

Video 1.1 Vijay Kumar and Ani Hsieh

Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Robo3x-1.1 1

Robotics: Dynamics and Control

Vijay Kumar and Ani Hsieh University of Pennsylvania

Why?

- Robots live in a physical world
- The physical world is governed by the laws of motion
- Fundamental understanding of dynamics of robots

The Goal

- Models of robots
 - Robot manipulators, ground robots, flying robots...
- Beyond geometric and kinematic models to dynamic models
- Use dynamic models for real world applications

Dynamics

Two sets of problems:

• Forward dynamics

How do robots move when we apply forces or torques to the actuators, or currents/voltages to the motors?

• Inverse dynamics

What forces or torques or currents or voltages to apply to achieve a desired output (force or moment or velocity or acceleration)?

Video 1.2 Vijay Kumar and Ani Hsieh

Dynamics and Control Introduction

Vijay Kumar and Ani Hsieh University of Pennsylvania

What should you know?

- 3-D vectors, geometry
- Vector calculus, kinematics
- Rotation matrices
- Transformation matrices

What you will learn

- How to create dynamic models of robots?
- How to simulate robotic systems?
- How to control robotic systems?

Dynamics

- Particle dynamics
 Kinematics
 Kinetics
- Rigid body dynamics
 - **Kinematics**
 - **Kinetics**
- Application to chains of rigid bodies
 Newton-Euler Equations of Motion
 Lagrange's Equations of Motion

Simulation

Forward Dynamics
 How does the robot move if you apply
 a set of forces or torques at the
 actuators

http://money.cnn.com/2015/04/07/technology/sa wyer-robot-manufacturing-revolution/

J. Thomas, G. Loianno, J. Polin, K. Sreenath, and V. Kumar, "Toward autonomous avianinspired grasping for micro aerial vehicles," *Bioinspiration and Biomimetics*, vol. 9, no. 2, p. 025010, June 2014.

Control

 Inverse Dynamics
 What forces or torques need to be applied by the actuators in order to get the robot to move or act in a desired manner

http://money.cnn.com/2015/04/07/technology/sa wyer-robot-manufacturing-revolution/

J. Thomas, G. Loianno, J. Polin, K. Sreenath, and V. Kumar, "Toward autonomous avianinspired grasping for micro aerial vehicles," *Bioinspiration and Biomimetics*, vol. 9, no. 2, p. 025010, June 2014.

Applications

- Robot manipulators
- Ground robots: wheeled
- Flying robots: quadrotors

Video 1.3 Vijay Kumar and Ani Hsieh

Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Robo3x-1.1 14

Dynamics and Control Review

Vijay Kumar and Ani Hsieh University of Pennsylvania

Reference Frames

- Reference frame A
 - Origin O
 - Basis vectors $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$
- Reference frame B
 - Origin P
 - Basis vectors $\{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$

Position Vectors

- Reference frame A
 - Origin O
 - Basis vectors $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$
- Position Vectors
 - Position vectors for *P* and *Q* in *A*

 \mathbf{r}_{OP} \mathbf{r}_{OQ}

 \mathbf{r}_{PQ}

• Position vector of Q in B

Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Position Vectors

• Position vectors for *P* and *Q* in *A*

$$\mathbf{r}_{OP} = p_1 \mathbf{a}_1 + p_2 \mathbf{a}_2 + p_3 \mathbf{a}_3$$
$$\begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix}$$
$$\mathbf{r}_{OQ} = q_1 \mathbf{a}_1 + q_2 \mathbf{a}_2 + q_3 \mathbf{a}_3$$
$$\begin{bmatrix} q_1 \\ q_2 \\ q_3 \end{bmatrix}$$

Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Transformations

- Reference frames *A*, *B*
 - Origins O, P
 - Basis vectors $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ $\{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$
- Rigid Body Transformation
 - Position vector of Q in A

