with the protein. Although any 
long amino-acid chain is commonly referred to as a protein, technically an amino-acid 
chain is a polypeptide and a protein as strictly defined is a functional unit. Some 
proteins, such as the CFTR protein, are composed of only a single polypeptide. 
However, some proteins require the association of multiple polypeptide subunits to 
function (Figure 11.9D); this is referred to as quarternary (48) structure. The HIV 
protease, for example, is a dimer, composed of two identical polypeptide subunits. 
Hemoglobin, on the other hand, functions as atetramer composed of two identical α-
globin subunits and two identical β-globin subunits, four polypeptides in total. 

When the structure of a folded protein is known, it can be represented in a variety of 
ways to quickly convey its major features to a viewer. A ribbon diagram ( Figure 11.10) 
is a conventional way to represent the structure of a protein: Flat ribbons represent β-
strands and coiled ribbons represent α-helices. Arrows point toward the protein's C-
terminal end. A cartoon representation is very similar; here, the helices are shown as 
cylinders. 

Proteins generally fold to reach their lowest energy state or most stable structure. 
Generally, hydrophobic amino acids fold into the interior of the protein, leaving 



hydrophilic ones on the outside to interact with the watery environment of the 
cytoplasm. Likewise, two negatively charged side chains fold to avoid each other and 
preferably interact with positively charged side chains. In practice, however, this 
process is constrained by factors such as the order of amino acids: If the first region of 
the protein folds as soon as it is synthesized to bring hydrophobic amino acids together, 
those amino acids are no longer available to interact with the next hydrophobic stretch. 
This reduces the number of possible folded structures for the real protein but tends to 
make computational prediction more difficult. Remember, too, that the interactions 
holding the folded structure together are generally weak and can be broken by 
increasing the temperature or changing the pH: We say this denatures the protein. We 
take advantage of this when we fry an egg, denaturing the watery, protein-rich goo into 
a more palatable form, or "perm" hair by chemically denaturing hair protein. 

 
Figure 11.8: Examples of protein structure: (A) a DNA-binding protein interacting with 
DNA by means of two α-helices; (B) a channel protein that is anchored into a 
membrane by long helices creating a pore through which some transported molecule 
can pass. Part (A) structures from the RCSB PDB: PDB ID 1R4R (B. J. Luisi et al 
(1991) Crystallographic analysis of the interaction of the glucocorticoid receptor with 
DNA. Nature. 352:497-505). 



 
Figure 11.9: Folding of a protein: (A) primary structure, or the amino-acid sequence of 
the protein; (B) secondary structures formed by local interactions among amino acids: 
the β-sheet (or β-pleated sheet) and the α-helix; (C) tertiary structure, or the overall 
three-dimensional shape of the protein; (D) quaternary structure, or the association of 
two or more polypeptides to form a functional unit, necessary to the function of certain 
proteins. 



 
Figure 11.10: Ribbon diagram representation of the three-dimensional structure of a 
protein. Spiral ribbons represent α-helices, and flat ribbons represent β-strands. Ropes 
represent regions of random coil. 
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