
 
Distributed Algorithms

Models of Distributed Systems

S. Haridi, KTHx ID2203x 2

Models
● What is a model?

● An abstraction of the relevant properties of a system
● Why construct or learn a model?

● Real world is complex, a model makes assumptions and
simplifications

● Reason about realities in the model
● Helps us tackle the complexities
● The model and its properties are expressed in precise

mathematical symbols and relationships

S. Haridi, KTHx ID2203x 3

Modeling
● What can modeling do for us?

● Useful when solving problems (e.g. designing an
algorithm)

● When predicting behavior (e.g. cost in number of
messages)

● When evaluating and verifying a solution (e.g.
simulation)

● Very important skill

S. Haridi, KTHx ID2203x 4

Modeling
● Different types of models:

● Continuous models
● Often described by differential equations involving

variables which take real (continuous) values
● Discrete event models

● Often described by state transition systems: system
evolves, moving from one state to another at discrete
time steps

● This course: a model of distributed computing (discrete)

S. Haridi, KTHx ID2203x 5

Models of distributed computing
● Biggest challenge when modelling is to choose the right

level of abstraction!

● The model should be powerful enough to construct
impossibility proofs
● A statement about all possible algorithms in a system

● Our model should therefore be:
● Precise: explain all relevant properties
● Concise: explain a class of distributed systems

compactly

Input/output Automata

S. Haridi, KTHx ID2203x

Input/Output Automata
● General mathematical modeling framework for

reactive system components

● Designed for describing systems in a modular way

● Supports description of individual system components, and
how they compose to yield a larger system

● Supports description of systems at different levels of
abstraction

7

S. Haridi, KTHx ID2203x

I/O Automata

● A distributed algorithm (system) is specified as an Input/Output
automaton

● I/O automata models concurrent interacting components
● Suitable for components that interact asynchronously

● Each I/O automaton is a reactive state-machine:
● Interacts with environment through actions
● Makes transitions (state, action, state)

● ⟨si , 𝒶, si+1 ⟩
● Actions, Events

● Input, Output, Internal
8

S. Haridi, KTHx ID2203x

I/O Automata
● A distributed algorithm (system) is

specified as an Input/Output automaton
● I/O automata models concurrent

interacting components
● Suitable for components that interact

asynchronously
● Each I/O automaton is a reactive state-

machine:
● Interacts with environment through

actions
● Makes transitions (state, action, state)

● ⟨si , 𝒶, si+1 ⟩
● Actions, Events (occurrence of action)

● Input, Output, Internal

9

I/O automaton A

I/O automaton E

input output

state: si 𝒶➝ si+1

internal

S. Haridi, KTHx ID2203x

Input Actions

● Actions are named 𝒶1, 𝒶2, …

● Input of automaton A
● Always enabled
● Environment E with output action 𝒶

can always invoke input action 𝒶 of
Automaton A

● E and A both make a simultaneous
transition

● A does not control its input action
𝒶

10

I/O automaton A

state: si 𝒶➝ si+1

I/O automaton E

input output

internal

S. Haridi, KTHx ID2203x

Internal and Output Actions

● Actions are named 𝒶1, 𝒶2, …

● Output, Internal actions of
automaton A
● Conditioned on A’s state
● Can be blocked until the condition is true

● A controls its internal and output
actions

11

I/O automaton A

state: si 𝒶➝ si+1

I/O automaton E

input output

internal

S. Haridi, KTHx ID2203x

Input/Output Automaton
● Labeled State transition system
−Transitions labeled by

actions
● Actions classified as input,

output, internal
− Input, output are external
−Output, internal are locally

controlled.
12

state: si 𝒶➝ si+1

output

internal

input

input output

S. Haridi, KTHx ID2203x

Signature, formally
● Signature S
● in(S), out(S), and int(S)
● Input, output and internal actions

● in(S) ∪ out(S) ∪ int(S) disjoint
● External actions ext(S)
● in(S) U out(S)

● Locally controlled actions local(S)
● out(S) U int(S)

13

S. Haridi, KTHx ID2203x

Automaton A is a labeled transition System
● states(A)
● a (not necessarily finite) set of states

