## ITMO UNIVERSITY

How to Win Coding Competitions: Secrets of Champions

Week 4: Algorithms on Graphs
Lecture 4: Depth First Search with Timestamps

Maxim Buzdalov
Saint Petersburg 2016

Let's modify DFS to track the time of entering and exiting a vertex

Let's modify DFS to track the time of entering and exiting a vertex

```
    \(G=\langle V, E\rangle\)
    \(T_{\text {in }}, T_{\text {out }} \leftarrow\{\infty\}\)
    \(A(v)=\{u \mid(v, u) \in E\}\)
    \(t \leftarrow 0\)
    procedure \(\mathrm{DFS}(v)\)
        \(t \leftarrow t+1\)
    \(T_{\text {in }}(v) \leftarrow t\)
    for \(u \in A(v)\) do
        if \(T_{\text {in }}(u)=\infty\) then \(\operatorname{DFS}(u)\) end if
    end for
    \(t \leftarrow t+1\)
    \(T_{\text {out }}(v) \leftarrow t\)
end procedure
```

Let's modify DFS to track the time of entering and exiting a vertex

```
\(G=\langle V, E\rangle\)
\(T_{\text {in }}, T_{\text {out }} \leftarrow\{\infty\}\)
\(A(v)=\{u \mid(v, u) \in E\}\)
\(t \leftarrow 0\)
procedure \(\operatorname{DFS}(v)\)
    \(t \leftarrow t+1\)
    \(T_{\text {in }}(v) \leftarrow t\)
    for \(u \in A(v)\) do
        if \(T_{\text {in }}(u)=\infty\) then \(\operatorname{DFS}(u)\) end if
    end for
    \(t \leftarrow t+1\)
    \(T_{\text {out }}(v) \leftarrow t\)
end procedure
```

Let's modify DFS to track the time of entering and exiting a vertex

```
\(G=\langle V, E\rangle\)
\(T_{\text {in }}, T_{\text {out }} \leftarrow\{\infty\}\)
\(A(v)=\{u \mid(v, u) \in E\}\)
\(t \leftarrow 0\)
procedure \(\operatorname{DFS}(v)\)
    \(t \leftarrow t+1\)
    \(T_{\text {in }}(v) \leftarrow t\)
    for \(u \in A(v)\) do
        if \(T_{\text {in }}(u)=\infty\) then \(\operatorname{DFS}(u)\) end if
    end for
    \(t \leftarrow t+1\)
    \(T_{\text {out }}(v) \leftarrow t\)
end procedure
```

Let's modify DFS to track the time of entering and exiting a vertex

```
\(G=\langle V, E\rangle\)
\(T_{\text {in }}, T_{\text {out }} \leftarrow\{\infty\}\)
\(A(v)=\{u \mid(v, u) \in E\}\)
\(t \leftarrow 0\)
procedure \(\operatorname{DFS}(v)\)
    \(t \leftarrow t+1\)
    \(T_{\text {in }}(v) \leftarrow t\)
    for \(u \in A(v)\) do
        if \(T_{\text {in }}(u)=\infty\) then \(\operatorname{DFS}(u)\) end if
    end for
    \(t \leftarrow t+1\)
    \(T_{\text {out }}(v) \leftarrow t\)
end procedure
```

Let's modify DFS to track the time of entering and exiting a vertex

```
\(G=\langle V, E\rangle\)
\(T_{\text {in }}, T_{\text {out }} \leftarrow\{\infty\}\)
\(A(v)=\{u \mid(v, u) \in E\}\)
\(t \leftarrow 0\)
procedure DFS(v)
    \(t \leftarrow t+1\)
    \(T_{\text {in }}(v) \leftarrow t\)
    for \(u \in A(v)\) do
        if \(T_{\text {in }}(u)=\infty\) then \(\operatorname{DFS}(u)\) end if
    end for
    \(t \leftarrow t+1\)
    \(T_{\text {out }}(v) \leftarrow t\)
end procedure
```

Let's modify DFS to track the time of entering and exiting a vertex

```
    \(G=\langle V, E\rangle\)
    \(T_{\text {in }}, T_{\text {out }} \leftarrow\{\infty\}\)
    \(A(v)=\{u \mid(v, u) \in E\}\)
    \(t \leftarrow 0\)
    procedure \(\mathrm{DFS}(v)\)
    \(t \leftarrow t+1\)
    \(T_{\text {in }}(v) \leftarrow t\)
    for \(u \in A(v)\) do
        if \(T_{\text {in }}(u)=\infty\) then \(\operatorname{DFS}(u)\) end if
    end for
    \(t \leftarrow t+1\)
    \(T_{\text {out }}(v) \leftarrow t\)
end procedure
```

