
SD1x-3 1Property of Penn Engineering, Arvind Bhusnurmath

Video	
 3.1

Arvind	
 Bhusnurmath

SD1x-3 2Property of Penn Engineering, Arvind Bhusnurmath

• Used when the size of the data collection is
unknown.

• The indexing operations are still quick
• Adding an element is quick on average.
• ArrayList works by dynamically resizing an array

behind the scenes.

ArrayList

SD1x-3 3Property of Penn Engineering, Arvind Bhusnurmath

• Remember to import java.util.*

• ArrayList<object datatype>;

• An arraylist can only be made of objects. Primitive
datatypes are not allowed.

Syntax for ArrayList

SD1x-3 4Property of Penn Engineering, Arvind Bhusnurmath

• Declaration
ArrayList<String> names;

• Initialize the list
names = new ArrayList<String>();

• Declare and initialize
ArrayList<String> names =

new ArrayList<String>();

ArrayList of Strings

SD1x-3 5Property of Penn Engineering, Arvind Bhusnurmath

names = new ArrayList<String>();
• names.add(“John Doe”) - add the element to the end of

the arraylist
• names.get(i) - get the element at the ith index.
• names.contains(“John Doe”) – returns a boolean saying

whether the names arraylist contains John Doe
• names.remove(i) – remove the element at the ith index.

ArrayList methods

SD1x-3 6Property of Penn Engineering, Arvind Bhusnurmath

• Java has classes that ”wrap around” the primitive datatypes.
• Instead of using the primitive datatype int you can replace

it with java’s Integer class.
• To make an arraylist containing integers (in the

mathematical sense)

ArrayList<Integer> attendance =
new ArrayList<Integer>();

Java wrapper classes for
primitives

SD1x-3 7Property of Penn Engineering, Arvind Bhusnurmath

public Card {
char suit;// d, s, c, h
int rank; // Jack is 11, Queen is 12, King is 13

}
//creating a deck of cards
ArrayList<Card> deck = new ArrayList<Card>();
suits = new char[] {‘d’, ‘s’, ‘c’, ‘h’};
for (int i = 1; i < = 13; i++) {

Card c = new Card();
for (int j = 0; j <= 4; j++) {

c.suit = suits[j]; c.rank = i;
deck.add(c);

}
}

Example – using ArrayList to
simulate cards

SD1x-3 8Property of Penn Engineering, Arvind Bhusnurmath

Collections.shuffle(deck);
//pick the 10th card
Card tenthCard = deck.get(9);
System.out.println(tenthCard.rank + " " +

tenthCard.suit);

Shuffling an ArrayList

SD1x-3 9Property of Penn Engineering, Arvind Bhusnurmath

Video	
 3.2

Arvind	
 Bhusnurmath

SD1x-3 10Property of Penn Engineering, Arvind Bhusnurmath

• For any collection of data the following syntax loops
through every element

for(datatype variable : collection) {
// variable name can be used in this loop
// variable takes each value in the

//collection one by one
}

Enhanced for loop

SD1x-3 11Property of Penn Engineering, Arvind Bhusnurmath

Assume we have an arraylist of strings called names

int max = 0;
String longest = “”;
for (String name : names) {

int current = name.length();
if (current > max) {

max = current;
longest = name;

}
}

Example: find longest name in a list

SD1x-3 12Property of Penn Engineering, Arvind Bhusnurmath

The enhanced for loop can work for arrays as well

int[] scores = //an array of integer scores;
double total = 0;

for (double element : scores) {
total = total + element;

}

Looping through arrays

SD1x-3 13Property of Penn Engineering, Arvind Bhusnurmath

• The enhanced for loop is best used for reading elements
• Not suitable for initializing values or modifying existing

values

for (double element : values) {
element = 0;

}

The above loop does not make all the values in the collection
called values to be 0.

Modifying an array in a loop

SD1x-3 14Property of Penn Engineering, Arvind Bhusnurmath

for (int i = 0; i < values.length; i++) {
values[i] = 0;

}

Modifying an array(the corrent way)

SD1x-3 15Property of Penn Engineering, Arvind Bhusnurmath

for (int i = 0; i < values.size(); i++) {
values.set(i, 0);

}

Modifying an arraylist

SD1x-3 16Property of Penn Engineering, Arvind Bhusnurmath

for (Card ca : deck) {
if (ca.suit == 'c') {

deck.remove(ca);
 }
}

• Removing elements while iterating through the list at the
same time is not allowed in the enhanced for loop.