● start(A)
● a nonempty subset of states(A)

● trans(A) a state-transition relation
● trans(A) ⊆ states(A) × acts(sig(A)) × states(A)

● For every state s and every input action 𝒶, there is a transition  
 (s, 𝒶, s') ∊ trans(A)

● Tasks: local actions are partitions into groups

14

S. Haridi, KTHx ID2203x

Executions
● Running an I/O automata generate executions
● Execution
● A alternating sequence of state and actions
● The execution of an action is called an event

● Fair Execution
● Execution where internal and output actions are

given infinitely many chances to run

15

S. Haridi, KTHx ID2203x

Traces (behaviors)
● External actions

● Input and output actions
● “Interesting” behavior of I/O automata is captured by its

external actions during executions
● (Fair) Trace

● Subsequence of fair execution that consists of
external actions

● The set of all traces capture interesting behavior of I/O
Automata

16

S. Haridi, KTHx ID2203x

Automata A Solved P
● A problem P (a distributed abstraction) will be defined

as a set of sequences of external actions

● Automaton A solves problem P
● The set of fair behaviors of A is a subset of P

17

An asynchronous networked
system

Example

S. Haridi, KTHx ID2203x

an asynchronous networked system
● An synchronous network
● Processes communicate via

channels
● Processes and channels are
● “Reactive” components that

interact with their environments
via input and output actions

● modelled by I/O automata
19

S. Haridi, KTHx ID2203x

Processes and channels

20

 P1
C1,2

P2

send(m)1,2Process Process
channel

channel
C2,1

send(m)2,1

deliver(m)1,2

deliver(m)2,1

init(v)1 init(v)2decide(v)1 decide(v)2

S. Haridi, KTHx ID2203x

Example: Channel Automaton

● Reliable unidirectional FIFO channel between two processes
● Fix set of messages M

● Signature
● Input actions: send(m), m ∊ M
● Output actions: deliver(m), m ∊ M
● No internal actions

● States
● queue, a FIFO queue of elements of M, initially empty

21

C
send(m) channel

deliver(m)

S. Haridi, KTHx ID2203x

Example: Channel Automaton

● Transitions
● send(m):

● Effect: add m to(end of) queue
● deliver(m):

● precondition: m is first (head) in queue
● Effect: remove m from queue

● Tasks: all deliver actions is one task
● Transitions are described using “transition definitions”, which are little

code fragments
22

C
send(m)

channel
deliver(m)

S. Haridi, KTHx ID2203x

Example: Channel Automaton

● Transitions
● send(m):

● Effect: add m to(end of) queue
● deliver(m):

● precondition: m is first (head) in queue
● Effect: remove m from queue

● Transitions are described using “transition definitions”, which are little
code fragments

● Each transition definition describes a set of transitions, for
designated actions (grouped by type of action)

23

C
send(m)

channel
deliver(m)

S. Haridi, KTHx ID2203x

Example: Channel Automaton

● Add subscripts to indicate particular endpoints
● Here, the channel is used to connect processes i and j.
● Transitions

● send(m)i,j:
● Effect: add m to(end of) queue

● deliver(m)i,j:
● precondition: m is first (head) in queue
● Effect: remove m from queue

24

Ci,j

send(m)i,j channel
deliver(m)i,j

pi pj

S. Haridi, KTHx ID2203x

A process
A simple agreement protocol
● Inputs arrive from the outside
● Process sends/receives values, collects

vector of values, one for each process
● When vector is filled, outputs a decision

obtained as a function f on the vector
● Can get new inputs, change values,

send and output repeatedly
● Tasks for:

● Sending to each individual neighbor
● Outputting decisions

init decide

send deliver

25

pi

S. Haridi, KTHx ID2203x

A process signature
● Input:

● init(v)i, for v ∊ V
● deliver(v)j,i, v ∊ V, 1 ≤ j ≤ n, j ≠ i

● Output:
● decide(v)i, v ∊ V
● send(v)i,j, v ∊ V, 1 ≤ j ≤ n, j ≠ i

● States:
● val, a vector indexed by {1 , . . . , n} of

elements in V U {⊥}, all initially ⊥ (null)