Let's modify DFS to track the time of entering and exiting a vertex

```
    \(G=\langle V, E\rangle\)
    \(T_{\text {in }}, T_{\text {out }} \leftarrow\{\infty\}\)
    \(A(v)=\{u \mid(v, u) \in E\}\)
    \(t \leftarrow 0\)
    procedure DFS(v)
    \(t \leftarrow t+1\)
    \(T_{\text {in }}(v) \leftarrow t\)
    for \(u \in A(v)\) do
        if \(T_{\text {in }}(u)=\infty\) then \(\operatorname{DFS}(u)\) end if
    end for
    \(T_{\text {out }}(v) \leftarrow t\)
end procedure
end procedure
```

    \(t \leftarrow t+1 \quad \triangleright\) Incrementing time
    $\triangleright T_{\text {in }}(v)$ : the time of entering $v$
$\triangleright T_{\text {out }}(v)$ : the time of exiting $v$
$\triangleright$ Incrementing time
$\triangleright$ Marking the time of entering
$\triangleright$ Means "not previously entered"
$\triangleright$ Incrementing time
$\triangleright$ Marking the time of exiting




















- Important timestamp property:
$A$ is ancestor of $B \Leftrightarrow$

$$
T_{\text {in }}(A)<T_{\text {in }}(B)<T_{\text {out }}(B)<T_{\text {out }}(A)
$$



- Important timestamp property: $A$ is ancestor of $B \Leftrightarrow$

$$
T_{\text {in }}(A)<T_{\text {in }}(B)<T_{\text {out }}(B)<T_{\text {out }}(A)
$$

- This is a fast way to determine whether a vertex is an ancestor of another one

- Important timestamp property: $A$ is ancestor of $B \Leftrightarrow$

$$
T_{\text {in }}(A)<T_{\text {in }}(B)<T_{\text {out }}(B)<T_{\text {out }}(A)
$$

- This is a fast way to determine whether a vertex is an ancestor of another one
- Some examples follow where this idea is crucial

Example of working with timestamps: finding Least Common Ancestors in trees


Example of working with timestamps: finding Least Common Ancestors in trees


- Examples:

Example of working with timestamps: finding Least Common Ancestors in trees


- Examples:
- $\operatorname{LCA}(A, J)=A$

Example of working with timestamps: finding Least Common Ancestors in trees


- Examples:
- $\operatorname{LCA}(A, J)=A$
- $\operatorname{LCA}(E, H)=D$

Example of working with timestamps: finding Least Common Ancestors in trees


- Examples:
- $\operatorname{LCA}(A, J)=A$
- $\operatorname{LCA}(E, H)=D$
- $\operatorname{LCA}(C, E)=B$

Example of working with timestamps: finding Least Common Ancestors in trees


- Examples:
- $\operatorname{LCA}(A, J)=A$
- $\operatorname{LCA}(E, H)=D$
- RCA $(C, E)=B$
- $\operatorname{LCA}(C, G)=A$

Example of working with timestamps: finding Least Common Ancestors in trees


- Examples:
- $\operatorname{LCA}(A, J)=A$
- $\operatorname{LCA}(E, H)=D$
- $\operatorname{LCA}(C, E)=B$
- $\operatorname{LCA}(C, G)=A$
- Algorithm for answering $\operatorname{LCA}(x, y)$ :
- $b$ : the best ancestor (initially: root)
- For every vertex $z$, test if it is an ancestor for both $x$ and $y$
- If it is, and $b$ is an ancestor of $z$, then $b \leftarrow z$

Example of working with timestamps: finding Least Common Ancestors in trees


- Examples:
- $\operatorname{LCA}(A, J)=A$
- $\operatorname{LCA}(E, H)=D$
- $\operatorname{LCA}(C, E)=B$
- $\operatorname{LCA}(C, G)=A$
- Algorithm for answering $\operatorname{LCA}(x, y)$ :
- $b$ : the best ancestor (initially: root)
- For every vertex $z$, test if it is an ancestor for both $x$ and $y$
- If it is, and $b$ is an ancestor of $z$, then $b \leftarrow z$
- Runtime: $\Theta(|V|)$. Can we do it faster?

Example of working with timestamps: finding Least Common Ancestors in trees


- Path compression ("binary hops"):
- $\mathrm{d}[v][0]=$ parent of $v$
- $\mathrm{d}[v][i]=2^{i}$-th vertex towards root

Example of working with timestamps: finding Least Common Ancestors in trees


- Path compression ("binary hops"):
- $\mathrm{d}[v][0]=$ parent of $v$
- $\mathrm{d}[v][i]=2^{i}$-th vertex towards root
- Example: $\mathrm{d}[F][0]$

Example of working with timestamps: finding Least Common Ancestors in trees


- Path compression ("binary hops"):
- $\mathrm{d}[v][0]=$ parent of $v$
- $\mathrm{d}[v][i]=2^{i}$-th vertex towards root
- Example: $\mathrm{d}[F][1]$

Example of working with timestamps: finding Least Common Ancestors in trees


- Path compression ("binary hops"):
- $\mathrm{d}[v][0]=$ parent of $v$
- $\mathrm{d}[v][i]=2^{i}$-th vertex towards root
- Example: $\mathrm{d}[F][2]$

