
Chapter 2

Summarizing Data

After collecting data, the next stage in the investigative process is to summarize the data.
Graphical displays allow us to visualize and better understand the important features of a
data set.

2.1 Examining numerical data

In this section we will focus on numerical variables. The email50 and county data sets
from Section 1.2 provide rich opportunities for examples. Recall that outcomes of numerical
variables are numbers on which it is reasonable to perform basic arithmetic operations. For
example, the pop2010 variable, which represents the populations of counties in 2010, is
numerical since we can sensibly discuss the difference or ratio of the populations in two
counties. On the other hand, area codes and zip codes are not numerical, but rather they
are categorical variables.

2.1.1 Scatterplots for paired data

Sometimes researchers wish to see the relationship between two variables. When we talk
of a relationship or an association between variables, we are interested in how one variable
behaves as the other variable increases or decreases.

A scatterplot provides a case-by-case view of data that illustrates the relationship
between two numerical variables. In Figure 1.8 on page 8, a scatterplot was used to examine
how federal spending and poverty were related in the county data set. Another scatterplot
is shown in Figure 2.1, comparing the number of line breaks (line breaks) and number
of characters (num char) in emails for the email50 data set. In any scatterplot, each
point represents a single case. Since there are 50 cases in email50, there are 50 points in
Figure 2.1.

 Example 2.1 A scatterplot requires paired data. What does paired data mean?

We say observations are paired when the two observations correspond to each other. In
unpaired data, there is no such correspondence. Here the two observations correspond
to a particular email.

The variable that is suspected to be the response variable is plotted on the vertical
axis and the variable that is suspected to be the explanatory variable is plotted on the
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Figure 2.1: A scatterplot of line breaks versus num char for the email50 data.

horizontal axis. In this example, the variables could be switched since either variable could
reasonably serve as the explanatory variable or the response variable.

TIP: Drawing scatterplots
(1) Draw the axes and add scales to each. (2) Label each axis. (3) Plot the dots.

The association between two variables can be positive or negative, or there can
be no association. Positive association means that larger values of the first variable are
associated with larger values of the second variable. Additionally, the association can follow
a linear trend or a curved (nonlinear) trend.⊙

Guided Practice 2.2 What would it mean for two variables to have a negative
association? What about no association?1

⊙
Guided Practice 2.3 What does the scatterplot in Figure 2.1 reveal about the
email data?2

 Example 2.4 Consider a new data set of 54 cars with two variables: vehicle price
and weight.3 A scatterplot of vehicle price versus weight is shown in Figure 2.2. What
can be said about the relationship between these variables?

The relationship is evidently nonlinear, as highlighted by the dashed line. This is
different from previous scatterplots we’ve seen, such as Figure 1.8 on page 8 and
Figure 2.1, which show relationships that are very linear.

1Negative association implies that larger values of the first variable are associated with smaller values
of the second variable. No association implies that the values of the second variable tend to be independent
of changes in the first variable.

2The association between the number of characters in an email and the number of lines in an email is
positive (when one is larger, the other tends to be larger as well). As the number of characters increases,
number of lines increases is an approximately linear fashion.

3Subset of data from http://www.amstat.org/publications/jse/v1n1/datasets.lock.html
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Figure 2.2: A scatterplot of price versus weight for 54 cars.

⊙
Guided Practice 2.5 Describe two variables that would have a horseshoe shaped
(i.e. “U”-shaped) association in a scatterplot.4

4Consider the case where your vertical axis represents something “good” and your horizontal axis
represents something that is only good in moderation. Health and water consumption fit this description
since water becomes toxic when consumed in excessive quantities.
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8.1 Line fitting, residuals, and correlation

It is helpful to think deeply about the line fitting process. In this section, we examine
criteria for identifying a linear model and introduce a new statistic, correlation.

8.1.1 Beginning with straight lines

Scatterplots were introduced in Chapter 1 as a graphical technique to present two numerical
variables simultaneously. Such plots permit the relationship between the variables to be
examined with ease. Figure 8.4 shows a scatterplot for the head length and total length
of 104 brushtail possums from Australia. Each point represents a single possum from the
data.

The head and total length variables are associated. Possums with an above average
total length also tend to have above average head lengths. While the relationship is not per-
fectly linear, it could be helpful to partially explain the connection between these variables
with a straight line.

Straight lines should only be used when the data appear to have a linear relationship,
such as the case shown in the left panel of Figure 8.6. The right panel of Figure 8.6 shows
a case where a curved line would be more useful in understanding the relationship between
the two variables.

Caution: Watch out for curved trends
We only consider models based on straight lines in this chapter. If data show a
nonlinear trend, like that in the right panel of Figure 8.6, more advanced techniques
should be used.

Chapter 8

Introduction to linear 
regression
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Figure 8.4: A scatterplot showing head length against total length for 104
brushtail possums. A point representing a possum with head length 94.1mm
and total length 89cm is highlighted.