26

init(v)i decide(v)i

send(v)i,j deliver(v)j,i

pi

S. Haridi, KTHx ID2203x

Transitions

● init(v)i , v ∊ V: val(i) := v (input)
● deliver(v)j,i , v ∊ V : val(j) := v (input)

● send(v)i,j : (output)
● Precondition: val(i) = v
● Effect: none

● decide(v)i: (output)
● Precondition: for all 1≤ j ≤ n: val(j) ≠ null
● v = f(val(1),…,val(n))
● Effect: none

27

pi

init(v)i decide(v)i

send(v)i,j
deliver(v)j,i

Input/output Automata

Executions

S. Haridi, KTHx ID2203x

Remarks
● A step taken by automaton A is an element of

trans(A)
● An action 𝒶 is enabled in state s if trans(A) contains

a step (s, 𝒶 , s’) for some s’
● I/O automata are always input-enabled

● Input actions are enabled in every state
● An automaton cannot control its environment

29

S. Haridi, KTHx ID2203.1x

Executions
● An I/O automaton executes as follows:

− Start at some start state
− Repeatedly take step from current state to new state.

● Formally, an execution is a finite or infinite sequence:
− s0 𝒶1 s1 𝒶2 s2 𝒶3 s3 𝒶4 s4 𝒶5 s5 ... (if finite, ends in state)
− s0 is a start state
− (si, 𝒶i+1, si+1) is a step (i.e., in trans)

30

S. Haridi, KTHx ID2203.1x

Executions: Channel Automaton

● Let M = {1,2}
● Three possible executions
● Any prefix of an execution is also an execution
1. [λ], send(1)i,j , [1], deliver(1)i,j, [λ], send(2)i,j , [2], deliver(2)i,j, [λ]

2. [λ], send(1)i,j , [1], deliver(1)i,j, [λ], send(2)i,j , [2]

3. [λ], send(1)i,j , [1], , send(1)i,j , [11], , send(1)i,j , [111], …
31

Ci,j

send(m)i,j channel
deliver(m)i,j

pi pj

S. Haridi, KTHx ID2203.1x

Execution Fragments
● An I/O automaton executes as follows:

− Start at some start state.
− Repeatedly take step from current state to new state.

● Formally, an execution fragment is a finite or infinite
sequence:
− s0 𝒶1 s1 𝒶2 s2 𝒶3 s3 𝒶4 s4 𝒶5 s5 ... (if finite, ends in state)
− s0 is a start state
− (si, 𝒶i+1, si+1) is a step (i.e., in trans)

32

S. Haridi, KTHx ID2203.1x

Traces
● Traces allows us to focus on the component’s external

behavior
● Useful for defining correctness of an algorithm
● A trace of an execution is the subsequence of external

actions in the execution
● No states, no internal actions
● Denoted trace(E) where E is an execution
● Models observable behavior of a component

33

S. Haridi, KTHx ID2203.1x

Traces: Channel Automaton

● Let M = {1,2}
● Three possible executions and traces
1. [λ], send(1)i,j , [1], deliver(1)i,j, [λ], send(2)i,j , [2], deliver(2)i,j, [λ]
2. send(1)i,j , deliver(1)i,j, send(2)i,j , deliver(2)i,j
3. [λ], send(1)i,j , [1], deliver(1)i,j, [λ], send(2)i,j , [2]
4. send(1)i,j , deliver(1)i,j, send(2)i,j
5. [λ], send(1)i,j , [1], , send(1)i,j , [11], , send(1)i,j , [111], …
6. send(1)i,j , send(1)i,j , send(1)i,j , …

34

Ci,j

send(m)i,j channel
deliver(m)i,j

pi pj

Input/output Automata

Operations on I/O automata

S. Haridi, KTHx ID2203.1x

Composition
● Describes how systems are built out of components
● Main operations

● Composition and hiding of actions
● Composition

● Putting automata together to form a new automaton
● Output action of one automaton with the matching input actions of

the others
● All components sharing the same action perform a step together

(synchronize on actions)