ConcurrentModificationException

SD1x-3 17Property of Penn Engineering, Arvind Bhusnurmath

ArrayList<Card> clubs = new ArrayList<Card>();

for (int i = 0 ; i < deck.size(); i++) {
Card ca = deck.get(i);
if (ca.suit == 'c') {

clubs.add(ca);
}

}

deck.removeAll(clubs);

Solving the
ConcurrentModificationException

SD1x-3 18Property of Penn Engineering, Arvind Bhusnurmath

Video	
 3.3

Arvind	
 Bhusnurmath

SD1x-3 19Property of Penn Engineering, Arvind Bhusnurmath

• In order to get someone to use the classes that
you develop it is important to communicate to
them

• No one wants to read every single line of your
code

• The best way is to have good documentation

Documentation

SD1x-3 20Property of Penn Engineering, Arvind Bhusnurmath

• Provide documentation for every method
• In Eclipse just type in /** before a method and hit enter

Javadoc creation

SD1x-3 21Property of Penn Engineering, Arvind Bhusnurmath

Javadoc creation

SD1x-3 22Property of Penn Engineering, Arvind Bhusnurmath

Javadoc creation

SD1x-3 23Property of Penn Engineering, Arvind Bhusnurmath

• Eclipse auto generates a block of documentation for you
• Fill in general documentation about what the method does.

Remember that there are tags to provide more detail
about components of the method.

• @param - provide helpful documentation for each
parameter

• @return – clearly specify what the method returns
• One additional tag is
• @see – if you want the reader of your documentation

to look up a different class

Tags in documentation

SD1x-3 24Property of Penn Engineering, Arvind Bhusnurmath

• Project - > Generate Javadoc
• Remember to write your javadocs completely

before clicking this
• every public method must have some javadocs.

Using Eclipse to generate documentation

SD1x-3 25Property of Penn Engineering, Arvind Bhusnurmath

Using Eclipse to generate documentation

SD1x-3 26Property of Penn Engineering, Arvind Bhusnurmath

Using Eclipse to generate documentation

SD1x-3 27Property of Penn Engineering, Arvind Bhusnurmath

Video	
 3.4

Arvind	
 Bhusnurmath
Some	
 of	
 the	
 slides	
 in	
 this	
 deck	
 were	
 reproduced	
 with	
 the	
 permission	
 of	
 	
 Dr.	
 David	
 Matuszek.	

SD1x-3 28Property of Penn Engineering, Arvind Bhusnurmath

• What does static mean?
• Static instance variables
• Static methods

Topics

SD1x-3 29Property of Penn Engineering, Arvind Bhusnurmath

Think of static as belonging to the class and not to the individual instances
of the class.

A static method means the method exists at the class level and is not
specific to the instance.

The one static method that you have in a lot of your classes is main.

Used when you do not need an instance of the object.

Math.sqrt is a method that computes the square root of a number. You
do not need an instance of mathematics before you know how to
compute the square root.

What does static mean?

SD1x-3 30Property of Penn Engineering, Arvind Bhusnurmath

• To	
 use	
 a	
 static	
 method	
 called	
 method1	
 in	
 a	
 class	
 called	

Class1	
 the	
 code	
 is
Class1.method1(parameters…)

• You	
 do	
 not	
 have	
 to	
 create	
 an	
 instance	
 of	
 the	
 class	
 in	
 order	

to	
 invoke	
 the	
 method

• Many	
 java	
 utility	
 functions	
 are	
 static	
 methods.	
 Almost	
 all	

math	
 function	
 are	
 static	
 methods	
 in	
 the	
 Math class.

Using static methods

SD1x-3 31Property of Penn Engineering, Arvind Bhusnurmath

Consider the Rational number class

To reduce 2/4 to 1/2 a common thing to do is to compute the
greatest common divisor. To compute the gcd you do not
need an instance of a fraction.

public static int gcd (int a, int b)
public Rational add(Rational otherRational)

Static versus non static

SD1x-3 32Property of Penn Engineering, Arvind Bhusnurmath

• Static	
 instance	
 variables	
 are	
 used	
 if	
 you	
 want	
 some	

information	
 to	
 be	
 shared	
 by	
 every	
 instance	
 of	
 a	
 class

• A	
 common	
 use	
 case	
 is	
 constants

• For	
 constants	
 you	
 also	
 get	
 to	
 see	
 the	
 keyword	
 final.	
 Final	

meaning	
 you	
 do	
 not	
 get	
 to	
 override	
 this	
 value	
 in	
 any	

manner.

