

Video 7.1 Vijay Kumar

Control of Affine Systems

State

$$x \in \mathbb{R}^n$$

Input

$$u \in \mathbb{R}^m$$

State equations

$$\dot{x} = f(x) + g(x)u$$

Output

 $y \in \mathbb{R}^m$

y = h(x)

Lie Derivative

Lie Derivative

Property of University of Pennsylvania, Vijay Kumar

gineering

Example: Controlling a Single Output

Output

$$y \in \mathbb{R}$$

Want

$$\dot{y} - \dot{y}^{\text{des}} + k(y - y^{\text{des}}) = 0$$

or

$$\ddot{y} - \ddot{y}^{\text{des}} + k_1(\dot{y} - \dot{y}^{\text{des}}) + k_2(y - y^{\text{des}}) = 0$$

Need derivative of the output function

$$\dot{y} = \frac{\partial h}{\partial x}\dot{x} = \frac{\partial h}{\partial x}(f(x) + g(x)u)$$

Lie Derivatives

ngineering

$$\mathcal{L}_f h = \frac{\partial h}{\partial x} f(x)$$

Property of University of Pennsylvania, Vijay Kumar

 $\mathcal{L}_g h = \frac{\partial h}{\partial x} g(x)$

Single Input, Single Output, First Order Dynamics

State equations

$$\dot{x} = f(x) + g(x)u$$

Output

$$y = h(x)$$

Rate of change of output

$$\dot{y} = \mathcal{L}_f h + (\mathcal{L}_g h) u$$

Control law if
$$\mathcal{L}_g h \neq 0$$

$$u = \frac{1}{\mathcal{L}_g h} \left(-\mathcal{L}_f h + \dot{y}^{\text{des}} + k(y^{\text{des}} - y) \right)$$

Closed loop system behavior

$$\dot{y} - \dot{y}^{\text{des}} + k(y - y^{\text{des}}) = 0$$

Error exponentially converges to zero

Input Output Linearization

new system $\dot{y} = v$

Nonlinear feedback transforms the original nonlinear system to a new linear system

Linearization is exact (distinct from linear approximations to nonlinear systems)

State <i>x</i>	$x \in \mathbb{R}^n$	
Input <i>u</i>	$u \in \mathbb{R}$	
State equations	$\dot{x} = f(x) + g(x)u$	
Output	$y = h(x) \in \mathbb{R}$	Rate of change of output
Control law if $\mathcal{L}_g h \neq 0$	$u = \frac{1}{\mathcal{L}_g h} \left(-\mathcal{L}_f h + \dot{y}^{\mathrm{des}} \right)$	$\dot{y} = \mathcal{L}_f h + (\mathcal{L}_g h) u$ + $k(y^{\text{des}} - y))$
$\text{if } \mathcal{L}_g h = 0$	$\dot{y} = \mathcal{L}_f h$ (rate of change	e of output is independent of <i>u</i>)
Explore higher order deriv	vatives of output <i>nonzet</i>	ro?
Deres	$\ddot{y} = \mathcal{L}_f \mathcal{L}_f h + \left(\mathcal{L}_g \mathcal{L}_f \right)$	(h)u

Property of University of Pennsylvania, Vijay Kumar

State <i>x</i>	$x \in \mathbb{R}^n$	
Input <i>u</i>	$u \in \mathbb{R}$	
State equations	$\dot{x} = f(x) + g(x)u$	
Output	$y = h(x) \in \mathbb{R}$	Rate of change of output
Control law if $\mathcal{L}_g h \neq 0$	$u = \frac{1}{\mathcal{L}_g h} \left(-\mathcal{L}_f h + \dot{y}^{\mathrm{des}} \right)$	$\dot{y} = \mathcal{L}_f h + (\mathcal{L}_g h) u$ + $k(y^{\text{des}} - y))$
$\text{if } \mathcal{L}_g h = 0$	$\dot{y} = \mathcal{L}_f h$ (rate of change	of output is independent of u)
if $(\mathcal{L}_g \mathcal{L}_f h) \neq 0$ $u = \frac{1}{\mathcal{L}_g \mathcal{L}_f h} (-1)$	$-\mathcal{L}_f \mathcal{L}_f h + \ddot{y}^{\mathrm{des}} + k_1 (\dot{y}^{\mathrm{des}})$	$(-\dot{y}) + k_2(y^{\text{des}} - y))$

State <i>x</i>	$x \in \mathbb{R}^n$			
Input <i>u</i>	$u \in \mathbb{R}$			
State equations	$\dot{x} = f(x) + g(x)u$			
Output	$y = h(x) \in \mathbb{R}$	Rate of change of output		
Control law		$\dot{y} = \mathcal{L}_f h + (\mathcal{L}_g h) u$		
$u = \frac{1}{\mathcal{L}_g \mathcal{L}_f h} \left(-\mathcal{L}_f \mathcal{L}_f h + \ddot{y}^{\text{des}} + k_1 (\dot{y}^{\text{des}} - \dot{y}) + k_2 (y^{\text{des}} - y) \right)$				
Closed loop system behavior				

$$\ddot{y} - \ddot{y}^{\text{des}} + k_1(\dot{y} - \dot{y}^{\text{des}}) + k_2(y - y^{\text{des}}) = 0$$

