ITMO UNIVERSITY

How to Win Coding Competitions: Secrets of Champions

Week 3: Sorting and Search Algorithms
Lecture 4: Quicksort

Maxim Buzdalov
Saint Petersburg 2016

Previous sorting algorithm: Insertion sort

- Incremental: size of the sorted part increases by one each time
- Can only swap adjacent elements
- Running time: $\Omega(N), O\left(N^{2}\right), \Theta\left(N^{2}\right)$ on average

Previous sorting algorithm: Insertion sort

- Incremental: size of the sorted part increases by one each time
- Can only swap adjacent elements
- Running time: $\Omega(N), O\left(N^{2}\right), \Theta\left(N^{2}\right)$ on average
- Can we do it faster?

Previous sorting algorithm: Insertion sort

- Incremental: size of the sorted part increases by one each time
- Can only swap adjacent elements
- Running time: $\Omega(N), O\left(N^{2}\right), \Theta\left(N^{2}\right)$ on average
- Can we do it faster?

Meet Quicksort!

Previous sorting algorithm: Insertion sort

- Incremental: size of the sorted part increases by one each time
- Can only swap adjacent elements
- Running time: $\Omega(N), O\left(N^{2}\right), \Theta\left(N^{2}\right)$ on average
- Can we do it faster?

Meet Quicksort! Author: Tony Hoare, 1959

Previous sorting algorithm: Insertion sort

- Incremental: size of the sorted part increases by one each time
- Can only swap adjacent elements
- Running time: $\Omega(N), O\left(N^{2}\right), \Theta\left(N^{2}\right)$ on average
- Can we do it faster?

Meet Quicksort! Author: Tony Hoare, 1959
Idea of the algorithm:

- Split the array into two parts L and R, such that $L_{i} \leq R_{j}$ for all i and j
- Sort the parts recursively \rightarrow the entire array is sorted!

Previous sorting algorithm: Insertion sort

- Incremental: size of the sorted part increases by one each time
- Can only swap adjacent elements
- Running time: $\Omega(N), O\left(N^{2}\right), \Theta\left(N^{2}\right)$ on average
- Can we do it faster?

Meet Quicksort! Author: Tony Hoare, 1959
Idea of the algorithm:

- Split the array into two parts L and R, such that $L_{i} \leq R_{j}$ for all i and j
- Sort the parts recursively \rightarrow the entire array is sorted!
- The Divide-and-Conquer approach

Previous sorting algorithm: Insertion sort

- Incremental: size of the sorted part increases by one each time
- Can only swap adjacent elements
- Running time: $\Omega(N), O\left(N^{2}\right), \Theta\left(N^{2}\right)$ on average
- Can we do it faster?

Meet Quicksort! Author: Tony Hoare, 1959
Idea of the algorithm:

- Split the array into two parts L and R, such that $L_{i} \leq R_{j}$ for all i and j
- Sort the parts recursively \rightarrow the entire array is sorted!
- The Divide-and-Conquer approach
- For best results, these parts should be approximately equal
procedure Quicksort (A, \prec, s, e)
$s^{\prime} \leftarrow s, e^{\prime} \leftarrow e, M \leftarrow A[(s+e) / 2]$
while $s^{\prime} \leq e^{\prime}$ do
while $A\left[s^{\prime}\right] \prec M$ do $s^{\prime} \leftarrow s^{\prime}+1$ end while while $M \prec A\left[e^{\prime}\right]$ do $e^{\prime} \leftarrow e^{\prime}-1$ end while if $s^{\prime} \leq e^{\prime}$ then
$A\left[s^{\prime}\right] \Leftrightarrow A\left[e^{\prime}\right]$
$s^{\prime} \leftarrow s^{\prime}+1, e^{\prime} \leftarrow e^{\prime}-1$
end if
end while
if $s \leq e^{\prime}$ then Quicksort $\left(A, \prec, s, e^{\prime}\right)$ end if
if $s^{\prime} \leq e$ then Quicksort $\left(A, \prec, s^{\prime}, e\right)$ end if end procedure
procedure Quicksort (A, \prec, s, e)
$s^{\prime} \leftarrow s, e^{\prime} \leftarrow e, M \leftarrow A[(s+e) / 2] \quad \triangleright M$: the pivot value
while $s^{\prime} \leq e^{\prime}$ do
while $A\left[s^{\prime}\right] \prec M$ do $s^{\prime} \leftarrow s^{\prime}+1$ end while while $M \prec A\left[e^{\prime}\right]$ do $e^{\prime} \leftarrow e^{\prime}-1$ end while if $s^{\prime} \leq e^{\prime}$ then
$A\left[s^{\prime}\right] \Leftrightarrow A\left[e^{\prime}\right]$
$s^{\prime} \leftarrow s^{\prime}+1, e^{\prime} \leftarrow e^{\prime}-1$
end if
end while
if $s \leq e^{\prime}$ then Quicksort $\left(A, \prec, s, e^{\prime}\right)$ end if
if $s^{\prime} \leq e$ then Quicksort $\left(A, \prec, s^{\prime}, e\right)$ end if end procedure
procedure Quicksort (A, \prec, s, e)
$s^{\prime} \leftarrow s, e^{\prime} \leftarrow e, M \leftarrow A[(s+e) / 2] \quad \triangleright M$: the pivot value. Selection may vary while $s^{\prime} \leq e^{\prime}$ do
while $A\left[s^{\prime}\right] \prec M$ do $s^{\prime} \leftarrow s^{\prime}+1$ end while while $M \prec A\left[e^{\prime}\right]$ do $e^{\prime} \leftarrow e^{\prime}-1$ end while if $s^{\prime} \leq e^{\prime}$ then
$A\left[s^{\prime}\right] \Leftrightarrow A\left[e^{\prime}\right]$
$s^{\prime} \leftarrow s^{\prime}+1, e^{\prime} \leftarrow e^{\prime}-1$
end if
end while
if $s \leq e^{\prime}$ then Quicksort $\left(A, \prec, s, e^{\prime}\right)$ end if
if $s^{\prime} \leq e$ then Quicksort $\left(A, \prec, s^{\prime}, e\right)$ end if end procedure
procedure Quicksort (A, \prec, s, e)
$s^{\prime} \leftarrow s, e^{\prime} \leftarrow e, M \leftarrow A[(s+e) / 2] \quad \triangleright M$: the pivot value. Selection may vary while $s^{\prime} \leq e^{\prime}$ do
while $A\left[s^{\prime}\right] \prec M$ do $s^{\prime} \leftarrow s^{\prime}+1$ end while \quad If $i \in\left[s ; s^{\prime}\right)$ then $A[i] \preceq M$ while $M \prec A\left[e^{\prime}\right]$ do $e^{\prime} \leftarrow e^{\prime}-1$ end while if $s^{\prime} \leq e^{\prime}$ then