Figure 8.5: The common brushtail possum of Australia.
—————————–
Photo by wollombi on Flickr: www.flickr.com/photos/wollombi/58499575
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Figure 8.6: The figure on the left shows head length versus total length, and
reveals that many of the points could be captured by a straight band. On
the right, we see that a curved band is more appropriate in the scatterplot
for weight and mpgCity from the cars data set.

8.1.2 Fitting a line by eye

We want to describe the relationship between the head length and total length variables
in the possum data set using a line. In this example, we will use the total length as
the predictor variable, x, to predict a possum’s head length, y. We could fit the linear
relationship by eye, as in Figure 8.7. The equation for this line is

ŷ = 41 + 0.59x (8.2)

We can use this line to discuss properties of possums. For instance, the equation predicts
a possum with a total length of 80 cm will have a head length of

ŷ = 41 + 0.59× 80

= 88.2

A “hat” on y is used to signify that this is an estimate. This estimate may be viewed as
an average: the equation predicts that possums with a total length of 80 cm will have an
average head length of 88.2 mm. Absent further information about an 80 cm possum, the
prediction for head length that uses the average is a reasonable estimate.

8.1.3 Residuals

Residuals are the leftover variation in the data after accounting for the model fit:

Data = Fit + Residual

Each observation will have a residual. If an observation is above the regression line, then
its residual, the vertical distance from the observation to the line, is positive. Observations
below the line have negative residuals. One goal in picking the right linear model is for
these residuals to be as small as possible.
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Figure 8.7: A reasonable linear model was fit to represent the relationship
between head length and total length.

Three observations are noted specially in Figure 8.7. The observation marked by an
“×” has a small, negative residual of about -1; the observation marked by “+” has a large
residual of about +7; and the observation marked by “4” has a moderate residual of about
-4. The size of a residual is usually discussed in terms of its absolute value. For example,
the residual for “4” is larger than that of “×” because | − 4| is larger than | − 1|.

Residual: difference between observed and expected
The residual of the ith observation (xi, yi) is the difference of the observed response
(yi) and the response we would predict based on the model fit (ŷi):

residuali = yi − ŷi

We typically identify ŷi by plugging xi into the model.

 Example 8.3 The linear fit shown in Figure 8.7 is given as ŷ = 41 + 0.59x. Based
on this line, formally compute the residual of the observation (77.0, 85.3). This obser-
vation is denoted by “×” on the plot. Check it against the earlier visual estimate, -1.

We first compute the predicted value of point “×” based on the model:

ŷ× = 41 + 0.59x× = 41 + 0.59× 77.0 = 86.4

Next we compute the difference of the actual head length and the predicted head
length:

residual× = y× − ŷ× = 85.3− 86.4 = −1.1

This is very close to the visual estimate of -1.
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⊙
Guided Practice 8.4 If a model underestimates an observation, will the residual
be positive or negative? What about if it overestimates the observation?1

⊙
Guided Practice 8.5 Compute the residuals for the observations (85.0, 98.6) (“+”
in the figure) and (95.5, 94.0) (“4”) using the linear relationship ŷ = 41 + 0.59x. 2

Residuals are helpful in evaluating how well a linear model fits a data set. We often
display them in a residual plot such as the one shown in Figure 8.8 for the regression line
in Figure 8.7. The residuals are plotted at their original horizontal locations but with the
vertical coordinate as the residual. For instance, the point (85.0, 98.6)+ had a residual of
7.45, so in the residual plot it is placed at (85.0, 7.45). Creating a residual plot is sort of
like tipping the scatterplot over so the regression line is horizontal.

From the residual plot, we can better estimate the standard deviation of the
residuals, often denoted by the letter s. The standard deviation of the residuals tells us
the average size of the residuals. As such, it is a measure of the average deviation between
the y values and the regression line. In other words, it tells us the average prediction error
using the linear model.

 Example 8.6 Estimate the standard deviation of the residuals for predicting head
length from total length using the regression line. Also, interpret the quantity in
context.

To estimate this graphically, we use the residual plot. The approximate 68, 95 rule
for standard deviations applies. Approximately 2/3 of the points are within ± 2.5
and approximately 95% of the points are within ± 5, so 2.5 is a good estimate for
the standard deviation of the residuals. On average, the prediction of head length is
off by about 2.5 cm.

Standard deviation of the residuals
The standard deviation of the residuals, often denoted by the letter s, tells us the
average error in the predictions using the regression model. It can be estimated
from a residual plot.

1If a model underestimates an observation, then the model estimate is below the actual. The residual,
which is the actual observation value minus the model estimate, must then be positive. The opposite is
true when the model overestimates the observation: the residual is negative.

2(+) First compute the predicted value based on the model:

ŷ+ = 41 + 0.59x+ = 41 + 0.59× 85.0 = 91.15

Then the residual is given by

residual+ = y+ − ŷ+ = 98.6− 91.15 = 7.45

This was close to the earlier estimate of 7.
(4) ŷ4 = 41 + 0.59x4 = 97.3. residual4 = y4 − ŷ4 = −3.3, close to the estimate of -4.
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Figure 8.8: Residual plot for the model in Figure 8.7.