Example of working with timestamps: finding Least Common Ancestors in trees


- Path compression ("binary hops"):
- $\mathrm{d}[v][0]=$ parent of $v$
- $\mathrm{d}[v][i]=2^{i}$-th vertex towards root
procedure Fill Hops( $V$ )
for $v \in V$ do
$\mathrm{d}[\mathrm{v}][0]=$ parent of v
end for
for $i \in\left[1 ; \log _{2}|V|\right]$ do
for $v \in V$ do
$\mathrm{d}[v][i]=\mathrm{d}[\mathrm{d}[v][i-1]][i-1]$
end for
end for
end procedure

Example of working with timestamps: finding Least Common Ancestors in trees


- Path compression ("binary hops"):
- $\mathrm{d}[v][0]=$ parent of $v$
- $\mathrm{d}[v][i]=2^{i}$-th vertex towards root
procedure Fill Hops( $V$ )
for $v \in V$ do
$\mathrm{d}[\mathrm{v}][0]=$ parent of v
end for
for $i \in\left[1 ; \log _{2}|V|\right]$ do
for $v \in V$ do
$\mathrm{d}[v][i]=\mathrm{d}[\mathrm{d}[v][i-1]][i-1]$
end for
end for
end procedure

Example of working with timestamps: finding Least Common Ancestors in trees


- Path compression ("binary hops"):
- $\mathrm{d}[v][0]=$ parent of $v$
- $\mathrm{d}[v][i]=2^{i}$-th vertex towards root
procedure $\operatorname{LCA}(a, b)$
if $\operatorname{IsAnCestor}(a, b)$ then return $a$ end if
if $\operatorname{IsAnCESTOR}(b, a)$ then return $b$ end if
for $i$ from $\log _{2}|V|$ down to 1 do
if not IsAncestor $(\mathrm{d}[a][i], b)$ then $a \leftarrow \mathrm{~d}[a][i]$
end if
end for return $\mathrm{d}[a][0]$
end procedure

Example of working with timestamps: finding Least Common Ancestors in trees


- Path compression ("binary hops"):
- $\mathrm{d}[v][0]=$ parent of $v$
- $\mathrm{d}[v][i]=2^{i}$-th vertex towards root
procedure $\operatorname{LCA}(a, b)$
if $\operatorname{IsAncestor}(a, b)$ then return $a$ end if
if $\operatorname{IsAnCESTOR}(b, a)$ then return $b$ end if
for $i$ from $\log _{2}|V|$ down to 1 do
if not IsAncestor $(\mathrm{d}[a][i], b)$ then $a \leftarrow \mathrm{~d}[a][i]$
end if
end for return $\mathrm{d}[a][0]$
end procedure

Example of working with timestamps: finding Least Common Ancestors in trees


- Path compression ("binary hops"):
- $\mathrm{d}[v][0]=$ parent of $v$
- $\mathrm{d}[v][i]=2^{i}$-th vertex towards root
procedure $\operatorname{LCA}(a, b)$
if $\operatorname{IsAncestor}(a, b)$ then return $a$ end if
if $\operatorname{IsAnCESTOR}(b, a)$ then return $b$ end if
for $i$ from $\log _{2}|V|$ down to 1 do
if not IsAncestor $(\mathrm{d}[a][i], b)$ then $a \leftarrow \mathrm{~d}[a][i]$
end if
end for return $\mathrm{d}[a][0]$
end procedure

Example of working with timestamps: finding Least Common Ancestors in trees


- Path compression ("binary hops"):
- $\mathrm{d}[v][0]=$ parent of $v$
- $\mathrm{d}[v][i]=2^{i}$-th vertex towards root
procedure $\operatorname{LCA}(a, b)$
if $\operatorname{IsAncestor}(a, b)$ then return $a$ end if
if $\operatorname{IsAnCESTOR}(b, a)$ then return $b$ end if
for $i$ from $\log _{2}|V|$ down to 1 do
if not IsAncestor $(\mathrm{d}[a][i], b)$ then $a \leftarrow \mathrm{~d}[a][i]$
end if
end for return $\mathrm{d}[a][0]$
end procedure

Example of working with timestamps: finding Least Common Ancestors in trees


- Path compression ("binary hops"):
- $\mathrm{d}[v][0]=$ parent of $v$
- $\mathrm{d}[v][i]=2^{i}$-th vertex towards root
procedure $\operatorname{LCA}(a, b)$
if $\operatorname{IsAncestor}(a, b)$ then return $a$ end if
if $\operatorname{IsAncestor}(b, a)$ then return $b$ end if
for $i$ from $\log _{2}|V|$ down to 1 do
if not IsAncestor(d[a][i], b) then $a \leftarrow \mathrm{~d}[a][i]$
end if
end for return $\mathrm{d}[a][0]$
end procedure

Example of working with timestamps: finding Least Common Ancestors in trees


- Path compression ("binary hops"):
- $\mathrm{d}[v][0]=$ parent of $v$
- $\mathrm{d}[v][i]=2^{i}$-th vertex towards root
procedure $\operatorname{LCA}(a, b)$
if $\operatorname{IsAncestor}(a, b)$ then return $a$ end if
if $\operatorname{IsAncestor}(b, a)$ then return $b$ end if
for $i$ from $\log _{2}|V|$ down to 1 do
if not IsAncestor(d[a][i], b) then $a \leftarrow \mathrm{~d}[a][i]$
end if
end for return $\mathrm{d}[\mathrm{a}][0]$
end procedure

