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Models
● What is a model? 

● An abstraction of the relevant properties of a system 
● Why construct or learn a model? 

● Real world is complex, a model makes assumptions and 
simplifications 

● Reason about realities in the model 
● Helps us tackle the complexities 
● The model and its properties are expressed in precise 

mathematical symbols and relationships 
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Modeling
● What can modeling do for us? 

● Useful when solving problems (e.g. designing an 
algorithm) 

● When predicting behavior (e.g. cost in number of 
messages) 

● When evaluating and verifying a solution (e.g. 
simulation) 

● Very important skill 
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Modeling
● Different types of models: 

● Continuous models 
● Often described by differential equations involving 

variables which take real (continuous) values 
● Discrete event models 

● Often described by state transition systems: system 
evolves, moving from one state to another at discrete 
time steps 

● This course: a model of distributed computing (discrete)
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Models of distributed computing
● Biggest challenge when modelling is to choose the right 

level of abstraction! 

● The model should be powerful enough to construct 
impossibility proofs 
● A statement about all possible algorithms in a system 

● Our model should therefore be: 
● Precise: explain all relevant properties 
● Concise: explain a class of distributed systems 

compactly
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Input/Output Automata
● General mathematical modeling framework for 

reactive system components 

● Designed for describing systems in a modular way 

● Supports description of individual system components, and 
how they compose to yield a larger system 

● Supports description of systems at different levels of 
abstraction

7
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I/O Automata

● A distributed algorithm (system) is specified as an Input/Output 
automaton 

● I/O automata models concurrent interacting components 
● Suitable for components that interact asynchronously 

● Each I/O automaton is a reactive state-machine:  
● Interacts with environment through actions 
● Makes transitions (state, action, state) 

● ⟨si , 𝒶, si+1 ⟩ 
● Actions, Events 

● Input, Output, Internal
8
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I/O Automata
● A distributed algorithm (system) is 

specified as an Input/Output automaton 
● I/O automata models concurrent 

interacting components 
● Suitable for components that interact 

asynchronously 
● Each I/O automaton is a reactive state-

machine:  
● Interacts with environment through 

actions 
● Makes transitions (state, action, state) 

● ⟨si , 𝒶, si+1 ⟩ 
● Actions, Events (occurrence of action)  

● Input, Output, Internal

9
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I/O automaton E
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internal 
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Input Actions

● Actions are named 𝒶1, 𝒶2, … 

● Input of automaton A 
● Always enabled 
● Environment E with output action 𝒶 

can always invoke  input action 𝒶 of 
Automaton A 

● E and A both make a simultaneous 
transition 

● A does not control its input action 
𝒶

10

I/O automaton A

state: si  𝒶➝ si+1

I/O automaton E

input output 

internal 
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Internal and Output Actions

● Actions are named 𝒶1, 𝒶2, … 

● Output, Internal  actions of 
automaton A 
● Conditioned on A’s state 
● Can be blocked until the condition is true 

● A controls its internal and output 
actions 

11

I/O automaton A

state: si  𝒶➝ si+1

I/O automaton E

input output 

internal 
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Input/Output Automaton
● Labeled State transition system 
−Transitions labeled by 

actions 
● Actions classified as input, 

output, internal 
− Input, output are external 
−Output, internal are locally 

controlled.
12

state: si  𝒶➝ si+1

output 

internal 

input 
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Signature, formally
● Signature S 
● in(S), out(S), and int(S) 
● Input, output and internal actions 

● in(S) ∪ out(S) ∪ int(S) disjoint 
● External actions ext(S) 
● in(S) U out(S) 

● Locally controlled actions local(S) 
● out(S) U int(S)

13
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Automaton A is a labeled transition System
● states(A) 
● a (not necessarily finite) set of states 

● start(A) 
● a nonempty subset of states(A)  

● trans(A) a state-transition relation 
● trans(A)  ⊆ states(A) × acts(sig(A)) × states(A) 

● For every state s and every input action 𝒶, there is a transition  
 (s, 𝒶, s') ∊ trans(A) 

● Tasks: local actions are partitions into groups

14
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Executions
● Running an I/O automata generate executions 
● Execution 
● A alternating sequence of state and actions 
● The execution of an action is called an event 

● Fair Execution 
● Execution where internal and output actions are 

given infinitely many chances to run

15
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Traces (behaviors)
● External actions 

