

Video 1.1
 Vijay Kumar and Ani Hsieh

Robotics: Dynamics and Control

Vijay Kumar and Ani Hsieh University of Pennsylvania

Why?

- Robots live in a physical world
- The physical world is governed by the laws of motion
- Fundamental understanding of dynamics of robots

The Goal

- Models of robots
- Robot manipulators, ground robots, flying robots...
- Beyond geometric and kinematic models to dynamic models
- Use dynamic models for real world applications

Engineering

Dynamics

Two sets of problems:

- Forward dynamics

How do robots move when we apply forces or torques to the actuators, or currents/voltages to the motors?

- Inverse dynamics

What forces or torques or currents or voltages to apply to achieve a desired output (force or moment or velocity or acceleration)?

Video 1.2
 Vijay Kumar and Ani Hsieh

Dynamics and Control Introduction

Vijay Kumar and Ani Hsieh University of Pennsylvania

What should you know?

- 3-D vectors, geometry
- Vector calculus, kinematics
- Rotation matrices
- Transformation matrices

What you will learn

- How to create dynamic models of robots?
- How to simulate robotic systems?
- How to control robotic systems?

Dynamics

- Particle dynamics

Kinematics
Kinetics

- Rigid body dynamics

Kinematics
Kinetics

- Application to chains of rigid bodies

Newton-Euler Equations of Motion
Lagrange's Equations of Motion

Simulation

- Forward Dynamics

 How does the robot move if you apply a set of forces or torques at the actuators
http://money.cnn.com/2015/04/07/technology/sa wyer-robot-manufacturing-revolution/

Control

- Inverse Dynamics

What forces or torques need to be applied by the actuators in order to get the robot to move or act in a desired manner

http://money.cnn.com/2015/04/07/technology/sa wyer-robot-manufacturing-revolution/

Applications

- Robot manipulators
- Ground robots: wheeled
- Flying robots: quadrotors

Video 1.3
 Vijay Kumar and Ani Hsieh

Dynamics and Control Review

Vijay Kumar and Ani Hsieh University of Pennsylvania

Reference Frames

- Reference frame A
- Origin O
- Basis vectors $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$

- Reference frame B
- Origin P
- Basis vectors $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$

Position Vectors

- Reference frame A
- Origin O
- Basis vectors $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$
- Position Vectors
- Position vectors for P and Q in A

$$
\begin{array}{ll}
\mathbf{r}_{O P} & \mathbf{r}_{O Q}
\end{array}
$$

- Position vector of Q in B

$$
\mathbf{r}_{P Q}
$$

Position Vectors

- Position vectors for P and Q in A

$$
\begin{aligned}
\mathbf{r}_{O P} & =p_{1} \mathbf{a}_{1}+p_{2} \mathbf{a}_{2}+p_{3} \mathbf{a}_{3} \\
& {\left[\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right] } \\
\mathbf{r}_{O Q} & =q_{1} \mathbf{a}_{1}+q_{2} \mathbf{a}_{2}+q_{3} \mathbf{a}_{3} \\
& {\left[\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right] }
\end{aligned}
$$

Transformations

- Reference frames A, B
- Origins O, P
- Basis vectors $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$

$$
\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}
$$

- Rigid Body Transformation
- Position vector of Q in A

$$
\mathbf{r}_{O Q}=q_{1} \mathbf{a}_{1}+q_{2} \mathbf{a}_{2}+q_{3} \mathbf{a}_{3}
$$

- Position vector Q in B

$$
\mathbf{r}_{P Q}=q_{1}^{\prime} \mathbf{b}_{1}+q_{2}^{\prime} \mathbf{b}_{2}+q_{3}^{\prime} \mathbf{b}_{3}
$$

Transformations

$\mathbf{r}_{O Q}=\mathbf{r}_{O P}+\mathbf{r}_{P Q}$
$q_{1} \mathbf{a}_{1}+q_{2} \mathbf{a}_{2}+q_{3} \mathbf{a}_{3}$

$$
\begin{aligned}
=p_{1} \mathbf{a}_{1} & +p_{2} \mathbf{a}_{2}+p_{3} \mathbf{a}_{3} \\
& +q_{1}^{\prime} \mathbf{b}_{1}+q_{2}^{\prime} \mathbf{b}_{2}+q_{3}^{\prime} \mathbf{b}_{3}
\end{aligned}
$$