36

S. Haridi, KTHx ID2203x

Composition of channels and processes

37

 P1
C1,2

P2

send(m)1,2Process Process
channel

channel
C2,1

send(m)2,1

deliver(m)1,2

deliver(m)2,1

init(v)1 init(v)2decide(v)1 decide(v)2

S. Haridi, KTHx ID2203.1x

Composition
● Composing multiple Automata {Ai, i ∊ Ｉ}, requires

compatibility conditions
● for all i, j ∊ Ｉ, i ≠ j

● Internal actions are not shared
● int(Ai) ∩ acts(Aj) = ∅
● Only one automaton controls each output
● out(Ai) ∩ out(Aj) = ∅

● However one output may be the input of many others

38

S. Haridi, KTHx ID2203.1x

Composing Compatible Automata
● Composing Automata A= ∏{Ai, i ∊ Ｉ}
● Output actions of the components become output actions

of the composition

● Internal actions of the components become internal
actions of the composition

● Actions that are inputs to some components but outputs
of none become input actions of the composition

39

S. Haridi, KTHx ID2203.1x

Composing Compatible Automata
● Composing Automata A= ∏{Ai, i ∊ Ｉ}
● Output actions of the components become output actions of the

composition

● out(A) = ∪{out(Ai), i ∊ Ｉ}
● Internal actions of the components become internal actions of the

composition
● int(A) = ∪{int(Ai), i ∊ Ｉ}

● Actions that are inputs to some components but outputs of none
become input actions of the composition
● in(A) = ∪{in(Ai), i ∊ Ｉ} - out(A)

40

S. Haridi, KTHx ID2203.1x

Composing Compatible Automata
● Composing Automata A= ∏{Ai, i ∊ Ｉ}
● the states and start states of the composition are vectors of component

states and start states, respectively, of the component automata
● state(A) = ∏{state(Ai), i ∊ Ｉ}
● start(A) = ∏{start(Ai), i ∊ Ｉ}
● The task partition of the composition's locally controlled

actions is formed by taking the union of the components'
task partitions

● tasks(A)= U{tasks(Ai) , i ∊ Ｉ}

41

S. Haridi, KTHx ID2203x

Composition of channels and processes

42

 P1
C1,2

P2

send(m)1,2Process Process
channel

channel
C2,1

send(m)2,1

deliver(m)1,2

deliver(m)2,1

init(v)1 init(v)2decide(v)1 decide(v)2

input: init(v)1, init(v)2
output: decide(v)1, decide(v2)2,
send(m)1, send(m)2, deliver(m)2,1,
deliver(m)1,2
tasks all as before

S. Haridi, KTHx ID2203x

Transitions of Composed Automata

● Composing Automata A= ∏{Ai, i ∊ Ｉ}
● In a transition step, all the component automata that have a

particular action 𝒶 participate simultaneously in 𝒶
● Other component automata do nothing
● If 𝒶 is output of automaton A1 and 𝒶 in input of A2 and A3,

but not sig(A4),
● A1, A2 and A3 take part and change their state
● (s1, s2, s3, s4) 𝒶 (s’1, s’2, s’3, s4)

43

S. Haridi, KTHx ID2203x

Transitions of Composed Automata

● Composing Automata A= ∏{Ai, i ∊ Ｉ}
● trans(A) is the set of triples (s, 𝒶, s') such that, the elements

s’i of vector s’ is formed as follows:
● for all i ∊ Ｉ if 𝒶 ∊ acts(Ai), then (si, 𝒶, s’i) ∊ trans(Ai)

otherwise si = s’i
● The component states that change are those participating in

the action 𝒶

44

S. Haridi, KTHx ID2203x

Transitions of Composed Automata
● Composing Automata A= ∏{Ai, i ∊ Ｉ}
● Assume (s, 𝒶, s') ∊ trans(A)
● if 𝒶 ∊ int(A) or 𝒶 ∊ in(A) then only one state component

is changed in s to s’
● if 𝒶 ∊ out(A) then multiple state components may change

in s’, those Ai ’s that participate in 𝒶

45

S. Haridi, KTHx ID2203x

Hiding
● Turn output actions into internal actions
● Prevents outputs of composed automaton of further

interaction with other automata under further
composition

● Makes those output no longer included in traces
● S is a signature, ∑ ⊆ out(S), hide∑ (S) is S’ where