● Input and output actions 
● “Interesting” behavior of I/O automata is captured by its 

external actions during executions 
● (Fair) Trace 

● Subsequence of fair execution that consists of 
external actions 

● The set of all traces capture interesting behavior of I/O 
Automata

16
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Automata A Solved P
● A problem P (a distributed abstraction) will be defined 

as a set of sequences of external actions 

● Automaton A solves problem P 
● The set of fair behaviors  of A is a subset of P

17
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an asynchronous networked system
● An synchronous network 
● Processes communicate via 

channels 
● Processes and channels are 
● “Reactive” components that 

interact with their environments 
via input and output actions 

● modelled by I/O automata 
19
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Processes and channels

20
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C1,2
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Example: Channel Automaton

● Reliable unidirectional FIFO channel between two processes 
● Fix set of messages M 

● Signature 
● Input actions: send(m),  m ∊ M 
● Output actions: deliver(m), m ∊ M 
● No internal actions 

● States 
● queue, a FIFO queue of elements of M, initially empty

21
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Example: Channel Automaton

● Transitions 
● send(m):  

● Effect: add m to(end of)  queue 
● deliver(m): 

● precondition: m is first (head) in queue 
● Effect: remove m from queue 

● Tasks: all deliver actions is one task 
● Transitions are described using “transition definitions”, which are little 

code fragments
22
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Example: Channel Automaton

● Transitions 
● send(m):  

● Effect: add m to(end of)  queue 
● deliver(m): 

● precondition: m is first (head) in queue 
● Effect: remove m from queue 

● Transitions are described using “transition definitions”, which are little 
code fragments  

● Each transition definition describes a set of transitions, for 
designated actions (grouped by type of action)

23
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Example: Channel Automaton

● Add subscripts to indicate particular endpoints 
● Here, the channel is used to connect processes i and j. 
● Transitions 

● send(m)i,j:  
● Effect: add m to(end of)  queue 

● deliver(m)i,j: 
● precondition: m is first (head) in queue 
● Effect: remove m from queue

24
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A process
A simple agreement protocol 
● Inputs arrive from the outside 
● Process sends/receives values, collects 

vector of values, one for each process 
● When vector is filled, outputs a decision 

obtained as a function f on the vector 
● Can get new inputs, change values, 

send and output repeatedly 
● Tasks for:  

● Sending to each individual neighbor 
● Outputting decisions

init decide

send deliver

25

pi
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A process signature 
● Input: 

● init(v)i, for v ∊ V 
● deliver(v)j,i, v ∊ V, 1 ≤ j ≤ n, j ≠ i 

● Output: 
● decide(v)i, v ∊ V 
● send(v)i,j, v ∊ V, 1 ≤ j ≤ n, j ≠ i 

● States: 
● val, a vector indexed by {1 , . . . , n} of 

elements in V U {⊥}, all initially ⊥ (null)

26

init(v)i decide(v)i

send(v)i,j deliver(v)j,i

pi



S. Haridi, KTHx ID2203x

Transitions 

● init(v)i , v ∊ V: val(i) := v   (input) 
● deliver(v)j,i , v ∊ V  : val(j) := v (input) 

● send(v)i,j  : (output)   
● Precondition: val(i) = v 
● Effect: none 

● decide(v)i: (output) 
● Precondition: for all 1≤ j ≤ n: val(j) ≠ null 
● v = f(val(1),…,val(n)) 
● Effect: none 

27
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Remarks
● A step taken by automaton A is an element of 

trans(A) 
● An action 𝒶 is enabled in state s if trans(A) contains 

a step (s, 𝒶 , s’) for some s’ 
● I/O automata are always input-enabled 

● Input actions are enabled in every state 
● An automaton cannot control its environment

29
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Executions
● An I/O automaton executes as follows: 

− Start at some start state 
− Repeatedly take step from current state to new state. 

