Distributed Algorithms

Models of Distributed Systems

Models

- What is a model?
 - An abstraction of the relevant properties of a system
- Why construct or learn a model?
 - Real world is complex, a model makes assumptions and simplifications
 - Reason about realities in the model
 - Helps us tackle the complexities
 - The model and its properties are expressed in precise mathematical symbols and relationships

- What can modeling do for us?
 - Useful when *solving* problems (e.g. designing an algorithm)
 - When *predicting* behavior (e.g. cost in number of messages)
 - When *evaluating* and *verifying* a solution (e.g. simulation)
- Very important skill

Modeling

- Different types of models:
 - Continuous models
 - Often described by differential equations involving variables which take real (continuous) values
 - Discrete event models
 - Often described by state transition systems: system evolves, moving from one state to another at discrete time steps
- This course: *a model of distributed computing (discrete)*

Models of distributed computing

- Biggest challenge when modelling is to choose the *right level of abstraction*!
- The model should be powerful enough to construct impossibility proofs
 - A statement about all possible algorithms in a system
- Our model should therefore be:
 - *Precise*: explain all relevant properties
 - Concise: explain a class of distributed systems compactly

Input/output Automata

Input/Output Automata

- General mathematical modeling framework for reactive system components
- Designed for describing systems in a modular way
 - Supports description of individual system components, and how they compose to yield a larger system
 - Supports description of systems at different levels of abstraction

I/O Automata

- A distributed algorithm (system) is specified as an Input/Output automaton
- I/O automata models concurrent interacting components
 - Suitable for components that interact asynchronously
- Each I/O automaton is a reactive state-machine:
 - Interacts with environment through actions
 - Makes transitions (state, action, state)
 - $\langle \mathbf{s}_{i}, a, \mathbf{s}_{i+1} \rangle$
- Actions, Events
 - Input, Output, Internal

I/O Automata

- A distributed algorithm (system) is specified as an Input/Output automaton
- I/O automata models concurrent interacting components
 - Suitable for components that interact asynchronously
- Each I/O automaton is a reactive statemachine:
 - Interacts with environment through actions
 - Makes transitions (state, action, state)
 - $\langle \mathbf{s}_{i}, a, \mathbf{s}_{i+1} \rangle$
- Actions, Events (occurrence of action)
 - Input, Output, Internal

I/O automaton E

I/O automaton A

Input Actions

- Actions are named a_1, a_2, \ldots
- Input of automaton A
 - Always enabled
 - Environment E with output action a can always invoke input action a of Automaton A
 - E and A both make a simultaneous transition
- A does not control its input action

I/O automaton E

I/O automaton A

Internal and Output Actions

- Actions are named a_1, a_2, \ldots
- Output, Internal actions of automaton A
 - Conditioned on A's state
 - Can be blocked until the condition is true
- A controls its internal and output actions

I/O automaton A

Input/Output Automaton

- Labeled State transition system
 - Transitions labeled by actions
- Actions classified as input, output, internal
 - Input, output are external
 - Output, internal are locally controlled.

Signature, formally

• Signature S

- *in*(S), *out*(S), and *int*(S)
- Input, output and internal actions
- in(S) ∪ out(S) ∪ int(S) disjoint
- External actions ext(S)
 - in(S) U out(S)
- Locally controlled actions local(S)
 - out(S) U int(S)

Automaton A is a labeled transition System

- states(A)
 - a (not necessarily finite) set of states
- start(A)
 - a nonempty subset of states(A)
- trans(A) a state-transition relation
 - trans(A) ⊆ states(A) × acts(sig(A)) × states(A)
- For every state s and every input action a, there is a transition (s, a, s') ∈ trans(A)
- Tasks: local actions are partitions into groups

Executions

- Running an I/O automata generate executions
- Execution
 - A alternating sequence of state and actions
 - The execution of an action is called an event
- Fair Execution
 - Execution where internal and output actions are given infinitely many chances to run

Traces (behaviors)

- External actions
 - Input and output actions
- "Interesting" behavior of I/O automata is captured by its external actions during executions
- (Fair) Trace
 - Subsequence of fair execution that consists of external actions
- The set of all traces capture interesting behavior of I/O
 Automata

