
HtDF
1. Signature, purpose and stub.	

2. Define examples, wrap each in check-expect.	

3. Template and inventory.	

4. Code the function body.	

5. Test and debug until correct

(require 2htdp/image)	
(require 2htdp/universe)	!
;; My world program (make this more specific)	!
;; =================	
;; Constants:	!!
;; =================	
;; Data definitions:	!
;; WS is ... (give WS a better name)	!!!
;; =================	
;; Functions:	!
;; WS -> WS	
;; start the world with ...	
;; 	!
(define (main ws)	
 (big-bang ws ; WS	
 (on-tick tock) ; WS -> WS	
 (to-draw render) ; WS -> Image	
 (stop-when ...) ; WS -> Boolean	
 (on-mouse ...) ; WS Integer Integer MouseEvent -> WS	
 (on-key ...))) ; WS KeyEvent -> WS	!
;; WS -> WS	
;; produce the next ...	
;; !!!	
(define (tock ws) ...)	!!
;; WS -> Image	
;; render ... 	
;; !!!	
(define (render ws) ...)

HtDD
First identify form of information, then write:	

1. A possible structure definition (not until compound data)	

2. A type comment that defines type name and describes how to form data 	

3. An interpretation to describe correspondence between information and data.	

4. One or more examples of the data.	

5. A template for a 1 argument function operating on data of this type.

HtDW

1. Domain analysis (use a piece of paper!)	

1. Sketch program scenarios	

2. Identify constant information	

3. Identify changing information	

4. Identify big-bang options	

2. Build the actual program	

1. Constants (based on 1.2 above)	

2. Data definitions (based on 1.3 above)	

3. Functions	

1. main first (based on 1.4 and 2.2 above)	

2. wish list entries for big-bang handlers	

4. Work through wish list until done	

on-tick	
to-draw	
on-key	
on-mouse	
stop-when

Form of data cond question (if any) Body or cond answer

atomic non-distinct

predicate	
(string? x)	
(<= 0 x 10)	
etc.

(... x)

atomic distinct
equality predicate	
(string=? x “red”)	
etc.	

(...)

one of
cond w/ one Q&A pair per subclass	

be sure to guard in mixed data itemizations

compound predicate	

(firework? x)

all selectors	

(... (firework-x fw)	
 (firework-y fw))	

self-reference form natural recursion	

 (fn-for-los (rest los))

reference call to other type’s templates function	

 (fn-for-drop (first lod))

Data Driven Template Rules

for additional parameters with
atomic type add parameter

everywhere after ...

When the form of the information to be represented...	
 Use a data definition of this kind	

!

is atomic simple atomic data (String, Number...)

is numbers within a certain range interval [] includes endpoints, () does not

consists of a fixed number of distinct items enumeration (one-of several strings)

is comprised of 2 or more subclasses, at least one of which is not a
distinct item itemization (one-of several subclasses)

consists of items that naturally belong together compound data

is arbitrary sized well formed self-referential data definition	

(or mutually referential)

is naturally composed of different parts reference to another defined type

Choosing form of data definition