● Formally, an execution is a finite or infinite sequence: 
− s0  𝒶1 s1  𝒶2 s2  𝒶3 s3 𝒶4 s4 𝒶5 s5 ... (if finite, ends in state) 
− s0 is a start state 
− (si, 𝒶i+1, si+1) is a step (i.e., in trans)

30
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Executions: Channel Automaton 

● Let M = {1,2} 
● Three possible executions 
● Any prefix of an execution is also an execution 
1. [λ], send(1)i,j , [1], deliver(1)i,j, [λ], send(2)i,j , [2], deliver(2)i,j, [λ] 

2. [λ], send(1)i,j , [1], deliver(1)i,j, [λ], send(2)i,j , [2] 

3. [λ], send(1)i,j , [1], , send(1)i,j , [11], , send(1)i,j , [111], …
31
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Execution Fragments
● An I/O automaton executes as follows: 

− Start at some start state. 
− Repeatedly take step from current state to new state. 

● Formally, an execution fragment is a finite or infinite 
sequence: 
− s0  𝒶1 s1  𝒶2 s2  𝒶3 s3 𝒶4 s4 𝒶5 s5 ... (if finite, ends in state) 
− s0 is a start state 
− (si, 𝒶i+1, si+1) is a step (i.e., in trans)

32
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Traces
● Traces allows us to focus on the component’s external 

behavior 
● Useful for defining correctness of an algorithm 
● A trace of an execution is the subsequence of external 

actions in the execution 
● No states, no internal actions 
● Denoted trace(E) where E is an execution 
● Models observable behavior of a component

33
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Traces: Channel Automaton 

● Let M = {1,2} 
● Three possible executions and traces 
1. [λ], send(1)i,j , [1], deliver(1)i,j, [λ], send(2)i,j , [2], deliver(2)i,j, [λ] 
2. send(1)i,j ,  deliver(1)i,j, send(2)i,j , deliver(2)i,j 
3. [λ], send(1)i,j , [1], deliver(1)i,j, [λ], send(2)i,j , [2] 
4. send(1)i,j ,  deliver(1)i,j,  send(2)i,j  
5. [λ], send(1)i,j , [1], , send(1)i,j , [11], , send(1)i,j , [111], … 
6. send(1)i,j , send(1)i,j , send(1)i,j ,  …

34
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Composition
● Describes how systems are built out of components 
● Main operations 

● Composition and hiding of actions 
● Composition 

● Putting automata together to form a new automaton 
● Output action of one automaton with the matching input actions of 

the others 
● All components sharing the same action perform a step together 

(synchronize on actions)

36
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Composition of channels and processes

37
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Composition
● Composing multiple Automata {Ai, i ∊ Ｉ}, requires 

compatibility conditions 
● for all i, j ∊ Ｉ, i ≠ j 

● Internal actions are not shared 
● int(Ai) ∩ acts(Aj) = ∅ 
● Only one automaton controls each output 
● out(Ai) ∩ out(Aj) = ∅ 

● However one output may be the input of many others

38
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Composing Compatible Automata
● Composing Automata A= ∏{Ai, i ∊ Ｉ} 
● Output actions of the components become output actions 

of the composition 

● Internal actions of the components become internal 
actions of the composition 

● Actions that are inputs to some components but outputs 
of none become input actions of the composition

39
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Composing Compatible Automata
● Composing Automata A= ∏{Ai, i ∊ Ｉ} 
● Output actions of the components become output actions of the 

composition 

● out(A) = ∪{out(Ai), i ∊ Ｉ} 
● Internal actions of the components become internal actions of the 

composition 
● int(A) = ∪{int(Ai), i ∊ Ｉ} 

● Actions that are inputs to some components but outputs of none 
become input actions of the composition 
● in(A) = ∪{in(Ai), i ∊ Ｉ} - out(A)

40
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Composing Compatible Automata
● Composing Automata A= ∏{Ai, i ∊ Ｉ} 
● the states and start states of the composition are vectors of component 

states and start states, respectively, of the component automata 
● state(A) = ∏{state(Ai), i ∊ Ｉ} 
● start(A) =  ∏{start(Ai), i ∊ Ｉ} 
● The task partition of the composition's locally controlled 

actions is formed by taking the union of the components' 
task partitions 

● tasks(A)= U{tasks(Ai) , i ∊ Ｉ}

41
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Composition of channels and processes

42

 P1
C1,2

P2

send(m)1,2Process Process
channel

channel
C2,1

send(m)2,1

deliver(m)1,2

deliver(m)2,1

init(v)1 init(v)2decide(v)1 decide(v)2

input: init(v)1, init(v)2 
output: decide(v)1, decide(v2)2, 
send(m)1, send(m)2, deliver(m)2,1, 
deliver(m)1,2 
tasks all as before
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Transitions of Composed Automata