 Example 8.7 One purpose of residual plots is to identify characteristics or patterns
still apparent in data after fitting a model. Figure 8.9 shows three scatterplots with
linear models in the first row and residual plots in the second row. Can you identify
any patterns remaining in the residuals?

In the first data set (first column), the residuals show no obvious patterns. The
residuals appear to be scattered randomly around the dashed line that represents 0.

The second data set shows a pattern in the residuals. There is some curvature in the
scatterplot, which is more obvious in the residual plot. We should not use a straight
line to model these data. Instead, a more advanced technique should be used.

The last plot shows very little upwards trend, and the residuals also show no obvious
patterns. It is reasonable to try to fit a linear model to the data. However, it is
unclear whether there is statistically significant evidence that the slope parameter is
different from zero. The point estimate of the slope parameter, labeled b1, is not zero,
but we might wonder if this could just be due to chance. We will address this sort of
scenario in Section 8.4.

8.1.4 Describing linear relationships with correlation

Correlation coefficient, r, measures the strength of a linear relationship
Correlation, which always takes values between -1 and 1, describes the strength of
the linear relationship between two variables. It can be strong, moderate, or weak.

R
correlation

We can compute the correlation coefficient (or just correlation for short) using a for-
mula, just as we did with the sample mean and standard deviation. However, this formula
is rather complex,3 so we generally perform the calculations on a computer or calculator.

3Formally, we can compute the correlation for observations (x1, y1), (x2, y2), ..., (xn, yn) using the

formula r = 1
n−1

∑n
i=1

xi−x̄
sx

yi−ȳ
sy

, where x̄, ȳ, sx, and sy are the sample means and standard deviations

for each variable.
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Figure 8.9: Sample data with their best fitting lines (top row) and their
corresponding residual plots (bottom row).

Figure 8.10 shows eight plots and their corresponding correlations. Only when the rela-
tionship is perfectly linear is the correlation either -1 or 1. If the relationship is strong and
positive, the correlation will be near +1. If it is strong and negative, it will be near -1. If
there is no apparent linear relationship between the variables, then the correlation will be
near zero.

The correlation is intended to quantify the strength of a linear trend. Nonlinear trends,
even when strong, sometimes produce correlations that do not reflect the strength of the
relationship; see three such examples in Figure 8.11.⊙

Guided Practice 8.8 It appears no straight line would fit any of the datasets
represented in Figure 8.11. Try drawing nonlinear curves on each plot. Once you
create a curve for each, describe what is important in your fit.4

 Example 8.9 Take a look at Figure 8.7. How would this correlation change if head
length were measured in cm rather than mm? What if head length were measure in
inches rather than mm?

Here, changing the units of y corresponds to multiplying all the y values by a certain
number. This would change the mean and the standard deviation of y, but it would
not change the correlation. To see this, imagine dividing every number on the vertical
axes by 10. The units of y are now cm rather than mm, but the graph has remain
exactly the same

Changing units of x and y does not affect r.
The correlation between two variables should not be dependent upon the units in
which the variables are recorded. Adding a constant, subtracting a constant, or
multiplying a positive constant to all values of x or y does not affect the correlation.

4We’ll leave it to you to draw the lines. In general, the lines you draw should be close to most points
and reflect overall trends in the data.
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Figure 8.10: Sample scatterplots and their correlations. The first row shows
variables with a positive relationship, represented by the trend up and to
the right. The second row shows variables with a negative trend, where a
large value in one variable is associated with a low value in the other.

r = −0.23

y

r = 0.31

y

r = 0.50

Figure 8.11: Sample scatterplots and their correlations. In each case, there
is a strong relationship between the variables. However, the correlation is
not very strong, and the relationship is not linear.

Advanced High School Statistics 
Preliminary Edition



334 CHAPTER 8. INTRODUCTION TO LINEAR REGRESSION

Family income ($1000s)

0 50 100 150 200 250 300

0

10

20

30

G
ift

 a
id

 fr
om

 u
ni

ve
rs

ity
 (

$1
00

0s
)

Figure 8.12: Gift aid and family income for a random sample of 50 freshman
students from Elmhurst College. Two lines are fit to the data, the solid
line being the least squares line.
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Appendix A

End of chapter exercise
solutions

2 Summarizing data

2.1 (a) Positive association: mammals with longer gestation periods tend to live longer as well. (b)
Association would still be positive. (c) No, they are not independent. See part (a).

8 Introduction to linear regression

8.1 (a) The residual plot will show randomly distributed residuals around 0. The variance is also 
approximately constant. (b) The residuals will show a fan shape, with higher variability for smaller 
x. There will also be many points on the right above the line. There is trouble with the model being fit 
here.
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