● in(S’) = in(S), out(S’) = out(S) - ∑, int(S’) = int(S) ∪ ∑
● hide∑ (A) is an automaton A’ whose signature is  

hide∑ (sig(A))
46

Input/output Automata

Example Composition

S. Haridi, KTHx ID2203x

Distributed System Example

● In general, let Ｉ = {1,…,n}
● n process automata Pi, i ∊ Ｉ,
● n2 channel automata Ci,j , i and j ∊ Ｉ

● The composition automaton represents a distributed system where
processes communicate through reliable FIFO channels

● The system state
● state for each process (each a vector of values, one per process)
● a state for each channel (each a queue of messages in transit)

48

S. Haridi, KTHx ID2203x

Composition of channels and processes

49

 P1
C1,2

P2

send(m)1,2Process Process
channel

channel
C2,1

send(m)2,1

deliver(m)1,2

deliver(m)2,1

init(v)1 init(v)2decide(v)1 decide(v)2

S. Haridi, KTHx ID2203x

Distributed System Example
● Transitions involve the following actions:

● init(v)i : input action, deposits a value in Pi's val(i) variable
● send(v)i,j : output action, Pi's value val(i) gets put into channel Ci,j

● deliver(v)i,j : output action, the first message in Ci,j is removed and
simultaneously placed into Pj's variable val(i)

● decide(v)i output action at Pi, announce current computed value

● The execution of these actions (event) defines what happens in this
system

50

S. Haridi, KTHx ID2203x

Distributed System Traces
● Sample trace, for n = 2, where the value set V is the set

natural numbers N (non-negative integers) and f is addition:

● init(2)1, init(1)2, send(2)1,2, deliver(2)1,2, send(1)2,1, deliver(1)2,1,
init(4)1, init(0)2, decide(5)1, decide(2)2

● unique system state that is reachable using this trace
● P1 has val vector (4, 1) and P2 has val vector (2, 0),

51

S. Haridi, KTHx ID2203x

init(2)1,
init(1)2,
send(2)1,2,
deliver(2)1,2,
send(1)2,1,
deliver(1)2,1,
init(4)1,
init(0)2,
decide(5)1,
decide(2)2

52

 C1,2 P
senPr Prch

chC sen

deli

deli

in indec dec

(⊥,⊥) [] [] (⊥,⊥)

(2,⊥) [] [] (⊥,⊥)
(2,⊥) [] [] (⊥,1)
(2,⊥) [2] [] (⊥,1)
(2,⊥) [] [] (2,1)
(2,⊥) [] [1] (2,1)
(2,1) [] [] (2,1)

(4,1) [] [] (2,1)
(4,1) [] [] (2,0)

2+0

4+1

Input/output Automata

Basic Results of Automata
Composition

S. Haridi, KTHx ID2203x

Composition versus Components
● Execution or trace of a composition can be projected to

yield executions or traces of the component automata
● Executions of component automata can be pasted

together to form an execution of the composition
● Traces of component automata can be pasted together to

form a trace of the composition

54

S. Haridi, KTHx ID2203x 55

Similarity of executions

● The projection of component Ai in execution of E of
a composed automata A, denoted E|Ai, is
● the subsequence of execution E restricted to events

(actions) and state of Ai

● Two executions E and F are similar w.r.t Ai if
● E|Ai = F|Ai

● Two executions E and F are similar if
● E and F are similar w.r.t every component automaton Ai

S. Haridi, KTHx ID2203x 56

Similarity of traces
● The projection of component Ai in the trace of E of

composed automata A, denoted trace(E)|Ai, is
● the subsequence of trace(E) restricted to events of Ai

● Two traces trace(E) and trace(F) are similar w.r.t Ai if
● E|Ai = F|Ai

● Two traces trace(E) and trace(F) are similar if
● trace(E) and trace(F) are similar w.r.t every node