Automata A Solved P

• A problem P (a distributed abstraction) will be defined as a set of sequences of external actions

- Automaton A solves problem P
 - The set of fair behaviors of A is a subset of P

Example

an asynchronous networked system

- An synchronous network
- Processes communicate via channels
- Processes and channels are
 - "Reactive" components that interact with their environments via input and output actions
 - modelled by I/O automata

Processes and channels

- Reliable unidirectional FIFO channel between two processes
 - Fix set of messages M
- Signature
 - Input actions: send(m), m ∈ M
 - Output actions: deliver(m), m ∈ M
 - No internal actions
- States
 - *queue,* a FIFO queue of elements of M, initially empty

- Transitions
 - send(m):
 - Effect: add m to(end of) queue
 - *deliver(m):*
 - precondition: m is first (head) in queue
 - Effect: remove m from queue
- Tasks: all deliver actions is one task
- Transitions are described using "transition definitions", which are little code fragments

- Transitions
 - send(m):
 - Effect: add m to(end of) queue
 - deliver(m):
 - precondition: m is first (head) in queue
 - Effect: remove m from queue
- Transitions are described using "transition definitions", which are little code fragments
- Each transition definition describes a set of transitions, for designated actions (grouped by type of action)

- Add subscripts to indicate particular endpoints
- Here, the channel is used to connect processes i and j.
- Transitions
 - send(m)_{i,j}:
 - Effect: add m to(end of) queue
 - deliver(m)_{i,j}:
 - precondition: m is first (head) in queue
 - Effect: remove m from queue

A process

A simple agreement protocol

- Inputs arrive from the outside
- Process sends/receives values, collects vector of values, one for each process
- When vector is filled, outputs a decision obtained as a function **f** on the vector
- Can get new inputs, change values, send and output repeatedly
- Tasks for:
 - Sending to each individual neighbor
 - Outputting decisions

A process signature

- Input:
 - $init(v)_i$, for $v \in V$
 - $deliver(v)_{j,i}, v \in V, 1 \le j \le n, j \ne i$
- Output:
 - $decide(v)_i, v \in V$
 - $send(v)_{i,j}, v \in V, 1 \le j \le n, j \ne i$
- States:
 - val, a vector indexed by {1,..., n} of elements in V U {⊥}, all initially ⊥ (null)

Transitions

- $init(v)_i$, $v \in V$: val(i) := v (input)
- *deliver(v)_{j,i}*, v ∈ V : val(j) := v (input)
- send(v)_{i,j} : (output)
 - Precondition: val(i) = v
 - Effect: none
- decide(v)_i: (output)
 - Precondition: for all 1≤ j ≤ n: val(j) ≠ null
 - v = **f**(val(1),...,val(n))
 - Effect: none

Input/output Automata

Executions

- A step taken by automaton A is an element of trans(A)
- An action a is enabled in state s if trans(A) contains a step (s, a , s') for some s'
- I/O automata are always input-enabled
 - Input actions are enabled in every state
 - An automaton cannot control its environment

Executions

- An I/O automaton executes as follows:
 - Start at some start state
 - Repeatedly take step from current state to new state.
- Formally, an execution is a finite or infinite sequence:
 - $s_0 a_1 s_1 a_2 s_2 a_3 s_3 a_4 s_4 a_5 s_5 \dots$ (if finite, ends in state)
 - $-s_0$ is a start state
 - (s_i, a_{i+1}, s_{i+1}) is a step (i.e., in trans)

Executions: Channel Automaton

- Let M = {1,2}
- Three possible executions
- Any prefix of an execution is also an execution
- 1. [λ], send(1)_{i,j}, [1], deliver(1)_{i,j}, [λ], send(2)_{i,j}, [2], deliver(2)_{i,j}, [λ]
- ^{2.} [λ], send(1)_{i,j}, [1], deliver(1)_{i,j}, [λ], send(2)_{i,j}, [2]
- 3. [λ], send(1)_{i,j}, [1], , send(1)_{i,j}, [11], , send(1)_{i,j}, [111], ...