$$
A\left[s^{\prime}\right] \Leftrightarrow A\left[e^{\prime}\right]
$$

$$
s^{\prime} \leftarrow s^{\prime}+1, e^{\prime} \leftarrow e^{\prime}-1
$$

end if
end while
if $s \leq e^{\prime}$ then Quicksort $\left(A, \prec, s, e^{\prime}\right)$ end if
if $s^{\prime} \leq e$ then Quicksort $\left(A, \prec, s^{\prime}, e\right)$ end if end procedure
procedure Quicksort (A, \prec, s, e)
$s^{\prime} \leftarrow s, e^{\prime} \leftarrow e, M \leftarrow A[(s+e) / 2] \quad \triangleright M$: the pivot value. Selection may vary while $s^{\prime} \leq e^{\prime}$ do
while $A\left[s^{\prime}\right] \prec M$ do $s^{\prime} \leftarrow s^{\prime}+1$ end while $\quad \triangleright$ If $i \in\left[s ; s^{\prime}\right)$ then $A[i] \preceq M$
while $M \prec A\left[e^{\prime}\right]$ do $e^{\prime} \leftarrow e^{\prime}-1$ end while \quad If $i \in\left(e^{\prime} ; e\right]$ then $M \preceq A[i]$ if $s^{\prime} \leq e^{\prime}$ then

$$
A\left[s^{\prime}\right] \Leftrightarrow A\left[e^{\prime}\right]
$$

$$
s^{\prime} \leftarrow s^{\prime}+1, e^{\prime} \leftarrow e^{\prime}-1
$$

end if
end while
if $s \leq e^{\prime}$ then Quicksort $\left(A, \prec, s, e^{\prime}\right)$ end if
if $s^{\prime} \leq e$ then Quicksort $\left(A, \prec, s^{\prime}, e\right)$ end if end procedure
procedure Quicksort (A, \prec, s, e)
$s^{\prime} \leftarrow s, e^{\prime} \leftarrow e, M \leftarrow A[(s+e) / 2] \quad \triangleright M$: the pivot value. Selection may vary while $s^{\prime} \leq e^{\prime}$ do
while $A\left[s^{\prime}\right] \prec M$ do $s^{\prime} \leftarrow s^{\prime}+1$ end while $\quad \triangleright$ If $i \in\left[s ; s^{\prime}\right)$ then $A[i] \preceq M$ while $M \prec A\left[e^{\prime}\right]$ do $e^{\prime} \leftarrow e^{\prime}-1$ end while \quad If $i \in\left(e^{\prime} ; e\right]$ then $M \preceq A[i]$ if $s^{\prime} \leq e^{\prime}$ then \triangleright If the array is not yet split completely. . .

$$
A\left[s^{\prime}\right] \Leftrightarrow A\left[e^{\prime}\right]
$$

$$
s^{\prime} \leftarrow s^{\prime}+1, e^{\prime} \leftarrow e^{\prime}-1
$$

end if
end while
if $s \leq e^{\prime}$ then Quicksort $\left(A, \prec, s, e^{\prime}\right)$ end if
if $s^{\prime} \leq e$ then Quicksort $\left(A, \prec, s^{\prime}, e\right)$ end if
end procedure
procedure Quicksort (A, \prec, s, e)
$s^{\prime} \leftarrow s, e^{\prime} \leftarrow e, M \leftarrow A[(s+e) / 2] \quad \triangleright M$: the pivot value. Selection may vary while $s^{\prime} \leq e^{\prime}$ do
while $A\left[s^{\prime}\right] \prec M$ do $s^{\prime} \leftarrow s^{\prime}+1$ end while $\quad \triangleright$ If $i \in\left[s ; s^{\prime}\right)$ then $A[i] \preceq M$ while $M \prec A\left[e^{\prime}\right]$ do $e^{\prime} \leftarrow e^{\prime}-1$ end while \quad If $i \in\left(e^{\prime} ; e\right]$ then $M \preceq A[i]$ if $s^{\prime} \leq e^{\prime}$ then \triangleright If the array is not yet split completely. . .

$$
A\left[s^{\prime}\right] \Leftrightarrow A\left[e^{\prime}\right] \quad \triangleright \text { swap the elements and continue splitting }
$$

$$
s^{\prime} \leftarrow s^{\prime}+1, e^{\prime} \leftarrow e^{\prime}-1
$$

end if

end while
if $s \leq e^{\prime}$ then Quicksort $\left(A, \prec, s, e^{\prime}\right)$ end if
if $s^{\prime} \leq e$ then Quicksort $\left(A, \prec, s^{\prime}, e\right)$ end if end procedure
\triangleright If $i \in\left(e^{\prime} ; s^{\prime}\right), A[i]=M$
\triangleright and is in the right place