S. Haridi, KTHx ID2203x

Projection (process view)
● Given an execution E of A= ∏{Ai, i ∊ Ｉ}

● E = s0, 𝒶1, s2, …

● Projection for E on Ai , E｜Ai

● Involves deleting actions that don’t belong to Ai, and the following
states, and then projecting the remaining states on the Ai component

● Projection for sequence of actions β on Ai , β｜ Ai

● Involves deleting actions that don’t belong to Ai,

57

S. Haridi, KTHx ID2203x

Distributed System Traces

● Sample trace, for n = 2, where the value set V is the set natural
numbers N (non-negative integers) and f is addition:

● init(2)1, init(1)2, send(2)1,2, deliver(2)1,2, send(1)2,1, deliver(1)2,1,
init(4)1, init(0)2, decide(5)1, decide(2)2

● unique system state that is reachable using this trace
● P1 has val vector (4, 1) and P2 has val vector (2, 0),

58

S. Haridi, KTHx ID2203x

Projection of Trace on P1

● Sample trace, for n = 2, where the value set V is the set natural numbers N
(non-negative integers) and f is addition:

● init(2)1, init(1)2, send(2)1,2, deliver(2)1,2, send(1)2,1, deliver(1)2,1,
init(4)1, init(0)2, decide(5)1, decide(2)2

● init(2)1, send(2)1,2, , deliver(1)2,1, init(4)1, decide(5)1

● unique system state that is reachable using this trace
● P1 has val vector (4, 1) and P2 has val vector (2, 0),

59

S. Haridi, KTHx ID2203x

Composition versus Components
● Execution or trace of a composition projects to yield

executions or traces of the component automata
● Theorem Projection
● Let A= ∏{Ai, i ∈ Ｉ} where Ai are compatible

● If E ∈ execs(A), then E｜Ai ∈ execs(Ai) for all Ai

● If β ∈ traces(A), then β｜Ai ∈ traces(Ai) for all Ai

60

S. Haridi, KTHx ID2203x

Composition versus Components
● Executions of component automata can be pasted together

to form an execution of the composition
● Suppose Ei is an execution of Ai, β a sequence of external

actions of A
● If β｜Ai is a trace of Ai , for all Ai , then there is an execution E

of A, such that β is the trace(E) and Ei = E｜Ai for all Ai

61

S. Haridi, KTHx ID2203x

Composition versus Components
● Traces of component automata can be pasted together to

form a trace of the composition

● Suppose β a sequence of external actions of A
● If β｜Ai is a trace of Ai , for all Ai , then β is a trace of A

62

Input/output Automata

Fairness

Tasks and Fairness
● Task T

● set of of locally controlled actions
● corresponds to a “thread of control” used to define

“fair” executions
● Fairness means

● A task that is continuously enabled gets to make a
transition step

● Needed to prove progress properties (liveness) of
systems

64S. Haridi, KTHx ID2203.1x

Fairness Formally
● Formally, execution (or fragment) E of A is fair to task T if one

of the following holds
● E is finite and T is not enabled in the final state of E
● E is infinite and contains infinitely many events in T
● E is infinite and contains infinitely many states in which T is not enabled

● Execution of A is fair if it is fair to all tasks of A
● fairexecs(A) is the set of fair executions of A

● Trace of A is fair if it is the trace of a fair execution of A
● fairtraces(A) is the set of fair executions of A

65S. Haridi, KTHx ID2203.1x

S. Haridi, KTHx ID2203.1x

Fair Executions: Channel Automaton

● Let M = {1,2}
● Three possible executions and traces
1. [λ], send(1)i,j , [1], deliver(1)i,j, [λ], send(2)i,j , [2], deliver(2)i,j, [λ]
2. send(1)i,j , deliver(1)i,j, send(2)i,j , deliver(2)i,j
3. [λ], send(1)i,j , [1], deliver(1)i,j, [λ], send(2)i,j , [2]
4. send(1)i,j , deliver(1)i,j, send(2)i,j
5. [λ], send(1)i,j , [1], , send(1)i,j , [11], , send(1)i,j , [111], …
6. send(1)i,j , send(1)i,j , send(1)i,j , …