Execution Fragments

- An I/O automaton executes as follows:
 - Start at some start state.
 - Repeatedly take step from current state to new state.
- Formally, an execution fragment is a finite or infinite sequence:
 - $s_0 a_1 s_1 a_2 s_2 a_3 s_3 a_4 s_4 a_5 s_5 \dots$ (if finite, ends in state)
 - s_0 is a start state
 - (s_i, a_{i+1}, s_{i+1}) is a step (i.e., in trans)

- Traces allows us to focus on the component's external behavior
- Useful for defining correctness of an algorithm
- A trace of an execution is the subsequence of external actions in the execution
 - No states, no internal actions
 - Denoted trace(E) where E is an execution
 - Models observable behavior of a component

Traces: Channel Automaton

- Let M = {1,2}
- Three possible executions and traces
- 1. [λ], send(1)_{i,j}, [1], deliver(1)_{i,j}, [λ], send(2)_{i,j}, [2], deliver(2)_{i,j}, [λ]
- send(1)_{i,j}, deliver(1)_{i,j}, send(2)_{i,j}, deliver(2)_{i,j}
- 3. [λ], send(1)_{i,j}, [1], deliver(1)_{i,j}, [λ], send(2)_{i,j}, [2]
- send(1)_{i,j}, deliver(1)_{i,j}, send(2)_{i,j}
- 5. [λ], send(1)_{i,j}, [1], , send(1)_{i,j}, [11], , send(1)_{i,j}, [111], ...
- 6. $send(1)_{i,j}, send(1)_{i,j}, send(1)_{i,j}, \dots$

Input/output Automata

Operations on I/O automata

Composition

- Describes how systems are built out of components
- Main operations
 - Composition and hiding of actions
- Composition
 - Putting automata together to form a new automaton
 - Output action of one automaton with the matching input actions of the others
 - All components sharing the same action perform a step together (synchronize on actions)
Composition of channels and processes

- Composing multiple Automata {A_i, i ∈ I}, requires compatibility conditions
- for all i, $j \in I$, $i \neq j$
 - Internal actions are not shared
 - $int(A_i) \cap acts(A_i) = \emptyset$
 - Only **one** automaton controls each output
 - $out(A_i) \cap out(A_i) = \emptyset$
- However one output may be the input of many others

Composing Compatible Automata

- Composing Automata $A = \prod \{A_i, i \in I\}$
- Output actions of the components become output actions of the composition

• Internal actions of the components become internal actions of the composition

• Actions that are inputs to some components but outputs of none become input actions of the composition

Composing Compatible Automata

- Composing Automata $A = \prod \{A_i, i \in I\}$
- Output actions of the components become output actions of the composition
 - $out(A) = \cup \{out(A_i), i \in I\}$
- Internal actions of the components become internal actions of the composition
 - $int(A) = \cup \{int(A_i), i \in I\}$
- Actions that are inputs to some components but outputs of none become input actions of the composition
 - $in(A) = \cup \{in(A_i), i \in I\} out(A)$

Composing Compatible Automata

- Composing Automata $A = \prod \{A_i, i \in I\}$
- the states and start states of the composition are vectors of component states and start states, respectively, of the component automata
- state(A) = \prod {state(A_i), i \in I}
- start(A) = \prod {start(A_i), i \in I}
- The task partition of the composition's locally controlled actions is formed by taking the union of the components' task partitions
- tasks(A)= U{tasks(A_i), i ∈ I}

Composition of channels and processes

Transitions of Composed Automata

- Composing Automata $A = \prod \{A_i, i \in I\}$
- In a transition step, all the component automata that have a particular action α participate simultaneously in α
- Other component automata do nothing
- If a is output of automaton A1 and a in input of A2 and A3, but not sig(A4),
- A1, A2 and A3 take part and change their state
- $(s_1, s_2, s_3, s_4) a (s'_1, s'_2, s'_3, s_4)$