Example of working with timestamps: finding Least Common Ancestors in trees


- Path compression ("binary hops"):
- $\mathrm{d}[v][0]=$ parent of $v$
- $\mathrm{d}[v][i]=2^{i}$-th vertex towards root
procedure $\operatorname{LCA}(a, b)$
if $\operatorname{IsAncestor}(a, b)$ then return $a$ end if
if $\operatorname{IsAnCESTOR}(b, a)$ then return $b$ end if
for $i$ from $\log _{2}|V|$ down to 1 do
if not IsAncestor $(\mathrm{d}[a][i], b)$ then $a \leftarrow \mathrm{~d}[a][i]$
end if
end for return $\mathrm{d}[a][0]$
end procedure

Example of working with timestamps: finding Least Common Ancestors in trees


- Path compression ("binary hops"):
- $\mathrm{d}[v][0]=$ parent of $v$
- $\mathrm{d}[v][i]=2^{i}$-th vertex towards root
procedure $\operatorname{LCA}(a, b)$
if $\operatorname{IsAncestor}(a, b)$ then return $a$ end if
if $\operatorname{IsAncestor}(b, a)$ then return $b$ end if
for $i$ from $\log _{2}|V|$ down to 1 do
if not IsAncestor(d[a][i], b) then $a \leftarrow \mathrm{~d}[a][i]$
end if
end for return $\mathrm{d}[\mathrm{a}][0]$
end procedure

Example of working with timestamps: finding Least Common Ancestors in trees


- Path compression ("binary hops"):
- $\mathrm{d}[v][0]=$ parent of $v$
- $\mathrm{d}[v][i]=2^{i}$-th vertex towards root
procedure $\operatorname{LCA}(a, b)$
if $\operatorname{IsAnCestor}(a, b)$ then return $a$ end if
if $\operatorname{IsAnCESTOR}(b, a)$ then return $b$ end if
for $i$ from $\log _{2}|V|$ down to 1 do
if not IsAncestor $(\mathrm{d}[a][i], b)$ then $a \leftarrow \mathrm{~d}[a][i]$
end if
end for return $\mathrm{d}[a][0]$
end procedure

An undirected graph is edge-biconnected if the following holds:

- If any edge is removed, the graph will remain connected

An undirected graph is edge-biconnected if the following holds:

- If any edge is removed, the graph will remain connected

A bridge is an edge with the following property:

- If this edge is removed, the graph will no longer be connected

An undirected graph is edge-biconnected if the following holds:

- If any edge is removed, the graph will remain connected

A bridge is an edge with the following property:

- If this edge is removed, the graph will no longer be connected

A graph can be decomposed into edge-biconnected components and bridges. How to do it faster than in $\Theta\left(|E|^{2}\right)$ ?

An undirected graph is edge-biconnected if the following holds:

- If any edge is removed, the graph will remain connected

A bridge is an edge with the following property:

- If this edge is removed, the graph will no longer be connected

A graph can be decomposed into edge-biconnected components and bridges. How to do it faster than in $\Theta\left(|E|^{2}\right)$ ?



- Consider an edge BF
- $B$ is reachable from $F$ without this edge: $B F$ is not a bridge

- Consider an edge BF
- $B$ is reachable from $F$ without this edge: $B F$ is not a bridge
- Consider an edge $A B$
- $A$ is not reachable from $B$ without this edge: $A B$ is a bridge

- Consider an edge BF
- $B$ is reachable from $F$ without this edge: $B F$ is not a bridge
- Consider an edge $A B$
- $A$ is not reachable from $B$ without this edge: $A B$ is a bridge
- An edge $X Y$ is a bridge, if $X$ is not reachable from $Y$ without this edge
- Let's track, for each vertex $v$, $T_{\text {min }}$ : the minimum $T_{\text {in }}$ of a vertex reachable from $v$ without following uplinks
- $T_{\text {min }}(u)>T_{\text {in }}(v):(v, u)$ is a bridge

- Consider an edge BF
- $B$ is reachable from $F$ without this edge: $B F$ is not a bridge
- Consider an edge $A B$
- $A$ is not reachable from $B$ without this edge: $A B$ is a bridge
- An edge $X Y$ is a bridge, if $X$ is not reachable from $Y$ without this edge
- Let's track, for each vertex $v$, $T_{\text {min }}$ : the minimum $T_{\text {in }}$ of a vertex reachable from $v$ without following uplinks
- $T_{\text {min }}(u)>T_{\text {in }}(v):(v, u)$ is a bridge

