BIOL 233 Course Topic Schedule:

The course is taught in 11 weekly modules, with a week midterm break between Modules 6 & 7.

Module 1. How different are we? Introduction to DNA, genes and chromosome. Genetic similarities and differences, and the relationships between human populations. Ancestral interbreeding with Neanderthals. Tutorial: Human genetic diversity

Module 2. How DNA molecules change. The causes and immediate consequences of mutations. Tutorial: How mutations arise and accumulate in DNA sequences

Module 3. DNA differences and gene functions. How mutations that change gene activity or function affect the properties of organisms. Tutorial: How DNA sequence changes affect gene functions

Module 4. Mutations in regulatory genes. How mutations cause cancer. Sex determination and genes on sex chromosomes. Tutorial: Genetic interactions in sex determination and cancer

Module 5. Natural genetic variation. How natural genetic variation is studied, and how it differs from classical alleles. Heritability and genome-wide association studies. Genetic variation for cancer risks. Tutorial: Genome-wide association study of genes affecting cancer risk

Module 6. Personal genomics. Kinds of DNA typing and genome analysis, and what can be learned from them about health risks, personal attributes and ancestry. Tutorial: Exploring personal genomics analysis with 23andMe

Module 7. The mechanics of inheritance. How genes and chromosomes are transmitted through the generations. The molecular mechanisms of mitosis and meiosis. Detailed analysis of ancestry. Tutorial: Using VNTR alleles to analyze family relationships

Module 8. Genetic analysis. Using genetic crosses as a research tool to investigate how genes work and what they do. Sex-linkage, pedigree analysis, and hypothesis testing. Tutorial: Investigating MDM2 and P53 functions by classical genetic analysis

Module 9. All about breeding and inbreeding. More about heritability and association studies. Inbreeding in humans, crops and livestock, and in the evolution of species. Hybrids and genetically modified organisms. Tutorial: Designing matings to preserve genetic diversity in a giraffe breeding program

Module 10. Chromosomal changes. Causes and consequences of changes in the number of chromosomes and in how genes are arranged on them. Genome evolution. Tutorial: Evolution and function of the opsin gene family

Module 11. Advanced topics of particular relevance. The origin of life, mitochondrial genes and mutations, genetic mosaicism, fetal DNA in mothers, epigenetic inheritance, and other topics students may suggest. Tutorial: Genetic analysis reveals human history.