Transitions of Composed Automata

- Composing Automata $A = \prod \{A_i, i \in I\}$
- trans(A) is the set of triples (s, α, s') such that, the elements s'_i of vector s' is formed as follows:
 - for all $i \in I$ if $\alpha \in acts(A_i)$, then $(s_i, \alpha, s'_i) \in trans(A_i)$ otherwise $s_i = s'_i$
- The component states that change are those participating in the action $\, \alpha \,$

Transitions of Composed Automata

- Composing Automata $A = \prod \{A_i, i \in I\}$
- Assume (s, a, s') \in trans(A)
 - if a ∈ int(A) or a ∈ in(A) then only one state component
 is changed in s to s'
 - if a ∈ out(A) then multiple state components may change in s', those A_i's that participate in a

- Turn output actions into internal actions
- Prevents outputs of composed automaton of further interaction with other automata under further composition
- Makes those output no longer included in traces
- S is a signature, $\Sigma \subseteq \text{out}(S)$, hide_{Σ} (S) is S' where
 - in(S') = in(S), $out(S') = out(S) \sum$, $int(S') = int(S) \cup \sum$
- hide_Σ (A) is an automaton A' whose signature is hide_Σ (sig(A))

Input/output Automata

Example Composition

Distributed System Example

- In general, let I = {1,...,n}
 - n process automata P_i, i ∈ I,
 - n^2 channel automata $C_{i,j}$, i and j \in I
- The composition automaton represents a distributed system where processes communicate through reliable FIFO channels
- The system state
 - state for each process (each a vector of values, one per process)
 - a state for each channel (each a queue of messages in transit)

Composition of channels and processes

KTH VETENSKAP OCH KONST

Distributed System Example

- Transitions involve the following actions:
 - init(v)_i: input action, deposits a value in P_i's val(i) variable
 - send(v)_{i,i}: output action, P's value val(i) gets put into channel C_{i,i}
 - deliver(v)_{i,j}: output action, the first message in C_{i,j} is removed and simultaneously placed into P_j's variable val(i)
 - decide(v)_i output action at P_i, announce current computed value
- The execution of these actions (event) defines what happens in this system

Distributed System Traces

- Sample trace, for n = 2, where the value set V is the set natural numbers N (non-negative integers) and f is addition:
- init(2)₁, init(1)₂, send(2)_{1,2}, deliver(2)_{1,2}, send(1)_{2,1}, deliver(1)_{2,1}, init(4)₁, init(0)₂, decide(5)₁, decide(2)₂
- unique system state that is reachable using this trace
 - P1 has val vector (4, 1) and P2 has val vector (2, 0),

		(\perp,\perp)	[]	[]	(\perp,\perp)
init(2) ₁ ,		(2,⊥)	[]	[]	(\perp,\perp)
init(1) ₂ ,		(2,⊥)	[]	[]	(⊥,1)
send(2) _{1,2} ,		(2,⊥)	[2]	[]	(⊥,1)
deliver $(2)_{1,2}$,		(2,⊥)	[]	[]	(2,1)
send(1) _{2,1} ,		(2,⊥)	[]	[1]	(2,1)
deliver $(1)_{2,1}$,		(2,1)	[]	[]	(2,1)
init(4) ₁ ,		(4,1)	[]	[]	(2,1)
init(0) ₂ ,		(4,1)	[]	[]	(2,0)
decide(5) ₁ ,	4+1				
$decide(2)_2$	2+0		S. Haridi, KT⊦	lx ID2203x	

Input/output Automata

Basic Results of Automata Composition

Composition versus Components

- Execution or trace of a composition can be projected to yield executions or traces of the component automata
- Executions of component automata can be pasted together to form an execution of the composition
- Traces of component automata can be pasted together to form a trace of the composition

Similarity of executions

- The projection of component A_i in execution of E of a composed automata A, denoted E|A_i, is
 - the subsequence of execution E restricted to events (actions) and state of A_i
- Two executions E and F are similar w.r.t A_i if
 - $E|A_i = F|A_i$
- Two executions E and F are similar if
 - E and F are similar w.r.t every component automaton A_i