● Composing Automata A= ∏{Ai, i ∊ Ｉ} 
● In a transition step, all the component automata that have a 

particular action 𝒶  participate simultaneously in  𝒶 
● Other component automata do nothing 
● If  𝒶 is output of automaton A1 and  𝒶 in input of A2 and A3, 

but not sig(A4),  
● A1, A2 and  A3 take part and change their state 
● (s1, s2, s3, s4) 𝒶 (s’1, s’2, s’3, s4)

43



S. Haridi, KTHx ID2203x

Transitions of Composed Automata

● Composing Automata A= ∏{Ai, i ∊ Ｉ} 
● trans(A) is the set of triples (s, 𝒶, s') such that, the elements 

s’i of vector s’ is formed as follows: 
● for all i ∊ Ｉ if 𝒶  ∊ acts(Ai), then (si, 𝒶, s’i) ∊ trans(Ai) 

otherwise si = s’i 
● The component states that change are those participating in 

the action  𝒶

44
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Transitions of Composed Automata
● Composing Automata A= ∏{Ai, i ∊ Ｉ} 
● Assume (s, 𝒶, s') ∊ trans(A) 
●  if 𝒶  ∊ int(A) or  𝒶  ∊ in(A)  then only one state component 

is changed in s to s’  
● if  𝒶  ∊ out(A) then multiple state components may change 

in s’, those Ai ’s that participate in  𝒶 

45
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Hiding
● Turn output actions into internal actions 
● Prevents outputs of composed automaton of further 

interaction with other automata under further 
composition 

● Makes those output no longer included in traces 
● S is a signature, ∑ ⊆ out(S), hide∑ (S)  is S’ where 

● in(S’) = in(S), out(S’) = out(S) - ∑, int(S’) = int(S) ∪ ∑ 
● hide∑ (A) is an automaton A’ whose signature is  

hide∑ (sig(A)) 
46
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Distributed System Example

● In general, let Ｉ = {1,…,n}  
● n process automata Pi, i ∊ Ｉ,  
● n2 channel automata Ci,j , i and j ∊ Ｉ 

● The composition automaton represents  a distributed system where 
processes communicate through reliable FIFO channels 

● The system state  
● state for each process (each a vector of values, one per process)  
● a state for each channel (each a queue of messages in transit)

48
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Composition of channels and processes

49
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Distributed System Example
● Transitions involve the following actions: 

● init(v)i : input action, deposits a value in Pi's val(i) variable  
● send(v)i,j : output action, Pi's value val(i) gets put into channel Ci,j 

● deliver(v)i,j :  output action, the first message in Ci,j is removed and 
simultaneously placed into Pj's variable val(i) 

● decide(v)i output action at Pi, announce current computed value 

● The execution of these actions (event) defines what happens in this 
system

50
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Distributed System Traces
● Sample trace, for n = 2, where the value set V is the set 

natural numbers N (non-negative integers) and f is addition: 

● init(2)1, init(1)2, send(2)1,2, deliver(2)1,2, send(1)2,1, deliver(1)2,1, 
init(4)1, init(0)2, decide(5)1, decide(2)2 

● unique system state that is reachable using this trace 
● P1 has val vector (4, 1) and P2 has val vector (2, 0),

51
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init(2)1, 
init(1)2, 
send(2)1,2, 
deliver(2)1,2, 
send(1)2,1, 
deliver(1)2,1, 
init(4)1, 
init(0)2, 
decide(5)1, 
decide(2)2

52
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(⊥,⊥)           []               []          (⊥,⊥)
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Composition versus Components
● Execution or trace of a composition can be projected to 

yield executions or traces of the component automata 
● Executions of component automata can be pasted 

together to form an execution of the composition 
● Traces of component automata can be pasted together to 

form a trace of the composition

54
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Similarity of executions

● The projection of component Ai in execution of E of  
a composed automata A, denoted E|Ai, is 
● the subsequence of execution E restricted to events 

(actions) and state of Ai 

● Two executions E and F are similar w.r.t Ai if 
● E|Ai = F|Ai  

● Two executions E and F are similar if 
● E and F are similar w.r.t every component automaton Ai
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Similarity of traces
● The projection of component Ai in the trace of E of 

composed automata A, denoted trace(E)|Ai, is 
● the subsequence of trace(E) restricted to events of Ai 