Error exponentially converges to zero

State <i>x</i>	$x \in \mathbb{R}^n$	
Input <i>u</i>	$u \in \mathbb{R}$	
State equations	$\dot{x} = f(x) + q(x)u$	$\mathcal{L}_{f}^{2}h = \mathcal{L}_{f}\left(\mathcal{L}_{f}h\right)$ $\mathcal{L}_{f}^{3}h = \mathcal{L}_{f}\left(\mathcal{L}_{f}\left(\mathcal{L}_{f}h\right)\right)$
Output	$y = h(x) \in \mathbb{R}$	

Relative degree, *r* The index of the first nonzero term in the sequence

$$\mathcal{L}_g h, \mathcal{L}_g \mathcal{L}_f h, \mathcal{L}_g \mathcal{L}_f^2 h, \dots, \mathcal{L}_g \mathcal{L}_f^k h, \dots$$

11

Video 7.2 Vijay Kumar

Example 1. Single degree of freedom arm

$$ml^{2}\ddot{q} + \frac{1}{2}mgl\sin q = \tau \qquad x = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} q \\ \dot{q} \end{bmatrix}$$
$$\dot{x} = \begin{bmatrix} x_{2} \\ -\frac{g}{l}\sin(x_{1}) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{ml^{2}} \end{bmatrix} u \qquad h = x_{1}$$
$$f(x) \qquad g(x)$$
$$\mathcal{L}_{g}h = 0 \qquad \mathcal{L}_{f}h = x_{2}$$
$$\mathcal{L}_{g}h = 0 \qquad \mathcal{L}_{f}h = x_{2}$$
$$\mathcal{L}_{g}\mathcal{L}_{f}h = \frac{1}{ml^{2}} \qquad \mathcal{L}_{f}^{2}h = -\frac{g}{l}\sin x_{1}$$

Property of University of Pennsylvania, Vijay Kumar

Single degree of freedom arm

Input Output Linearization Single Input, Single Output, Relative degree *r*

new system $y^{(r)} = v$

Nonlinear feedback transforms the original nonlinear system to a new linear system Linearization is exact (distinct from linear approximations to nonlinear systems)

Multiple Input Multiple Output Systems

State x $x \in \mathbb{R}^n$ Input u $u \in \mathbb{R}^m$ $\dot{x} = f(x) + g(x)u$ $n \times 1$ $n \times m$

Output $y = h(x) \in \mathbb{R}^m$

Assume each output has relative degree r

Nonlinear feedback law

$$u = \left(\mathcal{L}_g \mathcal{L}_f^{r-1} h\right)_{m \times m}^{-1} \left(-\mathcal{L}_f^r h + v\right)$$

leads to the equivalent system

$$y_{\scriptscriptstyle m\,\times\,1}^{(r)} = v_{\scriptscriptstyle m\,\times\,1}$$

Fully-actuated robot arm (*n* joints, *n* actuators)

 $M(q)\ddot{q} + C(q,\dot{q})\dot{q} + N(q) = \tau$

Dynamic model

- *M* is the positive definite, *n* by *n* inertia matrix
- $C(q, \dot{q})\dot{q}$ is the *n*-dimensional vector of Coriolis and centripetal forces
- *N* is the *n*-dimensional vector of gravitational forces
- τ is the *n*-dimensional vector of actuator forces and torques

Fully-actuated robot arm (continued)

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + N(q) = \tau$$
$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} q \\ \dot{q} \end{bmatrix}$$

$$u = \tau \in \mathbb{R}^n$$

$$\dot{x} = \begin{bmatrix} x_2\\ -M(x_1)^{-1}(N(x_1) + C(x_1, x_2)x_2) \end{bmatrix} + \begin{bmatrix} 0\\ M(x_1)^{-1} \end{bmatrix} u$$
$$y = q \in \mathbb{R}^n$$

Fully-actuated robot arm (continued)

$$f(x) = \begin{bmatrix} x_2 \\ -M(x_1)^{-1}(N(x_1) + C(x_1, x_2)x_2) \end{bmatrix} \quad g(x) = \begin{bmatrix} 0 \\ M(x_1)^{-1} \end{bmatrix}$$
$$\mathcal{L}_g h = 0, \ \mathcal{L}_g \mathcal{L}_f h \neq 0 \qquad \qquad h(x) = x_1$$

Relative degree is 2

Engineering

$$u = \underbrace{(\mathcal{L}_{g}\mathcal{L}_{f}h)^{-1}}_{M(x_{1})} \underbrace{(-\mathcal{L}_{f}\mathcal{L}_{f}h)}_{M(x_{1})} + \underbrace{\ddot{y}^{\text{des}} + k_{1}(\dot{y}^{\text{des}} - \dot{y}) + k_{2}(y^{\text{des}} - y))}_{-M(x_{1})^{-1}(N(x_{1}) + C(x_{1}, x_{2})x_{2})}$$

Control law

$$u = (C(x_1, x_2)x_2 + N(x_1)) + M(x_1)(\ddot{y}^{des} + k_1(\dot{y}^{des} - \dot{y}) + k_2(y^{des} - y))$$

Method of computed torqueInverse dynamics approach to(Paul, 1972)control (Spong et al, 1972)Property of University of Pennsylvania, Vijay Kumar

Under Actuated Systems

The number of inputs is smaller than the number of degrees of freedom!

Kinematic planar cart

Planar Quadrotor

Three-Dimensional Quadrotor