Transformations

$\left[\begin{array}{l}q_{1} \\ q_{2} \\ q_{3}\end{array}\right] \longleftrightarrow\left[\begin{array}{l}q_{1}^{\prime} \\ q_{2}^{\prime} \\ q_{3}^{\prime}\end{array}\right]$
$\mathbf{r}_{O Q}=\mathbf{r}_{O P}+\mathbf{r}_{P Q}$
$q_{1} \mathbf{a}_{1}+q_{2} \mathbf{a}_{2}+q_{3} \mathbf{a}_{3}$

$$
\begin{aligned}
=p_{1} \mathbf{a}_{1} & +p_{2} \mathbf{a}_{2}+p_{3} \mathbf{a}_{3} \\
& +q_{1}^{\prime} \mathbf{b}_{1}+q_{2}^{\prime} \mathbf{b}_{2}+q_{3}^{\prime} \mathbf{b}_{3}
\end{aligned}
$$

Rotation Matrix

$$
\mathbf{r}_{O Q}=\mathbf{r}_{O P}+\mathbf{r}_{P Q}
$$

$q_{1} \mathbf{a}_{1}+q_{2} \mathbf{a}_{2}+q_{3} \mathbf{a}_{3}$

$$
\begin{aligned}
=p_{1} \mathbf{a}_{1} & +p_{2} \mathbf{a}_{2}+p_{3} \mathbf{a}_{3} \\
& +q_{1}^{\prime} \mathbf{b}_{1}+q_{2}^{\prime} \mathbf{b}_{2}+q_{3}^{\prime} \mathbf{b}_{3}
\end{aligned}
$$

$$
\left[\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right]=\left[\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right]+\mathbf{R}_{A B}\left[\begin{array}{l}
q_{1}^{\prime} \\
q_{2}^{\prime} \\
q_{3}^{\prime}
\end{array}\right]
$$

$$
R_{A B}=\left[\begin{array}{ccc}
b_{1} \cdot a_{1} & b_{2} \cdot a_{1} & b_{3} \cdot a_{1} \\
b_{1} \cdot a_{2} & b_{2} \cdot a_{2} & b_{3} \cdot a_{2} \\
b_{1} \cdot a_{3} & b_{2} \cdot a_{3} & b_{3} \cdot a_{3}
\end{array}\right]
$$

Homogeneous Transformation Matrix

$$
\left[\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right]=\left[\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right]+\mathbf{R}_{A B}\left[\begin{array}{l}
q_{1}^{\prime} \\
q_{2}^{\prime} \\
q_{3}^{\prime}
\end{array}\right]
$$

$$
\left[\begin{array}{c}
q_{1} \\
q_{2} \\
q_{3} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\mathbf{b}_{1} \cdot \mathbf{a}_{1} & \mathbf{b}_{1} \cdot \mathbf{a}_{2} & \mathbf{b}_{1} \cdot \mathbf{a}_{3} & p_{1} \\
\mathbf{b}_{2} \cdot \mathbf{a}_{1} & \mathbf{b}_{2} \cdot \mathbf{a}_{2} & \mathbf{b}_{2} \cdot \mathbf{a}_{3} & p_{2} \\
\mathbf{b}_{3} \cdot \mathbf{a}_{1} & \mathbf{b}_{3} \cdot \mathbf{a}_{2} & \mathbf{b}_{3} \cdot \mathbf{a}_{3} & p_{3} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
q_{1}^{\prime} \\
q_{2}^{\prime} \\
q_{3}^{\prime} \\
1
\end{array}\right]
$$

Position of Q in A

$\mathbf{T}_{A B}$

4×4 homogeneous

> Position of
> Q in B

Video 1.4
 Vijay Kumar and Ani Hsieh

Dynamics and Control Velocity and Acceleration Analysis

Vijay Kumar and Ani Hsieh University of Pennsylvania

Position Vectors

- Reference frame A
- Origin O
- Basis vectors $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$
- Position Vectors
- Position vectors for P and Q in A

$$
\begin{array}{ll}
\mathbf{r}_{O P} & \mathbf{r}_{O Q}
\end{array}
$$

- Position vector of Q in B

$$
\mathbf{r}_{P Q}
$$

Velocity Vectors

- Velocity of P and Q in A

$$
\mathbf{v}_{P}=\dot{p}_{1} \mathbf{a}_{1}+\dot{p}_{2} \mathbf{a}_{2}+\dot{p}_{3} \mathbf{a}_{3}
$$

$$
\left[\begin{array}{l}
\dot{p}_{1} \\
\dot{p}_{2} \\
\dot{p}_{3}
\end{array}\right]
$$

$$
\mathbf{v}_{Q}=\dot{q}_{1} \mathbf{a}_{1}+\dot{q}_{2} \mathbf{a}_{2}+\dot{q}_{3} \mathbf{a}_{3}
$$

$$
\left[\begin{array}{l}
\dot{q}_{1} \\
\dot{q}_{2} \\
\dot{q}_{3}
\end{array}\right]
$$

Velocity Vectors

- Velocity of P and Q in B

Zero, since both points are fixed to B !