 $\mathbf{r}_{OQ} = q_1 \mathbf{a}_1 + q_2 \mathbf{a}_2 + q_3 \mathbf{a}_3 \bullet$

• Position vector *Q* in *B*

gineering

$$\mathbf{r}_{PQ} = q_1'\mathbf{b}_1 + q_2'\mathbf{b}_2 + q_3'\mathbf{b}_3$$

A

 \mathbf{b}_1

В

 \mathbf{a}_1

 \mathbf{b}_2

 \mathbf{r}_{PQ}

 \mathbf{r}_{OQ}

 \mathbf{a}_2

 \mathbf{a}_3

 \mathbf{b}_1

 \mathbf{a}_1

20

A

Rotation Matrix

Engineering

$$\mathbf{r}_{OQ} = \mathbf{r}_{OP} + \mathbf{r}_{PQ}$$

$$q_1 \mathbf{a}_1 + q_2 \mathbf{a}_2 + q_3 \mathbf{a}_3$$

$$= p_1 \mathbf{a}_1 + p_2 \mathbf{a}_2 + p_3 \mathbf{a}_3$$

$$+ q'_1 \mathbf{b}_1 + q'_2 \mathbf{b}_2 + q'_3 \mathbf{b}_3$$

$$\begin{bmatrix} q_1 \\ q_2 \\ q_3 \end{bmatrix} = \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} + \mathbf{R}_{AB} \begin{bmatrix} q'_1 \\ q'_2 \\ q'_3 \end{bmatrix}$$
$$R_{AB} = \begin{bmatrix} b_1 \cdot a_1 & b_2 \cdot a_1 & b_3 \cdot a_1 \\ b_1 \cdot a_2 & b_2 \cdot a_2 & b_3 \cdot a_2 \\ b_1 \cdot a_3 & b_2 \cdot a_3 & b_3 \cdot a_3 \end{bmatrix}$$

Video 1.4 Vijay Kumar and Ani Hsieh

Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Robo3x-1.1 24

Dynamics and Control Velocity and Acceleration Analysis

Vijay Kumar and Ani Hsieh University of Pennsylvania

Position Vectors

- Reference frame A
 - Origin O
 - Basis vectors $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$
- Position Vectors
 - Position vectors for *P* and *Q* in *A*

 \mathbf{r}_{OP} \mathbf{r}_{OQ}

 \mathbf{r}_{PQ}

• Position vector of Q in B

Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Velocity Vectors

• Velocity of P and Q in A $\mathbf{v}_P = \dot{p}_1 \mathbf{a}_1 + \dot{p}_2 \mathbf{a}_2 + \dot{p}_3 \mathbf{a}_3$ $egin{array}{c} \dot{p}_1 \ \dot{p}_2 \ \dot{p}_3 \end{array}$ $\mathbf{v}_Q = \dot{q}_1 \mathbf{a}_1 + \dot{q}_2 \mathbf{a}_2 + \dot{q}_3 \mathbf{a}_3$ \dot{q}_1 \dot{q}_2 \dot{z} \dot{q}_3

Velocity Vectors

• Velocity of *P* and *Q* in *B*

Zero, since both points are fixed to *B*!

Velocity Vectors

Velocity of *P* and *Q* in *A* $\mathbf{v}_P = \dot{p}_1 \mathbf{a}_1 + \dot{p}_2 \mathbf{a}_2 + \dot{p}_3 \mathbf{a}_3$ $\dot{p}_1 \ \dot{p}_2$ $\mathbf{v}_Q = \dot{q}_1 \mathbf{a}_1 + \dot{q}_2 \mathbf{a}_2 + \dot{q}_3 \mathbf{a}_3$ \dot{q}_1 $\dot{q}_2 \\ \dot{q}_3$ How to relate velocities of two points fixed to the same rigid body?