- Consider an edge BF
- $B$ is reachable from $F$ without this edge: $B F$ is not a bridge
- Consider an edge $A B$
- $A$ is not reachable from $B$ without this edge: $A B$ is a bridge
- An edge $X Y$ is a bridge, if $X$ is not reachable from $Y$ without this edge
- Let's track, for each vertex $v$, $T_{\text {min }}$ : the minimum $T_{\text {in }}$ of a vertex reachable from $v$ without following uplinks
- $T_{\text {min }}(u)>T_{\text {in }}(v):(v, u)$ is a bridge

- Consider an edge BF
- $B$ is reachable from $F$ without this edge: $B F$ is not a bridge
- Consider an edge $A B$
- $A$ is not reachable from $B$ without this edge: $A B$ is a bridge
- An edge $X Y$ is a bridge, if $X$ is not reachable from $Y$ without this edge
- Let's track, for each vertex $v$, $T_{\text {min }}$ : the minimum $T_{\text {in }}$ of a vertex reachable from $v$ without following uplinks
- $T_{\text {min }}(u)>T_{\text {in }}(v):(v, u)$ is a bridge

- Consider an edge BF
- $B$ is reachable from $F$ without this edge: $B F$ is not a bridge
- Consider an edge $A B$
- $A$ is not reachable from $B$ without this edge: $A B$ is a bridge
- An edge $X Y$ is a bridge, if $X$ is not reachable from $Y$ without this edge
- Let's track, for each vertex $v$, $T_{\text {min }}$ : the minimum $T_{\text {in }}$ of a vertex reachable from $v$ without following uplinks
- $T_{\text {min }}(u)>T_{\text {in }}(v):(v, u)$ is a bridge

- Consider an edge BF
- $B$ is reachable from $F$ without this edge: $B F$ is not a bridge
- Consider an edge $A B$
- $A$ is not reachable from $B$ without this edge: $A B$ is a bridge
- An edge $X Y$ is a bridge, if $X$ is not reachable from $Y$ without this edge
- Let's track, for each vertex $v$, $T_{\text {min }}$ : the minimum $T_{\text {in }}$ of a vertex reachable from $v$ without following uplinks
- $T_{\text {min }}(u)>T_{\text {in }}(v):(v, u)$ is a bridge

- Consider an edge BF
- $B$ is reachable from $F$ without this edge: $B F$ is not a bridge
- Consider an edge $A B$
- $A$ is not reachable from $B$ without this edge: $A B$ is a bridge
- An edge $X Y$ is a bridge, if $X$ is not reachable from $Y$ without this edge
- Let's track, for each vertex $v$, $T_{\min }$ : the minimum $T_{\text {in }}$ of a vertex reachable from $v$ without following uplinks
- $T_{\text {min }}(u)>T_{\text {in }}(v):(v, u)$ is a bridge

- Consider an edge BF
- $B$ is reachable from $F$ without this edge: $B F$ is not a bridge
- Consider an edge $A B$
- $A$ is not reachable from $B$ without this edge: $A B$ is a bridge
- An edge $X Y$ is a bridge, if $X$ is not reachable from $Y$ without this edge
- Let's track, for each vertex $v$, $T_{\min }$ : the minimum $T_{\text {in }}$ of a vertex reachable from $v$ without following uplinks
- $T_{\text {min }}(u)>T_{\text {in }}(v):(v, u)$ is a bridge

- Consider an edge BF
- $B$ is reachable from $F$ without this edge: $B F$ is not a bridge
- Consider an edge $A B$
- $A$ is not reachable from $B$ without this edge: $A B$ is a bridge
- An edge $X Y$ is a bridge, if $X$ is not reachable from $Y$ without this edge
- Let's track, for each vertex $v$, $T_{\text {min }}$ : the minimum $T_{\text {in }}$ of a vertex reachable from $v$ without following uplinks
- $T_{\text {min }}(u)>T_{\text {in }}(v):(v, u)$ is a bridge

- Consider an edge BF
- $B$ is reachable from $F$ without this edge: $B F$ is not a bridge
- Consider an edge $A B$
- $A$ is not reachable from $B$ without this edge: $A B$ is a bridge
- An edge $X Y$ is a bridge, if $X$ is not reachable from $Y$ without this edge
- Let's track, for each vertex $v$, $T_{\text {min }}$ : the minimum $T_{\text {in }}$ of a vertex reachable from $v$ without following uplinks
- $T_{\text {min }}(u)>T_{\text {in }}(v):(v, u)$ is a bridge

- Consider an edge BF
- $B$ is reachable from $F$ without this edge: $B F$ is not a bridge
- Consider an edge $A B$
- $A$ is not reachable from $B$ without this edge: $A B$ is a bridge
- An edge $X Y$ is a bridge, if $X$ is not reachable from $Y$ without this edge
- Let's track, for each vertex $v$, $T_{\text {min }}$ : the minimum $T_{\text {in }}$ of a vertex reachable from $v$ without following uplinks
- $T_{\text {min }}(u)>T_{\text {in }}(v):(v, u)$ is a bridge