66

Ci,j

send(m)i,j channel
deliver(m)i,j

pi pj

Distributed systems examples
● Consider the fair executions of distributed system example

(n processes and n2 channels)
● In every fair execution, every message that is sent is

eventually delivered
● In every fair execution containing at least one init(v)

i

event for each Pi, each process sends infinitely many
messages to each other process

● In every fair execution each process performs
infinitely many decide steps

S. Haridi, KTHx ID2203x

Composition versus Components
● Fair execution or trace of a composition projects to yield

fair executions or traces of the component automata
● Theorem Projection
● Let A= ∏{Ai, i ∈ Ｉ} where Ai are compatible

● If E ∈ fairexecs(A), then E｜Ai ∈ fairexecs(Ai) for all Ai

● If β ∈ fairtraces(A), then β｜Ai ∈ fairtraces(Ai) for all Ai

68

S. Haridi, KTHx ID2203x

Composition versus Components
● Fair Executions of component automata can be pasted

together to form a fair execution of the composition
● Suppose Ei is an fair execution of Ai, β a sequence of

external actions of A
● If β｜Ai is a fair trace of Ai , for all Ai , then there is an fair

execution E of A, such that β is the fairtrace(E) and Ei =
E｜Ai for all Ai

69

S. Haridi, KTHx ID2203x

Composition versus Components
● Fair traces of component automata can be pasted

together to form a fair trace of the composition

● Suppose β a sequence of external actions of A
● If β｜Ai is a fair trace of Ai , for all Ai , then β is a fair trace

of A

70

Input Output Automata
Trace Properties

71

Trace Properties
● Properties of input-output automata are

formulated as properties of their fair traces
● A trace property P
● sig(P) signature containing no internal actions
● traces(P) a set of sequences of actions in sig(P)

72

Automaton A satisfied P
● Every external behavior that can be produced by

A is permitted by property P

● A satisfies a trace property P can mean either
● extsig(A) = sig(P) and traces(A) ⊆ traces(P), or
● extsig(A) = sig(P) and fairtraces(A) ⊆ traces(P)

73

Example
●Automata A and trace property P has
● {0} as input set
● {0,1,2} as output set

● traces(P)
● is the set of all sequences of {0,1,2} that include at least

one 1
● A has a task that always output 1
● fairtraces(A) ⊆ traces(P)
● traces(A) ⊈ traces(P)
● Empty sequence is in traces(A) 74

Safety properties
● A safety property P states that some particular "bad" thing never

happens in any trace
● A trace property P is a safety property if
● traces(P) is nonempty
● if 𝛽 ∈ traces(P) then every finite prefix of 𝛽 is in traces(P)

● if nothing bad happens in 𝛽 then nothing bad happens in a
prefix of 𝛽

● if 𝛽1, 𝛽2,… is an infinite sequence of finite traces in traces(P)
where each 𝛽i is a prefix of 𝛽i+1 then the limit 𝛽 is also in
traces(P)
● if something bad happens in (infinite) 𝛽 then a bad event

happens in a finite prefix
75

Example
● A trace property P has
● init(v): v ∈ V as input set
● decide(v): v ∈ V as output set

● traces(P)
● is the set of all sequences of init(v) and

decide(v) where no decide(v) occurs without a
preceding init(v)

76

Liveness properties
● Informally a liveness property is saying that

some particular "good" thing eventually happens
● A trace property P is a liveness property if
● every finite sequence over sig(P) has some

extension that is in traces(P)

77

Example
● A trace property P has
● init(v): v ∈ V as input set
● decide(v): v ∈ V as output set

● traces(P)
● is the set of all sequences of init(v) and

decide(v) where for every init(v) event in a
sequence there is a decide(v) event later in the
sequence

78

Relating safety and liveness
● Two important results
●Theorems
● If P is both a safety property and a liveness property,

then P is the set of all sequences of actions in sig(P)

● If P is an arbitrary trace property with traces(P) ≠ ∅,
then there exist a safety property S and a liveness
property L such that
● traces(P) = traces(S) ∩ traces(L)

79