- Lemma: quicksort splits a non-single-element subarray $[s ; e]$ into three possibly empty parts $\left[s ; e^{\prime}\right],\left(e^{\prime} ; s^{\prime}\right),\left[s^{\prime} ; e\right]$, such that, for some M :
- both $s^{\prime} \neq s$ or $e^{\prime} \neq e$
- $A[i] \preceq M$ if $i \in\left[s ; e^{\prime}\right]$
- $A[i]=M$ if $i \in\left(e^{\prime} ; s^{\prime}\right)$
- $M \preceq A[i]$ if $i \in\left[s^{\prime} ; e\right]$
- Lemma: quicksort splits a non-single-element subarray $[s ; e]$ into three possibly empty parts $\left[s ; e^{\prime}\right],\left(e^{\prime} ; s^{\prime}\right),\left[s^{\prime} ; e\right]$, such that, for some M :
- both $s^{\prime} \neq s$ or $e^{\prime} \neq e$
- $A[i] \preceq M$ if $i \in\left[s ; e^{\prime}\right]$
- $A[i]=M$ if $i \in\left(e^{\prime} ; s^{\prime}\right)$
- $M \preceq A[i]$ if $i \in\left[s^{\prime} ; e\right]$
- Proof (1/2):
- Recall invariants:
- $\left[s ; s^{\prime}\right)$ contains elements $\preceq M$
- $\left(e^{\prime} ; e\right]$ contains elements $\succeq M$

```
procedure Quicksort \((A, \prec, s, e)\)
    \(s^{\prime} \leftarrow s, e^{\prime} \leftarrow e, M \leftarrow A[(s+e) / 2]\)
    while \(s^{\prime} \leq e^{\prime}\) do
        while \(A\left[s^{\prime}\right] \prec M\) do \(s^{\prime} \leftarrow s^{\prime}+1\) end while
        while \(M \prec A\left[e^{\prime}\right]\) do \(e^{\prime} \leftarrow e^{\prime}-1\) end while
        if \(s^{\prime} \leq e^{\prime}\) then
                        \(A\left[s^{\prime}\right] \Leftrightarrow A\left[e^{\prime}\right]\)
                        \(s^{\prime} \leftarrow s^{\prime}+1, e^{\prime} \leftarrow e^{\prime}-1\)
        end if
    end while
    if \(s \leq e^{\prime}\) then Quicksort \(\left(A, \prec, s, e^{\prime}\right)\) end if
    if \(s^{\prime} \leq e\) then Quicksort \(\left(A, \prec, s^{\prime}, e\right)\) end if
end procedure
```

- Lemma: quicksort splits a non-single-element subarray $[s ; e]$ into three possibly empty parts $\left[s ; e^{\prime}\right],\left(e^{\prime} ; s^{\prime}\right),\left[s^{\prime} ; e\right]$, such that, for some M :
- both $s^{\prime} \neq s$ or $e^{\prime} \neq e$
- $A[i] \preceq M$ if $i \in\left[s ; e^{\prime}\right]$
- $A[i]=M$ if $i \in\left(e^{\prime} ; s^{\prime}\right)$
- $M \preceq A[i]$ if $i \in\left[s^{\prime} ; e\right]$
- Proof (1/2):
- Recall invariants:
- $\left[s ; s^{\prime}\right)$ contains elements $\preceq M$
- $\left(e^{\prime} ; e\right]$ contains elements $\succeq M$
- At the end of the outer while $s^{\prime}>e^{\prime}$, so every element is either:
- in $\left[s ; e^{\prime}\right] \rightarrow \preceq M$
- in $\left[s^{\prime} ; e\right] \rightarrow \succeq M$
- in $\left(e^{\prime} ; s^{\prime}\right) \rightarrow \preceq M$ and $\succeq M$

```
procedure Quicksort(A,\prec, s,e)
    s'\leftarrows, e'\leftarrowe,M\leftarrowA[(s+e)/2]
    while }\mp@subsup{s}{}{\prime}\leq\mp@subsup{e}{}{\prime}\mathrm{ do
        while }A[\mp@subsup{s}{}{\prime}]\precM\mathrm{ do }\mp@subsup{s}{}{\prime}\leftarrow\mp@subsup{s}{}{\prime}+1\mathrm{ end while
        while M\precA[\mp@subsup{e}{}{\prime}] do e't}\leftarrow\mp@subsup{e}{}{\prime}-1\mathrm{ end while
        if s
            A[s']\LeftrightarrowA[\mp@subsup{e}{}{\prime}]
            s
        end if
    end while
    if s\leqe' then Quicksort(A,\prec, s, e') end if
    if s' 
end procedure
```

- Lemma: quicksort splits a non-single-element subarray $[s ; e]$ into three possibly empty parts $\left[s ; e^{\prime}\right],\left(e^{\prime} ; s^{\prime}\right),\left[s^{\prime} ; e\right]$, such that, for some M :
- both $s^{\prime} \neq s$ or $e^{\prime} \neq e$
- $A[i] \preceq M$ if $i \in\left[s ; e^{\prime}\right]$ proven
- $A[i]=M$ if $i \in\left(e^{\prime} ; s^{\prime}\right)$ proven
- $M \preceq A[i]$ if $i \in\left[s^{\prime} ; e\right]$ proven
- Proof (1/2):
- Recall invariants:
- $\left[s ; s^{\prime}\right)$ contains elements $\preceq M$
- $\left(e^{\prime} ; e\right]$ contains elements $\succeq M$
- At the end of the outer while $s^{\prime}>e^{\prime}$, so every element is either:
- in $\left[s ; e^{\prime}\right] \rightarrow \preceq M$
- in $\left[s^{\prime} ; e\right] \rightarrow \succeq M$
- in $\left(e^{\prime} ; s^{\prime}\right) \rightarrow \preceq M$ and $\succeq M$

```
procedure Quicksort(A,\prec, s,e)
    s'\leftarrows, e'\leftarrowe,M\leftarrowA[(s+e)/2]
    while }\mp@subsup{s}{}{\prime}\leq\mp@subsup{e}{}{\prime}\mathrm{ do
        while }A[\mp@subsup{s}{}{\prime}]\precM\mathrm{ do }\mp@subsup{s}{}{\prime}\leftarrow\mp@subsup{s}{}{\prime}+1\mathrm{ end while
        while M\precA[\mp@subsup{e}{}{\prime}] do e't}\leftarrow\mp@subsup{e}{}{\prime}-1\mathrm{ end while
        if s
            A[s']\LeftrightarrowA[\mp@subsup{e}{}{\prime}]
            s
        end if
    end while
    if s\leqe' then Quicksort(A,\prec, s, e') end if
    if s' 
end procedure
```