Ingineering

Recall ...

$$\mathbf{r}_{OQ} = \mathbf{r}_{OP} + \mathbf{r}_{PQ}$$

 $q_1\mathbf{a}_1 + q_2\mathbf{a}_2 + q_3\mathbf{a}_3$

$$= p_1 \mathbf{a}_1 + p_2 \mathbf{a}_2 + p_3 \mathbf{a}_3 + q_1' \mathbf{b}_1 + q_2' \mathbf{b}_2 + q_3' \mathbf{b}_3$$

$$\begin{bmatrix} q_1 \\ q_2 \\ q_3 \end{bmatrix} = \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} + \mathbf{R}_{AB} \begin{bmatrix} q'_1 \\ q'_2 \\ q'_3 \end{bmatrix}$$

Example: Rotation about a single axis

Rotation about the *z*-axis through θ

Velocities of 2 points fixed to the same rigid body

$$\mathbf{r}_{OQ} = \mathbf{r}_{OP} + \mathbf{r}_{PQ}$$

$$\begin{bmatrix} \dot{q}_1 \\ \dot{q}_2 \\ \dot{q}_3 \end{bmatrix} = \begin{bmatrix} \dot{p}_1 \\ \dot{p}_2 \\ \dot{p}_3 \end{bmatrix} + \mathbf{\dot{R}}_{AB} \mathbf{R}_{AB}^T \begin{bmatrix} q_1 - p_1 \\ q_2 - p_2 \\ q_3 - p_3 \end{bmatrix}$$
$$\hat{\omega}_{AB}$$

Recall a 3x3 skew symmetric matrix encodes a cross product operation

$$\hat{\omega}_{AB} \begin{bmatrix} q_1 - p_1 \\ q_2 - p_2 \\ q_3 - p_3 \end{bmatrix} = \omega_{AB} \times \mathbf{r}_{PQ}$$

$$\mathbf{v}_Q = \mathbf{v}_P + \omega_{AB} \times \mathbf{r}_{PQ}$$

enn

Engineering

Acceleration Analysis

• Acceleration of *P* and *Q* in *A*

$$\mathbf{a}_{P} = \ddot{p}_{1}\mathbf{a}_{1} + \ddot{p}_{2}\mathbf{a}_{2} + \ddot{p}_{3}\mathbf{a}_{3}$$
$$\begin{bmatrix} \ddot{p}_{1} \\ \ddot{p}_{2} \\ \ddot{p}_{3} \end{bmatrix}$$

$$\mathbf{a}_{Q} = \ddot{q}_{1}\mathbf{a}_{1} + \ddot{q}_{2}\mathbf{a}_{2} + \ddot{q}_{3}\mathbf{a}_{3}$$
$$\begin{bmatrix} \ddot{q}_{1} \\ \ddot{q}_{2} \\ \ddot{q}_{3} \end{bmatrix}$$

Engineering

Two Approaches

• Lagrangian Mechanics

need expressions of kinetic and potential energy, and external forces/moments

Newtonian Mechanics

need expressions for accelerations and external forces/moments

Video 1.5 Vijay Kumar and Ani Hsieh

Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Robo3x-1.1 36

Dynamics and Control Velocity and Acceleration Analysis: Examples

Vijay Kumar and Ani Hsieh University of Pennsylvania

A one link manipulator

Inertial reference frame E

- Origin *O*
- Basis vectors $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$
- P is fixed to link 1

Position and Velocity Vectors

$$\mathbf{r}_{OP} = a_1 \cos \theta_1 \mathbf{e}_1 + a_1 \sin \theta_1 \mathbf{e}_2$$

 $\mathbf{v}_{OP} = -a_1 s_1 \dot{\theta}_1 \mathbf{e}_1 + a_1 c_1 \dot{\theta}_1 \mathbf{e}_2$

Two Link Manipulator

Inertial reference frame E

- Origin O
- Basis vectors $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$
- *P* is fixed to both links 1 and 2
- P and Q are fixed to link 2