Velocity Vectors

- Velocity of P and Q in A

$$
\mathbf{v}_{P}=\dot{p}_{1} \mathbf{a}_{1}+\dot{p}_{2} \mathbf{a}_{2}+\dot{p}_{3} \mathbf{a}_{3}
$$

$$
\mathbf{v}_{Q}=\dot{q}_{1} \mathbf{a}_{1}+\dot{q}_{2} \mathbf{a}_{2}+\dot{q}_{3} \mathbf{a}_{3}
$$

$$
\left[\begin{array}{l}
\dot{q}_{1} \\
\dot{q}_{2} \\
\dot{q}_{3}
\end{array}\right]
$$

How to relate velocities of two points fixed to the same rigid body?

Recall ...

$$
\mathbf{r}_{O Q}=\mathbf{r}_{O P}+\mathbf{r}_{P Q}
$$

$q_{1} \mathbf{a}_{1}+q_{2} \mathbf{a}_{2}+q_{3} \mathbf{a}_{3}$

$$
\begin{aligned}
=p_{1} \mathbf{a}_{1} & +p_{2} \mathbf{a}_{2}+p_{3} \mathbf{a}_{3} \\
& +q_{1}^{\prime} \mathbf{b}_{1}+q_{2}^{\prime} \mathbf{b}_{2}+q_{3}^{\prime} \mathbf{b}_{3}
\end{aligned}
$$

$$
\left[\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right]=\left[\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right]+\mathbf{R}_{A B}\left[\begin{array}{l}
q_{1}^{\prime} \\
q_{2}^{\prime} \\
q_{3}^{\prime}
\end{array}\right]
$$

Engineering

Velocities of 2 points fixed to the same rigid body

$$
\mathbf{r}_{O Q}=\mathbf{r}_{O P}+\mathbf{r}_{P Q}
$$

$$
\left[\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right]=\left[\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right]+\mathbf{R}_{A B}\left[\begin{array}{l}
q_{1}^{\prime} \\
q_{2}^{\prime} \\
q_{3}^{\prime}
\end{array}\right] \mathbf{R}_{A B}^{T}\left[\begin{array}{l}
q_{1}-p_{1} \\
q_{2}-p_{2} \\
q_{3}-p_{3}
\end{array}\right]
$$

$$
\left[\begin{array}{l}
\dot{q}_{1} \\
\dot{q}_{2} \\
\dot{q}_{3}
\end{array}\right]=\left[\begin{array}{l}
\dot{p}_{1} \\
\dot{p}_{2} \\
\dot{p}_{3}
\end{array}\right]+\dot{\mathbf{R}}_{A B}\left[\begin{array}{l}
q_{1}^{\prime} \\
q_{2}^{\prime} \\
q_{3}^{\prime}
\end{array}\right]
$$

$\hat{\omega}_{A B}$

Robo3x-1.1 31
Engineering

$$
\begin{aligned}
& \begin{array}{l}
\text { Propenty of Denn Engineering, Vilay Kumar and Ani Hsieb } \\
\text { Symmetric }
\end{array}
\end{aligned}
$$

Example: Rotation about a single axis

Rotation about the z-axis through θ

$$
\hat{\omega}_{A B}=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \dot{\theta}
$$

Velocities of 2 points fixed to the same rigid body

$$
\mathbf{r}_{O Q}=\mathbf{r}_{O P}+\mathbf{r}_{P Q}
$$

$$
\left[\begin{array}{c}
\dot{q}_{1} \\
\dot{q}_{2} \\
\dot{q}_{3}
\end{array}\right]=\left[\begin{array}{c}
\dot{p}_{1} \\
\dot{p}_{2} \\
\dot{p}_{3}
\end{array}\right]+\frac{\hat{\mathbf{R}}_{A B} \mathbf{R}_{A B}^{T}}{\hat{\omega}_{A B}}\left[\begin{array}{l}
q_{1}-p_{1} \\
q_{2}-p_{2} \\
q_{3}-p_{3}
\end{array}\right]
$$

Recall a 3×3 skew symmetric matrix encodes a cross product operation

$$
\hat{\omega}_{A B}\left[\begin{array}{l}
q_{1}-p_{1} \\
q_{2}-p_{2} \\
q_{3}-p_{3}
\end{array}\right]=\omega_{A B} \times \mathbf{r}_{P Q}
$$