- Lemma: quicksort splits a non-single-element subarray $[s ; e]$ into three possibly empty parts $\left[s ; e^{\prime}\right],\left(e^{\prime} ; s^{\prime}\right),\left[s^{\prime} ; e\right]$, such that, for some M :
- both $s^{\prime} \neq s$ or $e^{\prime} \neq e$
- $A[i] \preceq M$ if $i \in\left[s ; e^{\prime}\right]$ proven
- $A[i]=M$ if $i \in\left(e^{\prime} ; s^{\prime}\right)$ proven
- $M \preceq A[i]$ if $i \in\left[s^{\prime} ; e\right]$ proven
- Proof (2/2): Assume $s^{\prime}=s$. Then $e^{\prime}<s$. How can that be?

```
procedure Quicksort( }A,\prec,s,e
    s'}\leftarrows,\mp@subsup{e}{}{\prime}\leftarrowe,M\leftarrowA[(s+e)/2
    while s'
        while }A[\mp@subsup{s}{}{\prime}]\precM\mathrm{ do }\mp@subsup{s}{}{\prime}\leftarrow\mp@subsup{s}{}{\prime}+1\mathrm{ end while
        while }M\precA[\mp@subsup{e}{}{\prime}]\mathrm{ do }\mp@subsup{e}{}{\prime}\leftarrow\mp@subsup{e}{}{\prime}-1 end whil
        if s}\mp@subsup{s}{}{\prime}\leq\mp@subsup{e}{}{\prime}\mathrm{ then
            A[\mp@subsup{s}{}{\prime}]\LeftrightarrowA[\mp@subsup{e}{}{\prime}]
            s'}\leftarrow\mp@subsup{s}{}{\prime}+1,\mp@subsup{e}{}{\prime}\leftarrow\mp@subsup{e}{}{\prime}-
        end if
    end while
    if s\leqe e}\mathrm{ ' then Quicksort( }A,\prec,s,\mp@subsup{e}{}{\prime})\mathrm{ end if
    if s}\mp@subsup{s}{}{\prime}\leqe\mathrm{ then Quicksort( }A,\prec,\mp@subsup{s}{}{\prime},e)\mathrm{ end if
end procedure
```

- Lemma: quicksort splits a non-single-element subarray $[s ; e]$ into three possibly empty parts $\left[s ; e^{\prime}\right],\left(e^{\prime} ; s^{\prime}\right),\left[s^{\prime} ; e\right]$, such that, for some M :
- both $s^{\prime} \neq s$ or $e^{\prime} \neq e$
- $A[i] \preceq M$ if $i \in\left[s ; e^{\prime}\right]$ proven
- $A[i]=M$ if $i \in\left(e^{\prime} ; s^{\prime}\right)$ proven
- $M \preceq A[i]$ if $i \in\left[s^{\prime} ; e\right]$ proven
- Proof (2/2): Assume $s^{\prime}=s$. Then $e^{\prime}<s$. How can that be?
- $A\left[s^{\prime}\right] \prec M$ loop body never executed

```
procedure Quicksort(A, \prec, s, e)
    s'\leftarrows, e'\leftarrowe,M\leftarrowA[(s+e)/2]
    while s}\mp@subsup{s}{}{\prime}\leq\mp@subsup{e}{}{\prime}\mathrm{ do
        while }A[\mp@subsup{s}{}{\prime}]\precM\mathrm{ do }\mp@subsup{s}{}{\prime}\leftarrow\mp@subsup{s}{}{\prime}+1\mathrm{ end while
        while M\precA[\mp@subsup{e}{}{\prime}] do }\mp@subsup{e}{}{\prime}\leftarrow\mp@subsup{e}{}{\prime}-1\mathrm{ end while
        if s
                        A[s']\LeftrightarrowA[\mp@subsup{e}{}{\prime}]
                        s'}\leftarrow\mp@subsup{s}{}{\prime}+1,\mp@subsup{e}{}{\prime}\leftarrow\mp@subsup{e}{}{\prime}-
        end if
    end while
    if s\leqe' then Quicksort(A,\prec, s, e') end if
    if s
end procedure
```