• public static final int MAXSCORE = 100;

Static instance variables

SD1x-3 33Property of Penn Engineering, Arvind Bhusnurmath

• Bank account and bank account numbering

• Demo

Example of static variable used to
keep count

SD1x-3 34Property of Penn Engineering, Arvind Bhusnurmath

Video	
 3.5

Arvind	
 Bhusnurmath
Some	
 of	
 the	
 slides	
 in	
 this	
 deck	
 were	
 reproduced	
 with	
 the	
 permission	
 of	
 	
 Dr.	
 David	
 Matuszek.	

SD1x-3 35Property of Penn Engineering, Arvind Bhusnurmath

• Access Modifiers
• What is private, public?
• What if we don’t write any modifier?

Topics

SD1x-3 36Property of Penn Engineering, Arvind Bhusnurmath

• Every instance variable and every method can be given one
of 4 access modifiers
• public
• protected
• private
• default – no modifier provided at all

• We will discuss what protected means later (after we have
covered inheritance)

Access modifier

SD1x-3 37Property of Penn Engineering, Arvind Bhusnurmath

• With an access modifier being public the instance variable or method
can be directly accessed, even outside the class

• In the example below, the Spy class can go and change the id of a
Human object because the id has a public access modifier

public class Human {
public int id;
public String name;

}

public class Spy() {
public static void main(String[] args) {

Human h = new Human();
h.id = 45;

}
}

public instance variables

SD1x-3 38Property of Penn Engineering, Arvind Bhusnurmath

• For the same example (Human, Spy), if the id is made private then it
cannot be accessed in the Spy class.

• It can still be accessed within the Human class

public class Human {
private int id;
public String name;
public void sayHello() {

System.out.println(“Hello there “ + id); // same class.
Works fine.

}
}

public class Spy() {
public static void main(String[] args) {

Human h = new Human();
h.id = 45; // this line of code will not work anymore

}
}

private instance variables

SD1x-3 39Property of Penn Engineering, Arvind Bhusnurmath

• What happens if you leave out the private/public?
• The default access is for every class inside the

same package to be able to access the instance
variable while classes in different packages cannot
do so.

• This is quite uncommon in the actual software
industry. Avoid it unless there is a very specific
need.

Default access modifier

SD1x-3 40Property of Penn Engineering, Arvind Bhusnurmath

• The first preference for any instance variable is to make it
private

• You still want to be able to access these instance variables.
The correct way of doing so is via accessors and mutators

• Accessors and mutators
• Also called getters and setters

public class Student {
private String name;
public getName() {

return name;
}
public setName(String name) {

this.name = name;
}

}

Best practice for instance variables

SD1x-3 41Property of Penn Engineering, Arvind Bhusnurmath

public class Student {
private String name;
public getName() {

return name;
}
public setName(String name) {

this.name = name;
}

}

public class School {
private Student[] students;
public void printStudentNames() {

for (int i = 0; i < students.length; i++) {
System.out.println(students[i].getName());

}
}

}

Best practice for instance variables

SD1x-3 42Property of Penn Engineering, Arvind Bhusnurmath

• The method can be accessed from any other class.
• Public methods are the primary manner in which two

classes communicate with each other.
• Think of a public method as a service that one class is

providing to another.

public methods

SD1x-3 43Property of Penn Engineering, Arvind Bhusnurmath

• A private method can only be accessed within the class
• Common use case – Helper methods

public class Student {
private int age;
public void setAge(int age) {

if (verifyAge(age))
this.age = age;

}
private verifyAge(int age) {

return age >= 1;
}

}

private methods

SD1x-3 44Property of Penn Engineering, Arvind Bhusnurmath

Modifier Class Package World

public Y Y Y

default Y Y N

private Y N N

https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

World means any class that is outside the package

Summary

SD1x-3 45Property of Penn Engineering, Arvind Bhusnurmath

Video	
 3.6

Arvind	
 Bhusnurmath
Some	
 of	
 the	
 slides	
 in	
 this	
 deck	
 were	
 reproduced	
 with	
 the	
 permission	
 of	
 	
 Dr.	
 David	
 Matuszek.	

SD1x-3 46Property of Penn Engineering, Arvind Bhusnurmath

• Hands on example of cars being parked in a
parking garage.

• We will design a car object and a parking garage
object in Eclipse.

Topics