$\mathbf{v}_{Q}=\mathbf{v}_{P}+\omega_{A B} \times \mathbf{r}_{P Q}$

Acceleration Analysis

- Acceleration of P and Q in A

$$
\mathbf{a}_{P}=\ddot{p}_{1} \mathbf{a}_{1}+\ddot{p}_{2} \mathbf{a}_{2}+\ddot{p}_{3} \mathbf{a}_{3}
$$

$$
\left[\begin{array}{l}
\ddot{p}_{1} \\
\ddot{p}_{2} \\
\ddot{p}_{3}
\end{array}\right]
$$

$$
\mathbf{a}_{Q}=\ddot{q}_{1} \mathbf{a}_{1}+\ddot{q}_{2} \mathbf{a}_{2}+\ddot{q}_{3} \mathbf{a}_{3}
$$

$$
\left[\begin{array}{l}
\ddot{q}_{1} \\
\ddot{q}_{2} \\
\ddot{q}_{3}
\end{array}\right]
$$

Two Approaches

- Lagrangian Mechanics
need expressions of kinetic and potential energy, and external forces/moments
- Newtonian Mechanics
need expressions for accelerations and external forces/moments

Video 1.5
Vijay Kumar and Ani Hsieh

Dynamics and Control Velocity and Acceleration Analysis: Examples

Vijay Kumar and Ani Hsieh University of Pennsylvania

A one link manipulator

Inertial reference frame E

- Origin O
- Basis vectors $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$
- P is fixed to link 1

Position and Velocity Vectors

$$
\begin{aligned}
\mathbf{r}_{O P} & =a_{1} \cos \theta_{1} \mathbf{e}_{1}+a_{1} \sin \theta_{1} \mathbf{e}_{2} \\
\mathbf{v}_{O P} & =-a_{1} s_{1} \dot{\theta}_{1} \mathbf{e}_{1}+a_{1} c_{1} \dot{\theta}_{1} \mathbf{e}_{2} \\
\mathbf{v}_{O P} & =\left[\begin{array}{c}
-a_{1} s_{1} \dot{\theta}_{1} \\
a_{1} c_{1} \dot{\theta}_{1}
\end{array}\right]
\end{aligned}
$$

Two Link Manipulator

Inertial reference frame E

- Origin O
- Basis vectors $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$

Joint 2

- $\quad P$ is fixed to both links 1 and 2
- $\quad P$ and Q are fixed to link 2

Link 1

Position Vectors

$$
\mathbf{r}_{O P}=a_{1} \cos \theta_{1} \mathbf{e}_{1}+a_{1} \sin \theta_{1} \mathbf{e}_{2}
$$

$$
\mathbf{r}_{P Q}=a_{2} \cos \left(\theta_{1}+\theta_{2}\right) \mathbf{e}_{1}+a_{2} \sin \left(\theta_{1}+\theta_{2}\right) \mathbf{e}_{2}
$$

Position Vectors

$$
\mathbf{r}_{O P}=a_{1} \cos \theta_{1} \mathbf{e}_{1}+a_{1} \sin \theta_{1} \mathbf{e}_{2}
$$

$$
\mathbf{r}_{P Q}=a_{2} \cos \left(\theta_{1}+\theta_{2}\right) \mathbf{e}_{1}+a_{2} \sin \left(\theta_{1}+\theta_{2}\right) \mathbf{e}_{2}
$$

$$
\mathbf{r}_{O Q}=\left(a_{1} c_{1}+a_{2} c_{12}\right) \mathbf{e}_{1}+\left(a_{1} s_{1}+a_{2} s_{12}\right) \mathbf{e}_{2}
$$

$$
\left[\begin{array}{l}
a_{1} c_{1}+a_{2} c_{12} \\
a_{1} s_{1}+a_{2} s_{12}
\end{array}\right]
$$

Velocity of point Q in the inertial frame

$$
\begin{aligned}
& \mathbf{r}_{O Q}=\left[\begin{array}{l}
a_{1} c_{1}+a_{2} c_{12} \\
a_{1} s_{1}+a_{2} s_{12}
\end{array}\right] \\
& \mathbf{v}_{O Q}=\left[\begin{array}{l}
-a_{1} s_{1} \dot{\theta}_{1}-a_{2} s_{12}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \\
a_{1} c_{1} \dot{\theta}_{1}+a_{2} c_{12}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)
\end{array}\right] \\
& \text { Pennn }
\end{aligned}
$$

Velocity of point Q in the inertial frame - alternative approach

$$
\begin{array}{ll}
\mathbf{v}_{Q}=\mathbf{v}_{P}+\omega_{F_{0} F_{2}} \times \mathbf{r}_{P Q} & \left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \mathbf{e}_{3} \\
\mathbf{v}_{P}=\mathbf{v}_{O}+\omega_{F_{0} F_{1}} \times \mathbf{r}_{O P} & \dot{\theta_{1} \mathbf{e}_{3}} \\
{\left[\begin{array}{c}
-a_{1} s_{1} \dot{\theta}_{1}-a_{2} s_{12}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \\
a_{1} c_{1} \dot{\theta}_{1}+a_{2} c_{12}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)
\end{array}\right]}
\end{array}
$$

e.