- Lemma: quicksort splits a non-single-element subarray $[s ; e]$ into three possibly empty parts $\left[s ; e^{\prime}\right],\left(e^{\prime} ; s^{\prime}\right),\left[s^{\prime} ; e\right]$, such that, for some M :
- both $s^{\prime} \neq s$ or $e^{\prime} \neq e$
- $A[i] \preceq M$ if $i \in\left[s ; e^{\prime}\right]$ proven
- $A[i]=M$ if $i \in\left(e^{\prime} ; s^{\prime}\right)$ proven
- $M \preceq A[i]$ if $i \in\left[s^{\prime} ; e\right]$ proven
- Proof (2/2): Assume $s^{\prime}=s$. Then $e^{\prime}<s$. How can that be?
- $A\left[s^{\prime}\right] \prec M$ loop body never executed
- Inner $s^{\prime} \leq e^{\prime}$ never happened

```
procedure Quicksort( }A,\prec,s,e
    s'}\leftarrows,\mp@subsup{e}{}{\prime}\leftarrowe,M\leftarrowA[(s+e)/2
    while }\mp@subsup{s}{}{\prime}\leq\mp@subsup{e}{}{\prime}\mathrm{ do
        while }A[\mp@subsup{s}{}{\prime}]\precM\mathrm{ do }\mp@subsup{s}{}{\prime}\leftarrow\mp@subsup{s}{}{\prime}+1\mathrm{ end while
        while }M\precA[\mp@subsup{e}{}{\prime}]\mathrm{ do }\mp@subsup{e}{}{\prime}\leftarrow\mp@subsup{e}{}{\prime}-1\mathrm{ end while
        if s
                        A[s']\LeftrightarrowA[\mp@subsup{e}{}{\prime}]
                        s'}\leftarrow\mp@subsup{s}{}{\prime}+1,\mp@subsup{e}{}{\prime}\leftarrow\mp@subsup{e}{}{\prime}-
        end if
    end while
    if s\leqe e}\mathrm{ then Quicksort( }A,\prec,s,\mp@subsup{e}{}{\prime})\mathrm{ end if
    if s}\mp@subsup{s}{}{\prime}\leqe\mathrm{ then Quicksort( }A,\prec,\mp@subsup{s}{}{\prime},e)\mathrm{ end if
end procedure
```

- Lemma: quicksort splits a non-single-element subarray $[s ; e]$ into three possibly empty parts $\left[s ; e^{\prime}\right],\left(e^{\prime} ; s^{\prime}\right),\left[s^{\prime} ; e\right]$, such that, for some M :
- both $s^{\prime} \neq s$ or $e^{\prime} \neq e$
- $A[i] \preceq M$ if $i \in\left[s ; e^{\prime}\right]$ proven
- $A[i]=M$ if $i \in\left(e^{\prime} ; s^{\prime}\right)$ proven
- $M \preceq A[i]$ if $i \in\left[s^{\prime} ; e\right]$ proven
- Proof (2/2): Assume $s^{\prime}=s$.

Then $e^{\prime}<s$. How can that be?

- $A\left[s^{\prime}\right] \prec M$ loop body never executed
- Inner $s^{\prime} \leq e^{\prime}$ never happened
- Thus, $M \prec A\left[e^{\prime}\right]$ loop condition is always true

```
procedure Quicksort(A, \prec, s, e)
    s'\leftarrows, e'tee,M\leftarrowA[(s+e)/2]
    while s}\mp@subsup{s}{}{\prime}\leq\mp@subsup{e}{}{\prime}\mathrm{ do
        while }A[\mp@subsup{s}{}{\prime}]\precM\mathrm{ do }\mp@subsup{s}{}{\prime}\leftarrow\mp@subsup{s}{}{\prime}+1\mathrm{ end while
        while M\precA[\mp@subsup{e}{}{\prime}] do }\mp@subsup{e}{}{\prime}\leftarrow\mp@subsup{e}{}{\prime}-1\mathrm{ end while
        if s
            A[s']\LeftrightarrowA[\mp@subsup{e}{}{\prime}]
            s'}\leftarrow\mp@subsup{s}{}{\prime}+1,\mp@subsup{e}{}{\prime}\leftarrow\mp@subsup{e}{}{\prime}-
        end if
    end while
    if s\leqe't then Quicksort(A,\prec, s, e') end if
    if s}\mp@subsup{s}{}{\prime}\leqe\mathrm{ then Quichsort( }A,\prec,\mp@subsup{s}{}{\prime},e)\mathrm{ end if
end procedure
```

- Lemma: quicksort splits a non-single-element subarray $[s ; e]$ into three possibly empty parts $\left[s ; e^{\prime}\right],\left(e^{\prime} ; s^{\prime}\right),\left[s^{\prime} ; e\right]$, such that, for some M :
- both $s^{\prime} \neq s$ or $e^{\prime} \neq e$
- $A[i] \preceq M$ if $i \in\left[s ; e^{\prime}\right]$ proven
- $A[i]=M$ if $i \in\left(e^{\prime} ; s^{\prime}\right)$ proven
- $M \preceq A[i]$ if $i \in\left[s^{\prime} ; e\right]$ proven
- Proof (2/2): Assume $s^{\prime}=s$.

Then $e^{\prime}<s$. How can that be?

- $A\left[s^{\prime}\right] \prec M$ loop body never executed
- Inner $s^{\prime} \leq e^{\prime}$ never happened
- Thus, $M \prec A\left[e^{\prime}\right]$ loop condition is always true
- But it cannot happen, as M is taken from the array

```
procedure Quicksort(A, \prec, s,e)
    s'\leftarrows, e'tee,M\leftarrowA[(s+e)/2]
    while s}\mp@subsup{s}{}{\prime}\leq\mp@subsup{e}{}{\prime}\mathrm{ do
        while }A[\mp@subsup{s}{}{\prime}]\precM\mathrm{ do }\mp@subsup{s}{}{\prime}\leftarrow\mp@subsup{s}{}{\prime}+1\mathrm{ end while
        while M\precA[\mp@subsup{e}{}{\prime}] do }\mp@subsup{e}{}{\prime}\leftarrow\mp@subsup{e}{}{\prime}-1\mathrm{ end while
        if s
            A[s']\LeftrightarrowA[\mp@subsup{e}{}{\prime}]
            s'}\leftarrow\mp@subsup{s}{}{\prime}+1,\mp@subsup{e}{}{\prime}\leftarrow\mp@subsup{e}{}{\prime}-
        end if
    end while
    if s\leqe't then Quicksort(A,\prec, s, e') end if
    if s' 
end procedure
```

- Lemma: quicksort splits a non-single-element subarray $[s ; e]$ into three possibly empty parts $\left[s ; e^{\prime}\right],\left(e^{\prime} ; s^{\prime}\right),\left[s^{\prime} ; e\right]$, such that, for some M :
- both $s^{\prime} \neq s$ or $e^{\prime} \neq e$
- $A[i] \preceq M$ if $i \in\left[s ; e^{\prime}\right]$ proven
- $A[i]=M$ if $i \in\left(e^{\prime} ; s^{\prime}\right)$ proven
- $M \preceq A[i]$ if $i \in\left[s^{\prime} ; e\right]$ proven
- Proof (2/2): Assume $s^{\prime}=s$.