- Consider an edge BF
- $B$ is reachable from $F$ without this edge: $B F$ is not a bridge
- Consider an edge $A B$
- $A$ is not reachable from $B$ without this edge: $A B$ is a bridge
- An edge $X Y$ is a bridge, if $X$ is not reachable from $Y$ without this edge
- Let's track, for each vertex $v$, $T_{\text {min }}$ : the minimum $T_{\text {in }}$ of a vertex reachable from $v$ without following uplinks
- $T_{\text {min }}(u)>T_{\text {in }}(v):(v, u)$ is a bridge

- Consider an edge BF
- $B$ is reachable from $F$ without this edge: $B F$ is not a bridge
- Consider an edge $A B$
- $A$ is not reachable from $B$ without this edge: $A B$ is a bridge
- An edge $X Y$ is a bridge, if $X$ is not reachable from $Y$ without this edge
- Let's track, for each vertex $v$, $T_{\text {min }}$ : the minimum $T_{\text {in }}$ of a vertex reachable from $v$ without following uplinks
- $T_{\text {min }}(u)>T_{\text {in }}(v):(v, u)$ is a bridge

- Consider an edge BF
- $B$ is reachable from $F$ without this edge: $B F$ is not a bridge
- Consider an edge $A B$
- $A$ is not reachable from $B$ without this edge: $A B$ is a bridge
- An edge $X Y$ is a bridge, if $X$ is not reachable from $Y$ without this edge
- Let's track, for each vertex $v$, $T_{\text {min }}$ : the minimum $T_{\text {in }}$ of a vertex reachable from $v$ without following uplinks
- $T_{\text {min }}(u)>T_{\text {in }}(v):(v, u)$ is a bridge

- Consider an edge BF
- $B$ is reachable from $F$ without this edge: $B F$ is not a bridge
- Consider an edge $A B$
- $A$ is not reachable from $B$ without this edge: $A B$ is a bridge
- An edge $X Y$ is a bridge, if $X$ is not reachable from $Y$ without this edge
- Let's track, for each vertex $v$, $T_{\text {min }}$ : the minimum $T_{\text {in }}$ of a vertex reachable from $v$ without following uplinks
- $T_{\text {min }}(u)>T_{\text {in }}(v):(v, u)$ is a bridge

- Consider an edge BF
- $B$ is reachable from $F$ without this edge: $B F$ is not a bridge
- Consider an edge $A B$
- $A$ is not reachable from $B$ without this edge: $A B$ is a bridge
- An edge $X Y$ is a bridge, if $X$ is not reachable from $Y$ without this edge
- Let's track, for each vertex $v$, $T_{\text {min }}$ : the minimum $T_{\text {in }}$ of a vertex reachable from $v$ without following uplinks
- $T_{\text {min }}(u)>T_{\text {in }}(v):(v, u)$ is a bridge

- Consider an edge BF
- $B$ is reachable from $F$ without this edge: $B F$ is not a bridge
- Consider an edge $A B$
- $A$ is not reachable from $B$ without this edge: $A B$ is a bridge
- An edge $X Y$ is a bridge, if $X$ is not reachable from $Y$ without this edge
- Let's track, for each vertex $v$, $T_{\text {min }}$ : the minimum $T_{\text {in }}$ of a vertex reachable from $v$ without following uplinks
- $T_{\text {min }}(u)>T_{\text {in }}(v):(v, u)$ is a bridge

- Consider an edge BF
- $B$ is reachable from $F$ without this edge: $B F$ is not a bridge
- Consider an edge $A B$
- $A$ is not reachable from $B$ without this edge: $A B$ is a bridge
- An edge $X Y$ is a bridge, if $X$ is not reachable from $Y$ without this edge
- Let's track, for each vertex $v$, $T_{\text {min }}$ : the minimum $T_{\text {in }}$ of a vertex reachable from $v$ without following uplinks
- $T_{\text {min }}(u)>T_{\text {in }}(v):(v, u)$ is a bridge

