
How to Win Coding Competitions: Secrets of Champions

Week 2: Computational complexity. Linear data structures
Lecture 3: Vector

Pavel Krotkov
Saint Petersburg 2016



Operations on vector

Let’s define operations we need for this data structure.

O(1) operations

I inserting an element to the end of vector

I removing an element from the end of vector

I accessing an element by its index

All other operations can be performed in linear time.

2 / 9



Operations on vector

Let’s define operations we need for this data structure.
O(1) operations

I inserting an element to the end of vector

I removing an element from the end of vector

I accessing an element by its index

All other operations can be performed in linear time.

2 / 9



Operations on vector

Let’s define operations we need for this data structure.
O(1) operations

I inserting an element to the end of vector

I removing an element from the end of vector

I accessing an element by its index

All other operations can be performed in linear time.

2 / 9



Operations on vector

Let’s define operations we need for this data structure.
O(1) operations

I inserting an element to the end of vector

I removing an element from the end of vector

I accessing an element by its index

All other operations can be performed in linear time.

2 / 9



Operations on vector

Let’s define operations we need for this data structure.
O(1) operations

I inserting an element to the end of vector

I removing an element from the end of vector

I accessing an element by its index

All other operations can be performed in linear time.

2 / 9



Operations on vector

Let’s define operations we need for this data structure.
O(1) operations

I inserting an element to the end of vector

I removing an element from the end of vector

I accessing an element by its index

All other operations can be performed in linear time.

2 / 9



Organizing vector in memory

All elements are stored in some array.

I 0-th element of vector corresponds to 0-th element of array

I 1-st element of vector corresponds to 1-st element of array

I etc.

3 / 9



Organizing vector in memory

All elements are stored in some array.

I 0-th element of vector corresponds to 0-th element of array

I 1-st element of vector corresponds to 1-st element of array

I etc.

3 / 9



Organizing vector in memory

All elements are stored in some array.

I 0-th element of vector corresponds to 0-th element of array

I 1-st element of vector corresponds to 1-st element of array

I etc.

3 / 9



Extra space

Array length will be always equal to some power of 2.

I we will have some space reserved for new elements.

Example

I vector of 3 elements

3 6 2
I vector of 5 elements

3 6 2 5 8

4 / 9



Extra space

Array length will be always equal to some power of 2.

I we will have some space reserved for new elements.

Example

I vector of 3 elements

3 6 2
I vector of 5 elements

3 6 2 5 8

4 / 9



Extra space

Array length will be always equal to some power of 2.

I we will have some space reserved for new elements.

Example

I vector of 3 elements

3 6 2

I vector of 5 elements

3 6 2 5 8

4 / 9



Extra space

Array length will be always equal to some power of 2.

I we will have some space reserved for new elements.

Example

I vector of 3 elements

3 6 2
I vector of 5 elements

3 6 2 5 8

4 / 9



Inserting elements

Almost always inserting an element is very simple.

3 6 2 3 6 2 5

Special case: vector size is equal to array size.
Let’s allocate array of doubled size, copy all elements and insert new element.

3 6 2 5 3 6 2 5 8

5 / 9



Inserting elements

Almost always inserting an element is very simple.

3 6 2 3 6 2 5
Special case: vector size is equal to array size.

Let’s allocate array of doubled size, copy all elements and insert new element.

3 6 2 5 3 6 2 5 8

5 / 9



Inserting elements

Almost always inserting an element is very simple.

3 6 2 3 6 2 5
Special case: vector size is equal to array size.
Let’s allocate array of doubled size, copy all elements and insert new element.

3 6 2 5 3 6 2 5 8

5 / 9



Complexity analysis

Let’s analyze complexity of insert and access operations.

I accessing an element always takes O(1) operations
I just accessing corresponding element of array

I removing an element always takes O(1) operations
I just decreasing current size of vector

I inserting an element almost always takes O(1) operations
I just increasing size of vector and assigning value to corresponding element of array
I except cases when size of vector is equal to size of array
I we’ll call such operations long insert operations

6 / 9



Complexity analysis

Let’s analyze complexity of insert and access operations.
I accessing an element always takes O(1) operations

I just accessing corresponding element of array

I removing an element always takes O(1) operations
I just decreasing current size of vector

I inserting an element almost always takes O(1) operations
I just increasing size of vector and assigning value to corresponding element of array
I except cases when size of vector is equal to size of array
I we’ll call such operations long insert operations