Then $e^{\prime}<s$. How can that be?

- $A\left[s^{\prime}\right] \prec M$ loop body never executed
- Inner $s^{\prime} \leq e^{\prime}$ never happened
- Thus, $M \prec A\left[e^{\prime}\right]$ loop condition is always true
- But it cannot happen, as M is taken from the array
- So, $s^{\prime} \neq s . e^{\prime} \neq e$ by symmetry.

```
procedure Quicksort(A,\prec,s,e)
    s'\leftarrows, e'tee,M\leftarrowA[(s+e)/2]
    while s' }\leq\mp@subsup{e}{}{\prime}\mathrm{ do
        while }A[\mp@subsup{s}{}{\prime}]\precM\mathrm{ do }\mp@subsup{s}{}{\prime}\leftarrow\mp@subsup{s}{}{\prime}+1\mathrm{ end while
        while M\precA[\mp@subsup{e}{}{\prime}] do }\mp@subsup{e}{}{\prime}\leftarrow\mp@subsup{e}{}{\prime}-1\mathrm{ end while
        if s
            A[s']\LeftrightarrowA[\mp@subsup{e}{}{\prime}]
            s'}\leftarrow\mp@subsup{s}{}{\prime}+1,\mp@subsup{e}{}{\prime}\leftarrow\mp@subsup{e}{}{\prime}-
        end if
    end while
    if s\leqe' then Quicksort(A,\prec, s, e') end if
    if s' 
end procedure
```

- Lemma: quicksort splits a non-single-element subarray $[s ; e]$ into three possibly empty parts $\left[s ; e^{\prime}\right],\left(e^{\prime} ; s^{\prime}\right),\left[s^{\prime} ; e\right]$, such that, for some M :
- both $s^{\prime} \neq s$ or $e^{\prime} \neq e$ proven
- $A[i] \preceq M$ if $i \in\left[s ; e^{\prime}\right]$ proven
- $A[i]=M$ if $i \in\left(e^{\prime} ; s^{\prime}\right)$ proven
- $M \preceq A[i]$ if $i \in\left[s^{\prime} ; e\right]$ proven
- Proof (2/2): Assume $s^{\prime}=s$.

Then $e^{\prime}<s$. How can that be?

- $A\left[s^{\prime}\right] \prec M$ loop body never executed
- Inner $s^{\prime} \leq e^{\prime}$ never happened
- Thus, $M \prec A\left[e^{\prime}\right]$ loop condition is always true
- But it cannot happen, as M is taken from the array
- So, $s^{\prime} \neq s . e^{\prime} \neq e$ by symmetry.

```
procedure Quicksort(A, \prec, s, e)
    s}\leftarrow\leftarrows,\mp@subsup{e}{}{\prime}\leftarrowe,M\leftarrowA[(s+e)/2
    while }\mp@subsup{s}{}{\prime}\leq\mp@subsup{e}{}{\prime}\mathrm{ do
        while }A[\mp@subsup{s}{}{\prime}]\precM\mathrm{ do }\mp@subsup{s}{}{\prime}\leftarrow\mp@subsup{s}{}{\prime}+1\mathrm{ end while
        while }M\precA[\mp@subsup{e}{}{\prime}]\mathrm{ do }\mp@subsup{e}{}{\prime}\leftarrow\mp@subsup{e}{}{\prime}-1\mathrm{ end while
        if s
            A[s']\LeftrightarrowA[\mp@subsup{e}{}{\prime}]
            s'}\leftarrow\mp@subsup{s}{}{\prime}+1,\mp@subsup{e}{}{\prime}\leftarrow\mp@subsup{e}{}{\prime}-
        end if
    end while
    if s\leqe e}\mathrm{ ' then Quicksort( }A,\prec,s,\mp@subsup{e}{}{\prime})\mathrm{ end if
    if s}\mp@subsup{s}{}{\prime}\leqe\mathrm{ then Quicksort( }A,\prec,\mp@subsup{s}{}{\prime},e)\mathrm{ end if
end procedure
```