- Consider an edge BF
- $B$ is reachable from $F$ without this edge: $B F$ is not a bridge
- Consider an edge $A B$
- $A$ is not reachable from $B$ without this edge: $A B$ is a bridge
- An edge $X Y$ is a bridge, if $X$ is not reachable from $Y$ without this edge
- Let's track, for each vertex $v$, $T_{\text {min }}$ : the minimum $T_{\text {in }}$ of a vertex reachable from $v$ without following uplinks
- $T_{\text {min }}(u)>T_{\text {in }}(v):(v, u)$ is a bridge

```
G=\langleV,E\rangle
Tin},\mp@subsup{T}{\mathrm{ min }}{}\leftarrow{\infty
A(v)={u|(v,u)\inE}
t \leftarrow 0
procedure Bridges(v, p=-1)
    t\leftarrowt+1; T T (v)\leftarrowt
    for }u\inA(v)\mathrm{ do
        if p=u then continue end if
        if Tin}(u)=\infty\mathrm{ then
            Bridges(u,v)
            T
            if }\mp@subsup{T}{\mathrm{ min }}{}(u)>\mp@subsup{T}{\mathrm{ in }}{}(v)\mathrm{ then
                ReportBridge(v,u)
            end if
        else
            T
        end if
    end for
end procedure
```

```
G=\langleV,E\rangle
Tin},\mp@subsup{T}{\mathrm{ min }}{}\leftarrow{\infty
A(v)={u|(v,u)\inE}
t \leftarrow 0
procedure Bridges(v, p=-1)
    t\leftarrowt+1; T in (v)\leftarrowt
    for }u\inA(v)\mathrm{ do
        if p=u then continue end if
        if Tin}(u)=\infty\mathrm{ then
            Bridges(u,v)
            T
            if }\mp@subsup{T}{\mathrm{ min }}{}(u)>\mp@subsup{T}{\mathrm{ in }}{}(v)\mathrm{ then
                ReportBridge(v,u)
            end if
        else
            T
        end if
    end for
end procedure
```

```
G=\langleV,E\rangle
Tin},\mp@subsup{T}{\mathrm{ min }}{}\leftarrow{\infty
A(v)={u|(v,u)\inE}
t \leftarrow 0
procedure Bridges(v, p=-1)
    t\leftarrowt+1; T in (v)\leftarrowt
    for }u\inA(v)\mathrm{ do
        if p=u then continue end if
        if }\mp@subsup{T}{\mathrm{ in }}{}(u)=\infty\mathrm{ then
            Bridges(u,v)
            T
            if }\mp@subsup{T}{\mathrm{ min }}{}(u)>\mp@subsup{T}{\mathrm{ in }}{}(v)\mathrm{ then
                ReportBridge(v,u)
            end if
        else
            T min}(v)\leftarrow\operatorname{min}(\mp@subsup{T}{\mathrm{ min }}{}(v),\mp@subsup{T}{\mathrm{ min }}{}(u)
        end if
    end for
end procedure
```

$\triangleright$ Tracking $T_{\text {min }}$ instead of $T_{\text {out }}$
$\triangleright$ Extra parameter: the parent of $v$

```
G=\langleV,E\rangle
Tin},\mp@subsup{T}{\mathrm{ min }}{}\leftarrow{\infty
A(v)={u|(v,u)\inE}
t \leftarrow 0
procedure Bridges(v, p=-1)
    t\leftarrowt+1; T in (v)\leftarrowt
    for }u\inA(v)\mathrm{ do
        if p=u then continue end if
        if }\mp@subsup{T}{\mathrm{ in }}{}(u)=\infty\mathrm{ then
            Bridges(u,v)
            T
            if }\mp@subsup{T}{\mathrm{ min }}{}(u)>\mp@subsup{T}{\mathrm{ in }}{}(v)\mathrm{ then
                ReportBridge(v,u)
            end if
        else
            T
        end if
    end for
end procedure
```

```
G=\langleV,E\rangle
Tin
A(v)={u|(v,u)\inE}
t \leftarrow 0
procedure Bridges(v, p=-1)
    t\leftarrowt+1; T in (v)\leftarrowt
    for }u\inA(v)\mathrm{ do
        if p=u then continue end if
        if Tin}(u)=\infty\mathrm{ then
            Bridges(u,v)
            T min}(v)\leftarrow\operatorname{min}(\mp@subsup{T}{\mathrm{ min }}{}(v),\mp@subsup{T}{\mathrm{ min }}{\prime}(u)
            if }\mp@subsup{T}{\mathrm{ min }}{}(u)>\mp@subsup{T}{\mathrm{ in }}{}(v)\mathrm{ then
                ReportBridge(v,u)
            end if
        else
            T
        end if
    end for
end procedure
```

$\triangleright$ Tracking $T_{\text {min }}$ instead of $T_{\text {out }}$
$\triangleright$ Extra parameter: the parent of $v$
$\triangleright$ Updating $T_{\text {min }}$ by $T_{\text {min }}$ of a descendant
$\triangleright$ Updating $T_{\text {min }}$ by $T_{\text {min }}$ of other vertex

```
end procedure
```

An undirected graph is vertex-biconnected if the following holds:

- If any vertex is removed, the graph will remain connected

An undirected graph is vertex-biconnected if the following holds:

- If any vertex is removed, the graph will remain connected

An articulation point is a vertex with the following property:

- If this vertex is removed, the graph will no longer be connected

An undirected graph is vertex-biconnected if the following holds:

- If any vertex is removed, the graph will remain connected

An articulation point is a vertex with the following property:

- If this vertex is removed, the graph will no longer be connected

A graph can be decomposed into vertex-biconnected components, connected by articulation points.
How to do it faster than in $\Theta(|V| \cdot|E|)$ ?

