
Chapter 8

Introduction to linear
regression

Linear regression is a very powerful statistical technique. Many people have some familiarity
with regression just from reading the news, where graphs with straight lines are overlaid
on scatterplots. Linear models can be used for prediction or to evaluate whether there is a
linear relationship between two numerical variables.

Figure 8.1 shows two variables whose relationship can be modeled perfectly with a
straight line. The equation for the line is

y = 5 + 57.49x

Imagine what a perfect linear relationship would mean: you would know the exact value
of y just by knowing the value of x. This is unrealistic in almost any natural process. For
example, if we took family income x, this value would provide some useful information
about how much financial support y a college may offer a prospective student. However,
there would still be variability in financial support, even when comparing students whose
families have similar financial backgrounds.

Linear regression assumes that the relationship between two variables, x and y, can
be modeled by a straight line:

y = β0 + β1x (8.1)

where β0 and β1 represent two model parameters (β is the Greek letter beta). (This use

β0, β1

Linear model
parameters

of β has nothing to do with the β we used to describe the probability of a Type II error.)
These parameters are estimated using data, and we write their point estimates as b0 and
b1. When we use x to predict y, we usually call x the explanatory or predictor variable,
and we call y the response.

It is rare for all of the data to fall on a straight line, as seen in the three scatterplots in
Figure 8.2. In each case, the data fall around a straight line, even if none of the observations
fall exactly on the line. The first plot shows a relatively strong downward linear trend, where
the remaining variability in the data around the line is minor relative to the strength of
the relationship between x and y. The second plot shows an upward trend that, while
evident, is not as strong as the first. The last plot shows a very weak downward trend in
the data, so slight we can hardly notice it. In each of these examples, we will have some
uncertainty regarding our estimates of the model parameters, β0 and β1. For instance, we
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Figure 8.1: Requests from twelve separate buyers were simultaneously
placed with a trading company to purchase Target Corporation stock (ticker
TGT, April 26th, 2012), and the total cost of the shares were reported. Be-
cause the cost is computed using a linear formula, the linear fit is perfect.
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Figure 8.2: Three data sets where a linear model may be useful even though
the data do not all fall exactly on the line.

might wonder, should we move the line up or down a little, or should we tilt it more or less?
As we move forward in this chapter, we will learn different criteria for line-fitting, and we
will also learn about the uncertainty associated with estimates of model parameters.
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Figure 8.3: A linear model is not useful in this nonlinear case. These data
are from an introductory physics experiment.

We will also see examples in this chapter where fitting a straight line to the data, even
if there is a clear relationship between the variables, is not helpful. One such case is shown
in Figure 8.3 where there is a very strong relationship between the variables even though
the trend is not linear. We will discuss nonlinear trends in this chapter and the next, but
the details of fitting nonlinear models are saved for a later course.

8.1 Line fitting, residuals, and correlation

It is helpful to think deeply about the line fitting process. In this section, we examine
criteria for identifying a linear model and introduce a new statistic, correlation.

8.1.1 Beginning with straight lines

Scatterplots were introduced in Chapter 1 as a graphical technique to present two numerical
variables simultaneously. Such plots permit the relationship between the variables to be
examined with ease. Figure 8.4 shows a scatterplot for the head length and total length
of 104 brushtail possums from Australia. Each point represents a single possum from the
data.

The head and total length variables are associated. Possums with an above average
total length also tend to have above average head lengths. While the relationship is not per-
fectly linear, it could be helpful to partially explain the connection between these variables
with a straight line.

Straight lines should only be used when the data appear to have a linear relationship,
such as the case shown in the left panel of Figure 8.6. The right panel of Figure 8.6 shows
a case where a curved line would be more useful in understanding the relationship between
the two variables.

Caution: Watch out for curved trends
We only consider models based on straight lines in this chapter. If data show a
nonlinear trend, like that in the right panel of Figure 8.6, more advanced techniques
should be used.
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Figure 8.4: A scatterplot showing head length against total length for 104
brushtail possums. A point representing a possum with head length 94.1mm
and total length 89cm is highlighted.

Figure 8.5: The common brushtail possum of Australia.
—————————–
Photo by wollombi on Flickr: www.flickr.com/photos/wollombi/58499575
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Figure 8.6: The figure on the left shows head length versus total length, and
reveals that many of the points could be captured by a straight band. On
the right, we see that a curved band is more appropriate in the scatterplot
for weight and mpgCity from the cars data set.