- Top level: quicksort is correct if it:
- Does nothing on a single-element subarray
- Top level: quicksort is correct if it:
- Does nothing on a single-element subarray
- Splits a non-single-element subarray $[s ; e]$ into three possibly empty parts [s; $\left.e^{\prime}\right],\left(e^{\prime} ; s^{\prime}\right),\left[s^{\prime} ; e\right]$, such that, for some M :
- both $s^{\prime} \neq s$ or $e^{\prime} \neq e$
- $A[i] \preceq M$ if $i \in\left[s ; e^{\prime}\right]$
- $A[i]=M$ if $i \in\left(e^{\prime} ; s^{\prime}\right)$
- $M \preceq A[i]$ if $i \in\left[s^{\prime} ; e\right]$
- Top level: quicksort is correct if it:
- Does nothing on a single-element subarray
- Splits a non-single-element subarray $[s ; e]$ into three possibly empty parts [s; $\left.e^{\prime}\right],\left(e^{\prime} ; s^{\prime}\right),\left[s^{\prime} ; e\right]$, such that, for some M :
- both $s^{\prime} \neq s$ or $e^{\prime} \neq e$
- $A[i] \preceq M$ if $i \in\left[s ; e^{\prime}\right]$
- $A[i]=M$ if $i \in\left(e^{\prime} ; s^{\prime}\right)$
- $M \preceq A[i]$ if $i \in\left[s^{\prime} ; e\right]$
- Calls itself recursively on $\left[s ; e^{\prime}\right]$ and $\left[s^{\prime} ; e\right]$
- Top level: quicksort is correct if it:
- Does nothing on a single-element subarray
- Splits a non-single-element subarray $[s ; e]$ into three possibly empty parts $\left[s ; e^{\prime}\right],\left(e^{\prime} ; s^{\prime}\right),\left[s^{\prime} ; e\right]$, such that, for some M :
- both $s^{\prime} \neq s$ or $e^{\prime} \neq e$
- $A[i] \preceq M$ if $i \in\left[s ; e^{\prime}\right]$
- $A[i]=M$ if $i \in\left(e^{\prime} ; s^{\prime}\right)$
- $M \preceq A[i]$ if $i \in\left[s^{\prime} ; e\right]$
- Calls itself recursively on $\left[s ; e^{\prime}\right]$ and $\left[s^{\prime} ; e\right]$
- Proof:
- Quicksort terminates, because recursive calls work with strictly smaller array parts
- Top level: quicksort is correct if it:
- Does nothing on a single-element subarray
- Splits a non-single-element subarray $[s ; e]$ into three possibly empty parts $\left[s ; e^{\prime}\right],\left(e^{\prime} ; s^{\prime}\right),\left[s^{\prime} ; e\right]$, such that, for some M :
- both $s^{\prime} \neq s$ or $e^{\prime} \neq e$
- $A[i] \preceq M$ if $i \in\left[s ; e^{\prime}\right]$
- $A[i]=M$ if $i \in\left(e^{\prime} ; s^{\prime}\right)$
- $M \preceq A[i]$ if $i \in\left[s^{\prime} ; e\right]$
- Calls itself recursively on $\left[s ; e^{\prime}\right]$ and $\left[s^{\prime} ; e\right]$
- Proof:
- Quicksort terminates, because recursive calls work with strictly smaller array parts
- Any single-element subarray is sorted by definition
- After recursive calls are done, the subarrays $\left[s ; e^{\prime}\right]$ and $\left[s^{\prime} ; e\right]$ are sorted, and the subarray ($e^{\prime} ; s^{\prime}$) consists of equal elements, thus also sorted
- Left part \preceq middle part \preceq right part \rightarrow result is sorted

Running time inside each stack frame: $\Theta(e-s+1)$

- Each position is visited at least once, at most twice

Running time inside each stack frame: $\Theta(e-s+1)$

- Each position is visited at least once, at most twice

Best running time: all splits done evenly

Running time inside each stack frame: $\Theta(e-s+1)$

- Each position is visited at least once, at most twice

Best running time: all splits done evenly

- Example: a sorted array

Running time inside each stack frame: $\Theta(e-s+1)$

- Each position is visited at least once, at most twice

Best running time: all splits done evenly

- Example: a sorted array
- Look at the call tree to the right

Running time inside each stack frame: $\Theta(e-s+1)$

- Each position is visited at least once, at most twice

Best running time: all splits done evenly

- Example: a sorted array
- Look at the call tree to the right
- Maximum depth: $\Theta(\log N)$, as every subarray size is at most a half of its parent's size

Running time inside each stack frame: $\Theta(e-s+1)$

- Each position is visited at least once, at most twice

Best running time: all splits done evenly

- Example: a sorted array
- Look at the call tree to the right
- Maximum depth: $\Theta(\log N)$, as
 every subarray size is at most a half of its parent's size
- Running time: $\Theta(N \log N)$

Running time inside each stack frame: $\Theta(e-s+1)$

- Each position is visited at least once, at most twice

Worst running time: all splits are $1: K-1$

Running time inside each stack frame: $\Theta(e-s+1)$

- Each position is visited at least once, at most twice

Worst running time: all splits are $1: K-1$

- Look at the call tree to the right

9	3	13	5	11	7	15	1	2	4	6	8	10

| 1 | 3 | 13 | 5 | 11 | 7 | 15 | 9 | 2 | 4 | 6 | 8 | 10 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 14

$\begin{array}{r}5 \\ 4 \\ \hline\end{array}$

Running time inside each stack frame: $\Theta(e-s+1)$

- Each position is visited at least once, at most twice

Worst running time: all splits are $1: K-1$

- Look at the call tree to the right
- Running time:

$$
\Theta\left(\sum_{i=2}^{N} i+N-1\right)=\Theta\left(N^{2}\right)
$$

2	13	5	11	7	15	9	3	4	6	8	10	12	14	16

3	5	11	7	15	9	13	4	6	8	10	12	14	16
	4	11	7	15	9	13	5	6	8	10	12	14	16

| 5 | 7 | 15 | 9 | 13 | 11 | 6 | 8 | 10 | 12 | 14 | 16 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6 | 15 | 9 | 13 | 11 | 7 | 8 | 10 | 12 | 14 | 16 | |

| 7 | 9 | 13 | 11 | 15 | 8 | 10 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 14

8	13	11	15	9	10	12	14
	16						

9	11	15	13	10	12	14	16
		15					

| 10 | 15 | 13 | 11 | 12 | 14 | 16 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 17 | 1 | | | | |

| 11 | 13 | 15 | 12 | 14 | 16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | 15 | 13 | 14 | 16 | |
| | 13 | 15 | 1 | | |

| 13 | 15 | 14 | 16 |
| :--- | :--- | :--- | :--- | :--- |
| 14 | 15 | 16 | |
| | 16 | 15 | 16 |
| | | 15 | 16 |
| | | | |

Running time inside each stack frame: $\Theta(e-s+1)$

- Each position is visited at least once, at most twice

Worst running time: all splits are $1: K-1$

- Look at the call tree to the right
- Running time:

$$
\Theta\left(\sum_{i=2}^{N} i+N-1\right)=\Theta\left(N^{2}\right)
$$

- This is called "quicksort degradation"

9	3	13	5	11	7	15	1	2	4	6	8	10	12

| 3 | 5 11 7 15 9 13 4 6 8 10 12 14 16 | 4 11 7 15 9 13 5 6 8 10 12 14 16 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

5	7	15	9	13	11	6	8	10	12	14
6	16	16								
6	15	9	13	11	7	8	10	12	14	16

| 12 | 15 | 13 | 14 | 16 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 13 | 15 | 14 | 16 | |

14	15	16
15	16	

Running time inside each stack frame: $\Theta(e-s+1)$

- Each position is visited at least once, at most twice

Worst running time: all splits are $1: K-1$

- Look at the call tree to the right
- Running time:

$$
\Theta\left(\sum_{i=2}^{N} i+N-1\right)=\Theta\left(N^{2}\right)
$$

- This is called "quicksort degradation"
- But why is it "quick"?