6 / 9



Complexity analysis

Let’s analyze complexity of insert and access operations.
I accessing an element always takes O(1) operations

I just accessing corresponding element of array

I removing an element always takes O(1) operations
I just decreasing current size of vector

I inserting an element almost always takes O(1) operations
I just increasing size of vector and assigning value to corresponding element of array
I except cases when size of vector is equal to size of array
I we’ll call such operations long insert operations

6 / 9



Complexity analysis

Let’s analyze complexity of insert and access operations.
I accessing an element always takes O(1) operations

I just accessing corresponding element of array

I removing an element always takes O(1) operations
I just decreasing current size of vector

I inserting an element almost always takes O(1) operations
I just increasing size of vector and assigning value to corresponding element of array

I except cases when size of vector is equal to size of array
I we’ll call such operations long insert operations

6 / 9



Complexity analysis

Let’s analyze complexity of insert and access operations.
I accessing an element always takes O(1) operations

I just accessing corresponding element of array

I removing an element always takes O(1) operations
I just decreasing current size of vector

I inserting an element almost always takes O(1) operations
I just increasing size of vector and assigning value to corresponding element of array
I except cases when size of vector is equal to size of array

I we’ll call such operations long insert operations

6 / 9



Complexity analysis

Let’s analyze complexity of insert and access operations.
I accessing an element always takes O(1) operations

I just accessing corresponding element of array

I removing an element always takes O(1) operations
I just decreasing current size of vector

I inserting an element almost always takes O(1) operations
I just increasing size of vector and assigning value to corresponding element of array
I except cases when size of vector is equal to size of array
I we’ll call such operations long insert operations

6 / 9



Complexity analysis

Let’s say we performed k insert operations.

I we performed some long insert operations
I for sizes of vector 1, 2, . . . , 2blog2kc

I each long insert takes O(n) operations, where n is current size of vector

I total time of these insert operations is
O(1 + 2 + . . . + 2blog2kc) = O(2 × 2blog2kc) = O(k)

I that means that amortized complexity of every insert operation is O(1)

7 / 9



Complexity analysis

Let’s say we performed k insert operations.
I we performed some long insert operations

I for sizes of vector 1, 2, . . . , 2blog2kc

I each long insert takes O(n) operations, where n is current size of vector

I total time of these insert operations is
O(1 + 2 + . . . + 2blog2kc) = O(2 × 2blog2kc) = O(k)

I that means that amortized complexity of every insert operation is O(1)

7 / 9



Complexity analysis

Let’s say we performed k insert operations.
I we performed some long insert operations

I for sizes of vector 1, 2, . . . , 2blog2kc

I each long insert takes O(n) operations, where n is current size of vector

I total time of these insert operations is
O(1 + 2 + . . . + 2blog2kc) = O(2 × 2blog2kc) = O(k)

I that means that amortized complexity of every insert operation is O(1)

7 / 9



Complexity analysis

Let’s say we performed k insert operations.
I we performed some long insert operations

I for sizes of vector 1, 2, . . . , 2blog2kc

I each long insert takes O(n) operations, where n is current size of vector

I total time of these insert operations is
O(1 + 2 + . . . + 2blog2kc) = O(2 × 2blog2kc) = O(k)

I that means that amortized complexity of every insert operation is O(1)

7 / 9



Complexity analysis

Let’s say we performed k insert operations.
I we performed some long insert operations

I for sizes of vector 1, 2, . . . , 2blog2kc

I each long insert takes O(n) operations, where n is current size of vector

I total time of these insert operations is
O(1 + 2 + . . . + 2blog2kc) = O(2 × 2blog2kc) = O(k)

I that means that amortized complexity of every insert operation is O(1)

7 / 9



Removing elements

We have a lot of unused allocated memory in case we did a lot of removes.

I let’s decrease size of array if we have less then 1
3 of elements in use

I it can be proved that even in this case amortized complexity of all operations is
O(1)

8 / 9



Removing elements

We have a lot of unused allocated memory in case we did a lot of removes.

I let’s decrease size of array if we have less then 1
3 of elements in use

I it can be proved that even in this case amortized complexity of all operations is
O(1)

8 / 9



Removing elements

We have a lot of unused allocated memory in case we did a lot of removes.

I let’s decrease size of array if we have less then 1
3 of elements in use

I it can be proved that even in this case amortized complexity of all operations is
O(1)

8 / 9



Thank you
for your attention!

9 / 9