Position Vectors

 $\mathbf{r}_{OP} = a_1 \cos \theta_1 \mathbf{e}_1 + a_1 \sin \theta_1 \mathbf{e}_2$

 $\mathbf{r}_{PQ} = a_2 \cos(\theta_1 + \theta_2)\mathbf{e}_1 + a_2 \sin(\theta_1 + \theta_2)\mathbf{e}_2$

Position Vectors

Engineering

$$\mathbf{r}_{OP} = a_1 \cos \theta_1 \mathbf{e}_1 + a_1 \sin \theta_1 \mathbf{e}_2$$

$$\mathbf{r}_{PQ} = a_2 \cos(\theta_1 + \theta_2) \mathbf{e}_1 + a_2 \sin(\theta_1 + \theta_2) \mathbf{e}_2$$

$$\mathbf{r}_{OQ} = (a_1 c_1 + a_2 c_{12}) \mathbf{e}_1 + (a_1 s_1 + a_2 s_{12}) \mathbf{e}_2$$

$$\begin{bmatrix} a_1 c_1 + a_2 c_{12} \\ a_1 s_1 + a_2 s_{12} \end{bmatrix}$$

$$\mathbf{e}_1$$

$$\mathbf{e}_1$$

$$\mathbf{e}_1$$

$$\mathbf{e}_1$$

$$\mathbf{e}_1$$

$$\mathbf{e}_1$$

$$\mathbf{e}_2$$

$$\mathbf{e}_1$$

$$\mathbf{e}_1$$

$$\mathbf{e}_2$$

$$\mathbf{e}_1$$

$$\mathbf{e}_2$$

$$\mathbf{e}_1$$

$$\mathbf{e}_2$$

$$\mathbf{e}_1$$

$$\mathbf{e}_2$$

$$\mathbf{e}_3$$

$$\mathbf{e}_4$$

$$\mathbf{e}_4$$

$$\mathbf{e}_4$$

$$\mathbf{e}_5$$

$$\mathbf{e}$$

Velocity of point Q in the inertial frame

$$\mathbf{r}_{OQ} = \begin{bmatrix} a_1c_1 + a_2c_{12} \\ a_1s_1 + a_2s_{12} \end{bmatrix}$$

$$\mathbf{v}_{OQ} = \begin{bmatrix} -a_1s_1\dot{\theta}_1 - a_2s_{12}(\dot{\theta}_1 + \dot{\theta}_2) \\ a_1c_1\dot{\theta}_1 + a_2c_{12}(\dot{\theta}_1 + \dot{\theta}_2) \end{bmatrix}$$

$$\overset{\Theta}{=} Link 2$$

$$\overset{\Theta}{=} Link 1$$

$$\overset{\Theta}{=} Link 2$$

$$\overset{\Theta}{=} Link 1$$

$$\overset{\Theta}{=} Lin$$

Velocity of point Q in the inertial frame – alternative approach

$$\mathbf{v}_{Q} = \mathbf{v}_{P} + \omega_{F_{0}F_{2}} \times \mathbf{r}_{PQ} \qquad (\dot{\theta}_{1} + \dot{\theta}_{2})\mathbf{e}_{3}$$
$$\mathbf{v}_{P} = \mathbf{v}_{O} + \omega_{F_{0}F_{1}} \times \mathbf{r}_{OP} \qquad \dot{\theta}_{1}\mathbf{e}_{3}$$
$$\begin{bmatrix} -a_{1}s_{1}\dot{\theta}_{1} - a_{2}s_{12}(\dot{\theta}_{1} + \dot{\theta}_{2}) \\ a_{1}c_{1}\dot{\theta}_{1} + a_{2}c_{12}(\dot{\theta}_{1} + \dot{\theta}_{2}) \end{bmatrix} \qquad \mathbf{v}_{P} \qquad \mathbf{v}_{P} = \mathbf{v}_{O} + \mathbf{v}_{P} + \mathbf{v}_$$