9	3	13	5	11	7	15	1	2	4	6	8	10

1	3	13	5	11	7	15	9	2	4	6	8	10	12

2	13	5	11	7	15	9	3	4	6	8	10	12	14	16
	3	5	11	7	15	9	13	4	6	8	10	12	14	16

3	5	11	7	15	9	13	4	6	8	10	12	14	16
	4	11	7	15	9	13	5	6	8	10	12	14	16

5	7	15	9	13	11	6	8	10	12	14	16
6	15	9	13	11	7	8	10	12	14	16	

7	9	13	11	15	8	10	12

| 8 | 13 | 11 | 15 | 9 | 10 | 12 | 14 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 16

9	11	15	13	10	12	14	16
	10	15	13	11	1		

10	15	13	11	12	14	16
	11	13			15	1

| 11 | 13 | 15 | 12 | 14 | 16 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

12	15	13	14	16
	13	15	14	16

14	15	16
	15	16

What is the average running time of quicksort (on all arrays)?

What is the average running time of quicksort (on all arrays)?

- Consider sorting permutations: same as sorting arrays with all elements distinct

What is the average running time of quicksort (on all arrays)?

- Consider sorting permutations: same as sorting arrays with all elements distinct
- Among all permutations, with probability 0.5 the rank of the pivot value will be within $[N / 4 ; 3 N / 4]$
- This means that the maximum of subarray sizes is at most $3 N / 4$
- This means that the logarithm of the size decreases by at least $\log 4 / 3$

What is the average running time of quicksort (on all arrays)?

- Consider sorting permutations: same as sorting arrays with all elements distinct
- Among all permutations, with probability 0.5 the rank of the pivot value will be within $[N / 4 ; 3 N / 4]$
- This means that the maximum of subarray sizes is at most $3 N / 4$
- This means that the logarithm of the size decreases by at least $\log 4 / 3$
- After splitting, the subarrays are again equivalent to random permutations

What is the average running time of quicksort (on all arrays)?

- Consider sorting permutations: same as sorting arrays with all elements distinct
- Among all permutations, with probability 0.5 the rank of the pivot value will be within $[N / 4 ; 3 N / 4]$
- This means that the maximum of subarray sizes is at most $3 N / 4$
- This means that the logarithm of the size decreases by at least $\log 4 / 3$
- After splitting, the subarrays are again equivalent to random permutations

What follows?

What is the average running time of quicksort (on all arrays)?

- Consider sorting permutations: same as sorting arrays with all elements distinct
- Among all permutations, with probability 0.5 the rank of the pivot value will be within $[N / 4 ; 3 N / 4]$
- This means that the maximum of subarray sizes is at most $3 N / 4$
- This means that the logarithm of the size decreases by at least $\log 4 / 3$
- After splitting, the subarrays are again equivalent to random permutations

What follows?

- With probability 0.5 the logarithm of the size decreases by at least $\log 4 / 3$

What is the average running time of quicksort (on all arrays)?

- Consider sorting permutations: same as sorting arrays with all elements distinct
- Among all permutations, with probability 0.5 the rank of the pivot value will be within $[N / 4 ; 3 N / 4]$
- This means that the maximum of subarray sizes is at most $3 N / 4$
- This means that the logarithm of the size decreases by at least $\log 4 / 3$
- After splitting, the subarrays are again equivalent to random permutations

What follows?

- With probability 0.5 the logarithm of the size decreases by at least $\log 4 / 3$
- Expected logarithm decrease: at least $0.5 \log 4 / 3$

What is the average running time of quicksort (on all arrays)?

- Consider sorting permutations: same as sorting arrays with all elements distinct
- Among all permutations, with probability 0.5 the rank of the pivot value will be within $[N / 4 ; 3 N / 4]$
- This means that the maximum of subarray sizes is at most $3 \mathrm{~N} / 4$
- This means that the logarithm of the size decreases by at least $\log 4 / 3$
- After splitting, the subarrays are again equivalent to random permutations

What follows?

- With probability 0.5 the logarithm of the size decreases by at least $\log 4 / 3$
- Expected logarithm decrease: at least $0.5 \log 4 / 3$
- Expected depth: at most $\log N /(0.5 \log 4 / 3)=O(\log N)$

What is the average running time of quicksort (on all arrays)?

- Consider sorting permutations: same as sorting arrays with all elements distinct
- Among all permutations, with probability 0.5 the rank of the pivot value will be within $[N / 4 ; 3 N / 4]$
- This means that the maximum of subarray sizes is at most $3 \mathrm{~N} / 4$
- This means that the logarithm of the size decreases by at least $\log 4 / 3$
- After splitting, the subarrays are again equivalent to random permutations

What follows?

- With probability 0.5 the logarithm of the size decreases by at least $\log 4 / 3$
- Expected logarithm decrease: at least $0.5 \log 4 / 3$
- Expected depth: at most $\log N /(0.5 \log 4 / 3)=O(\log N)$
- Total work at each depth: $O(N) \rightarrow$ average runtime is $O(N \log N)$