Similarity of traces

- The projection of component A_i in the trace of E of composed automata A, denoted trace(E) | A_i, is
 - the subsequence of trace(E) restricted to events of A_i
- Two traces trace(E) and trace(F) are similar w.r.t A_i if
 - $E|A_i = F|A_i$
- Two traces trace(E) and trace(F) are similar if
 - trace(E) and trace(F) are similar w.r.t every node

Projection (process view)

- Given an execution E of $A = \prod \{A_i, i \in I\}$
 - $E = s_0, a_1, s_2, \dots$
- Projection for E on A_i , E | A_i
 - Involves deleting actions that don't belong to A_i, and the following states, and then projecting the remaining states on the A_i component
- Projection for sequence of actions β on A_i , $\beta \mid A_i$
 - Involves deleting actions that don't belong to A_i,

Distributed System Traces

- Sample trace, for n = 2, where the value set V is the set natural numbers N (non-negative integers) and f is addition:
- $init(2)_1$, $init(1)_2$, $send(2)_{1,2}$, $deliver(2)_{1,2}$, $send(1)_{2,1}$, $deliver(1)_{2,1}$, $init(4)_1$, $init(0)_2$, $decide(5)_1$, $decide(2)_2$
- unique system state that is reachable using this trace
 - P1 has val vector (4, 1) and P2 has val vector (2, 0),

Projection of Trace on P1

- Sample trace, for n = 2, where the value set V is the set natural numbers N (non-negative integers) and f is addition:
- init(2)₁, init(1)₂, send(2)_{1,2}, deliver(2)_{1,2}, send(1)_{2,1}, deliver(1)_{2,1}, init(4)₁, init(0)₂, decide(5)₁, decide(2)₂
- $init(2)_1$, $send(2)_{1,2}$, $deliver(1)_{2,1}$, $init(4)_1$, $decide(5)_1$
- unique system state that is reachable using this trace
 - P1 has val vector (4, 1) and P2 has val vector (2, 0),

Composition versus Components

- Execution or trace of a composition projects to yield executions or traces of the component automata
- Theorem Projection
- Let $A = \prod \{A_i, i \in I\}$ where A_i are compatible
 - If $E \in execs(A)$, then $E \mid A_i \in execs(A_i)$ for all A_i
 - If $\beta \in traces(A)$, then $\beta \mid A_i \in traces(A_i)$ for all A_i

Composition versus Components

- Executions of component automata can be pasted together to form an execution of the composition
- Suppose E_i is an execution of A_i , β a sequence of external actions of A
- If $\beta \mid A_i$ is a trace of A_i , for all A_i , then there is an execution E
 - of A, such that β is the trace(E) and E_i = E | A_i for all A_i

- Traces of component automata can be pasted together to form a trace of the composition
- Suppose β a sequence of external actions of A
- If $\beta \mid A_i$ is a trace of A_i , for all A_i , then β is a trace of A

Input/output Automata

Fairness

Tasks and Fairness

- Task T
 - set of of locally controlled actions
 - corresponds to a "thread of control" used to define "fair" executions
- Fairness means
 - A task that is continuously enabled gets to make a transition step
 - Needed to prove progress properties (liveness) of systems

Fairness Formally

- Formally, execution (or fragment) E of A is fair to task T if one of the following holds
 - E is finite and T is not enabled in the final state of E
 - E is infinite and contains infinitely many events in T
 - E is infinite and contains infinitely many states in which T is not enabled
- Execution of A is fair if it is fair to all tasks of A
 - fairexecs(A) is the set of fair executions of A
- Trace of A is fair if it is the trace of a fair execution of A
 - fairtraces(A) is the set of fair executions of A

Fair Executions: Channel Automaton

- Let M = {1,2}
- Three possible executions and traces
- [λ], send(1)_{i,j}, [1], deliver(1)_{i,j}, [λ], send(2)_{i,j}, [2], deliver(2)_{i,j}, [λ]
- ^{2.} send(1)_{i,j}, deliver(1)_{i,j}, send(2)_{i,j}, deliver(2)_{i,j}
- 3. [λ], send(1)_{i,j}, [1], deliver(1)_{i,j}, [λ], send(2)_{i,j}, [2]
- send(1)_{i,j}, deliver(1)_{i,j}, send(2)_{i,j}
- 5. [λ], send(1)_{i,j}, [1], , send(1)_{i,j}, [11], , send(1)_{i,j}, [111], ...
- 6. $send(1)_{i,j}, send(1)_{i,j}, send(1)_{i,j}, \dots$