● Two traces trace(E) and trace(F) are similar w.r.t Ai if 
● E|Ai = F|Ai  

● Two traces trace(E) and trace(F) are similar if 
● trace(E) and trace(F) are similar w.r.t every node
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Projection (process view)
● Given an execution E of A= ∏{Ai, i ∊ Ｉ}  

●  E = s0, 𝒶1, s2, … 

● Projection for  E  on Ai , E｜Ai 

● Involves deleting actions that don’t belong to Ai, and the following 
states, and then projecting the remaining states on the Ai component 

● Projection for  sequence of actions β  on Ai , β｜ Ai 

● Involves deleting actions that don’t belong to Ai,

57
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Distributed System Traces

● Sample trace, for n = 2, where the value set V is the set natural 
numbers N (non-negative integers) and f is addition: 

● init(2)1, init(1)2, send(2)1,2, deliver(2)1,2, send(1)2,1, deliver(1)2,1, 
init(4)1, init(0)2, decide(5)1, decide(2)2 

● unique system state that is reachable using this trace 
● P1 has val vector (4, 1) and P2 has val vector (2, 0),

58



S. Haridi, KTHx ID2203x

Projection of Trace on P1

● Sample trace, for n = 2, where the value set V is the set natural numbers N 
(non-negative integers) and f is addition: 

● init(2)1, init(1)2, send(2)1,2, deliver(2)1,2, send(1)2,1, deliver(1)2,1, 
init(4)1, init(0)2,  decide(5)1, decide(2)2 

● init(2)1, send(2)1,2, , deliver(1)2,1, init(4)1, decide(5)1 

● unique system state that is reachable using this trace 
● P1 has val vector (4, 1) and P2 has val vector (2, 0),

59
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Composition versus Components
● Execution or trace of a composition projects to yield 

executions or traces of the component automata 
● Theorem Projection 
● Let A= ∏{Ai, i ∈ Ｉ} where Ai are compatible 

● If E ∈ execs(A), then E｜Ai ∈ execs(Ai) for all Ai  

● If β ∈ traces(A), then β｜Ai ∈ traces(Ai) for all Ai 

60
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Composition versus Components
● Executions of component automata can be pasted together 

to form an execution of the composition 
● Suppose Ei is an execution of Ai,  β a sequence of external 

actions of A 
● If β｜Ai is a trace of Ai , for all Ai , then there is an execution E 

of A, such that β is the trace(E) and Ei =  E｜Ai for all Ai 

61
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Composition versus Components
● Traces of component automata can be pasted together to 

form a trace of the composition 

● Suppose β a sequence of external actions of A 
● If β｜Ai is a trace of Ai , for all Ai , then β is a trace of A

62
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Tasks and Fairness
● Task T  

● set of of locally controlled actions  
● corresponds to a “thread of control” used to define 

“fair” executions 
● Fairness means 

● A task that is continuously enabled gets to make a 
transition step 

● Needed to prove progress properties (liveness) of 
systems

64S. Haridi, KTHx ID2203.1x



Fairness Formally
● Formally, execution (or fragment) E of A is fair to task T if one 

of the following holds 
● E is finite and T is not enabled in the final state of E 
● E is infinite and contains infinitely many events in T 
● E is infinite and contains infinitely many states in which T is not enabled 

● Execution of A is fair if it is fair to all tasks of A 
● fairexecs(A) is the set of fair executions of A   

● Trace of A is  fair if it is the trace of a fair execution of A 
● fairtraces(A)  is the set of fair executions of A 

65S. Haridi, KTHx ID2203.1x



S. Haridi, KTHx ID2203.1x

Fair Executions: Channel Automaton 

● Let M = {1,2} 
● Three possible executions and traces 
1. [λ], send(1)i,j , [1], deliver(1)i,j, [λ], send(2)i,j , [2], deliver(2)i,j, [λ] 
2. send(1)i,j ,  deliver(1)i,j, send(2)i,j , deliver(2)i,j 
3. [λ], send(1)i,j , [1], deliver(1)i,j, [λ], send(2)i,j , [2] 
4. send(1)i,j ,  deliver(1)i,j,  send(2)i,j  
5. [λ], send(1)i,j , [1], , send(1)i,j , [11], , send(1)i,j , [111], … 
6. send(1)i,j , send(1)i,j , send(1)i,j ,  …
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Distributed systems examples
● Consider the fair executions of distributed system example 