An undirected graph is vertex-biconnected if the following holds:

- If any vertex is removed, the graph will remain connected

An articulation point is a vertex with the following property:

- If this vertex is removed, the graph will no longer be connected

A graph can be decomposed into vertex-biconnected components, connected by articulation points.
How to do it faster than in $\Theta(|V| \cdot|E|)$ ?


```
G=\langleV,E\rangle
Tin},\mp@subsup{T}{\mathrm{ min }}{}\leftarrow{\infty
A(v)={u|(v,u)\inE}
t \leftarrow 0
procedure Articulation(v, p=-1)
    t\leftarrowt+1; T T (v)\leftarrowt;ch\leftarrow0
    for }u\inA(v)\mathrm{ do
        if p=u then continue end if
        if }\mp@subsup{T}{\mathrm{ in }}{}(u)=\infty\mathrm{ then
            ch}\leftarrowch+
            Articulation(u,v)
            T
            if }\mp@subsup{T}{\mathrm{ min }}{}(u)\geq\mp@subsup{T}{\mathrm{ in }}{(v)}\mathrm{ and }p\not=-1\mathrm{ then
                ReportArticulation(v)
            end if
        else
            T min
        end if
    end for
    if p=-1 and ch>1 then ReportArticulation(v) end if
end procedure
```

```
G=\langleV,E\rangle
Tin},\mp@subsup{T}{\mathrm{ min }}{}\leftarrow{\infty
A(v)={u|(v,u)\inE}
t \leftarrow 0
procedure Articulation(v, p=-1)
    t\leftarrowt+1; T T (v)\leftarrowt;ch\leftarrow0
    for }u\inA(v)\mathrm{ do
        if p=u then continue end if
        if }\mp@subsup{T}{\mathrm{ in }}{}(u)=\infty\mathrm{ then
            ch}\leftarrowch+
            Articulation(u,v)
            T
            if }\mp@subsup{T}{\mathrm{ min }}{}(u)\geq\mp@subsup{T}{\mathrm{ in }}{(v)}\mathrm{ and }p\not=-1\mathrm{ then
                ReportArticulation(v)
            end if
        else
            T
        end if
    end for
    if p=-1 and ch>1 then ReportArticulation(v) end if
end procedure
\(\triangleright\) Now we also track children count
\[
\text { for } u \in A(v) \text { do }
\]
```

```
G=\langleV,E\rangle
Tin},\mp@subsup{T}{\mathrm{ min }}{}\leftarrow{\infty
A(v)={u|(v,u)\inE}
t \leftarrow 0
procedure Articulation(v, p=-1)
    t\leftarrowt+1; T T (v)\leftarrowt;ch\leftarrow0
    for }u\inA(v) d
        if p=u then continue end if
        if }\mp@subsup{T}{\mathrm{ in }}{}(u)=\infty\mathrm{ then
            ch}\leftarrowch+1 \triangleright ... and incrementing it on every child
            Articulation(u,v)
            T
            if }\mp@subsup{T}{\mathrm{ min }}{}(u)\geq\mp@subsup{T}{\mathrm{ in }}{(v)}\mathrm{ and }p\not=-1\mathrm{ then
                ReportArticulation(v)
            end if
        else
            T
        end if
    end for
    if p=-1 and ch>1 then ReportArticulation(v) end if
end procedure
```

$\triangleright$ Now we also track children count

```
G=\langleV,E\rangle
Tin},\mp@subsup{T}{\mathrm{ min }}{}\leftarrow{\infty
A(v)={u|(v,u)\inE}
t \leftarrow 0
procedure Articulation(v, p=-1)
    t\leftarrowt+1; T in (v)\leftarrowt;ch\leftarrow0
    for }u\inA(v)\mathrm{ do
        if p=u then continue end if
        if }\mp@subsup{T}{\mathrm{ in }}{}(u)=\infty\mathrm{ then
            ch}\leftarrowch+1 \triangleright ...and incrementing it on every chil
            Articulation(u,v)
            T
            if }\mp@subsup{T}{\mathrm{ min }}{}(u)\geq\mp@subsup{T}{\mathrm{ in }}{}(v)\mathrm{ and }p\not=-1\mathrm{ then }\triangleright Now inequality is non-strict, and root is not considered
                ReportArticulation(v)
            end if
        else
            T
        end if
    end for
    if p=-1 and ch>1 then ReportArticulation(v) end if
end procedure
```

```
G=\langleV,E\rangle
Tin},\mp@subsup{T}{\mathrm{ min }}{}\leftarrow{\infty
A(v)={u|(v,u)\inE}
t \leftarrow 0
procedure Articulation(v, p=-1)
    t\leftarrowt+1; T in (v)\leftarrowt;ch\leftarrow0
    for }u\inA(v)\mathrm{ do
        if p=u then continue end if
        if }\mp@subsup{T}{\mathrm{ in }}{}(u)=\infty\mathrm{ then
            ch}\leftarrowch+1 \triangleright ...and incrementing it on every chil
            Articulation(u,v)
            T
            if }\mp@subsup{T}{\mathrm{ min }}{}(u)\geq\mp@subsup{T}{\mathrm{ in }}{}(v)\mathrm{ and }p\not=-1\mathrm{ then }\triangleright Now inequality is non-strict, and root is not considered
                ReportArticulation(v)
            end if
        else
            T
        end if
    end for
    if p=-1 and ch>1 then ReportArticulation(v) end if }\quad\triangleright\textrm{A}\mathrm{ root is AP jiff 
```

end procedure