Distributed systems examples

- Consider the fair executions of distributed system example (n processes and n² channels)
 - In every fair execution, every message that is sent is
 eventually delivered
 - In every fair execution containing at least one init(v)_i event for each P_i, each process sends infinitely many messages to each other process
 - In every fair execution each process performs infinitely many decide steps

Composition versus Components

- Fair execution or trace of a composition projects to yield fair executions or traces of the component automata
- Theorem Projection
- Let A= \prod {A_i, i \in I} where A_i are compatible
 - If $E \in fairexecs(A)$, then $E \mid A_i \in fairexecs(A_i)$ for all A_i
 - If $\beta \in \text{fairtraces}(A)$, then $\beta \mid A_i \in \text{fairtraces}(A_i)$ for all A_i

Composition versus Components

- Fair Executions of component automata can be pasted together to form a fair execution of the composition
- Suppose E_i is an fair execution of A_i , β a sequence of external actions of A
- If $\beta \mid A_i$ is a fair trace of A_i , for all A_i , then there is an fair execution E of A, such that β is the fairtrace(E) and $E_i = E \mid A_i$ for all A_i

- Fair traces of component automata can be pasted together to form a fair trace of the composition
- Suppose β a sequence of external actions of A
- If $\beta \mid A_i$ is a fair trace of A_i , for all A_i , then β is a fair trace of A

Input Output Automata

Trace Properties

Trace Properties

- Properties of input-output automata are formulated as properties of their fair traces
- A trace property P
 - sig(P) signature containing no internal actions
 - traces(P) a set of sequences of actions in sig(P)

Automaton A satisfied P

 Every external behavior that can be produced by A is permitted by property P

- A satisfies a trace property P can mean either
 - extsig(A) = sig(P) and $traces(A) \subseteq traces(P)$, or
 - extsig(A) = sig(P) and $fairtraces(A) \subseteq traces(P)$

- Automata A and trace property P has
 - {0} as input set
 - {0,1,2} as output set
- traces(P)
 - is the set of all sequences of {0,1,2} that include at least one 1
- A has a task that always output 1
- fairtraces(A) ⊆ traces(P)
- traces(A) ⊈ traces(P)
 - Empty sequence is in traces(A)

Safety properties

- A safety property P states that some particular "bad" thing never happens in any trace
- A trace property P is a safety property if
 - traces(P) is nonempty
 - if $\beta \in \text{traces}(\mathsf{P})$ then every finite prefix of β is in traces(P)
 - if nothing bad happens in β then nothing bad happens in a prefix of β
 - if β1, β2,... is an infinite sequence of finite traces in traces(P) where each β_i is a prefix of β_{i+1} then the limit β is also in traces(P)
 - if something bad happens in (infinite) β then a bad event happens in a finite prefix

- A trace property P has
 - $init(v): v \in V$ as input set
 - decide(v): v ∈ V as output set
- traces(P)
 - is the set of all sequences of init(v) and decide(v) where no decide(v) occurs without a preceding init(v)

Liveness properties

- Informally a liveness property is saying that some particular "good" thing eventually happens
- A trace property P is a liveness property if
 - every finite sequence over sig(P) has some extension that is in traces(P)

- A trace property P has
 - $init(v): v \in V$ as input set
 - decide(v): $v \in V$ as output set
- traces(P)
 - is the set of all sequences of init(v) and decide(v) where for every init(v) event in a sequence there is a decide(v) event later in the sequence

Relating safety and liveness

• Two important results

Theorems

- If P is both a safety property and a liveness property, then P is the set of all sequences of actions in sig(P)
- If P is an arbitrary trace property with traces(P) ≠ Ø, then there exist a safety property S and a liveness property L such that
 - traces(P) = traces(S) \cap traces(L)