(n processes and n2 channels) 
● In every fair execution, every message that is sent is 

eventually delivered 
● In every fair execution containing at least one init(v)

i
 

event for each Pi, each process sends infinitely many 
messages to each other process  

● In every fair execution each process performs 
infinitely many decide steps   
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Composition versus Components
● Fair execution or trace of a composition projects to yield 

fair executions or traces of the component automata 
● Theorem Projection 
● Let A= ∏{Ai, i ∈ Ｉ} where Ai are compatible 

● If E ∈ fairexecs(A), then E｜Ai ∈ fairexecs(Ai) for all Ai  

● If β ∈ fairtraces(A), then β｜Ai ∈ fairtraces(Ai) for all Ai 
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Composition versus Components
● Fair Executions of component automata can be pasted 

together to form a fair execution of the composition 
● Suppose Ei is an fair execution of Ai,  β a sequence of 

external actions of A 
● If β｜Ai is a fair trace of Ai , for all Ai , then there is an fair 

execution E of A, such that β is the fairtrace(E) and Ei =  
E｜Ai for all Ai 
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Composition versus Components
● Fair traces of component automata can be pasted 

together to form a fair trace of the composition 

● Suppose β a sequence of external actions of A 
● If β｜Ai is a fair trace of Ai , for all Ai , then β is a fair trace 

of A
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Input Output Automata
Trace Properties
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Trace Properties
● Properties of input-output automata are 

formulated as properties of their fair traces 
● A trace property P 
● sig(P) signature containing no internal actions 
● traces(P) a set of sequences of actions in sig(P)
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Automaton A satisfied P
● Every external behavior that can be produced by 

A is permitted by property P  

● A satisfies a trace property P can mean either 
● extsig(A) = sig(P) and traces(A) ⊆ traces(P), or 
● extsig(A) = sig(P) and fairtraces(A) ⊆ traces(P) 
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Example
●Automata A and trace property P has  
● {0} as input set 
● {0,1,2} as output set 

●  traces(P)  
● is the set of all sequences of {0,1,2} that include at least 

one 1 
● A has a task that always output 1 
● fairtraces(A) ⊆ traces(P) 
● traces(A) ⊈ traces(P) 
● Empty sequence is in traces(A) 74



Safety properties
●   A safety property P states that some particular "bad" thing never 

happens in any trace  
●  A trace property P is a safety property if 
● traces(P) is nonempty 
● if 𝛽 ∈ traces(P) then every finite prefix of 𝛽 is in traces(P)  

● if nothing bad happens in 𝛽 then nothing bad happens in a 
prefix of 𝛽 

● if 𝛽1, 𝛽2,… is an infinite sequence of finite traces in traces(P)  
where each 𝛽i is a prefix of 𝛽i+1 then the limit 𝛽 is also in 
traces(P) 
● if something bad happens in (infinite) 𝛽 then a bad event 

happens in a finite prefix
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Example
● A trace property P has  
● init(v): v ∈ V as input set 
● decide(v): v ∈ V as output set 

●  traces(P)  
● is the set of all sequences of init(v) and 

decide(v) where no decide(v) occurs without a 
preceding init(v)
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Liveness properties
●  Informally a liveness property is saying that 

some particular "good" thing eventually happens 
●  A trace property P is a liveness property if  
● every finite sequence over sig(P) has some 

extension that is in traces(P) 
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Example
● A trace property P has  
● init(v): v ∈ V as input set 
● decide(v): v ∈ V as output set 

●  traces(P)  
● is the set of all sequences of init(v) and 

decide(v) where for every init(v) event in a 
sequence there is a  decide(v) event later in the 
sequence
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Relating safety and liveness
●  Two important results 
●Theorems 
● If P is both a safety property and a liveness property, 

then P is the set of all sequences of actions in sig(P) 

● If P is an arbitrary trace property with traces(P) ≠ ∅, 
then there exist a safety property S and a liveness 
property L such that 
●  traces(P) = traces(S) ∩ traces(L)
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