8.1.2 Fitting a line by eye

We want to describe the relationship between the head length and total length variables
in the possum data set using a line. In this example, we will use the total length as
the predictor variable, x, to predict a possum’s head length, y. We could fit the linear
relationship by eye, as in Figure 8.7. The equation for this line is

ŷ = 41 + 0.59x (8.2)

We can use this line to discuss properties of possums. For instance, the equation predicts
a possum with a total length of 80 cm will have a head length of

ŷ = 41 + 0.59× 80

= 88.2

A “hat” on y is used to signify that this is an estimate. This estimate may be viewed as
an average: the equation predicts that possums with a total length of 80 cm will have an
average head length of 88.2 mm. Absent further information about an 80 cm possum, the
prediction for head length that uses the average is a reasonable estimate.

8.1.3 Residuals

Residuals are the leftover variation in the data after accounting for the model fit:

Data = Fit + Residual

Each observation will have a residual. If an observation is above the regression line, then
its residual, the vertical distance from the observation to the line, is positive. Observations
below the line have negative residuals. One goal in picking the right linear model is for
these residuals to be as small as possible.
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Figure 8.7: A reasonable linear model was fit to represent the relationship
between head length and total length.

Three observations are noted specially in Figure 8.7. The observation marked by an
“×” has a small, negative residual of about -1; the observation marked by “+” has a large
residual of about +7; and the observation marked by “4” has a moderate residual of about
-4. The size of a residual is usually discussed in terms of its absolute value. For example,
the residual for “4” is larger than that of “×” because | − 4| is larger than | − 1|.

Residual: difference between observed and expected
The residual of the ith observation (xi, yi) is the difference of the observed response
(yi) and the response we would predict based on the model fit (ŷi):

residuali = yi − ŷi

We typically identify ŷi by plugging xi into the model.

 Example 8.3 The linear fit shown in Figure 8.7 is given as ŷ = 41 + 0.59x. Based
on this line, formally compute the residual of the observation (77.0, 85.3). This obser-
vation is denoted by “×” on the plot. Check it against the earlier visual estimate, -1.

We first compute the predicted value of point “×” based on the model:

ŷ× = 41 + 0.59x× = 41 + 0.59× 77.0 = 86.4

Next we compute the difference of the actual head length and the predicted head
length:

residual× = y× − ŷ× = 85.3− 86.4 = −1.1

This is very close to the visual estimate of -1.
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330 CHAPTER 8. INTRODUCTION TO LINEAR REGRESSION

⊙
Guided Practice 8.4 If a model underestimates an observation, will the residual
be positive or negative? What about if it overestimates the observation?1

⊙
Guided Practice 8.5 Compute the residuals for the observations (85.0, 98.6) (“+”
in the figure) and (95.5, 94.0) (“4”) using the linear relationship ŷ = 41 + 0.59x. 2

Residuals are helpful in evaluating how well a linear model fits a data set. We often
display them in a residual plot such as the one shown in Figure 8.8 for the regression line
in Figure 8.7. The residuals are plotted at their original horizontal locations but with the
vertical coordinate as the residual. For instance, the point (85.0, 98.6)+ had a residual of
7.45, so in the residual plot it is placed at (85.0, 7.45). Creating a residual plot is sort of
like tipping the scatterplot over so the regression line is horizontal.

From the residual plot, we can better estimate the standard deviation of the
residuals, often denoted by the letter s. The standard deviation of the residuals tells us
the average size of the residuals. As such, it is a measure of the average deviation between
the y values and the regression line. In other words, it tells us the average prediction error
using the linear model.

 Example 8.6 Estimate the standard deviation of the residuals for predicting head
length from total length using the regression line. Also, interpret the quantity in
context.

To estimate this graphically, we use the residual plot. The approximate 68, 95 rule
for standard deviations applies. Approximately 2/3 of the points are within ± 2.5
and approximately 95% of the points are within ± 5, so 2.5 is a good estimate for
the standard deviation of the residuals. On average, the prediction of head length is
off by about 2.5 cm.

Standard deviation of the residuals
The standard deviation of the residuals, often denoted by the letter s, tells us the
average error in the predictions using the regression model. It can be estimated
from a residual plot.

1If a model underestimates an observation, then the model estimate is below the actual. The residual,
which is the actual observation value minus the model estimate, must then be positive. The opposite is
true when the model overestimates the observation: the residual is negative.

2(+) First compute the predicted value based on the model:

ŷ+ = 41 + 0.59x+ = 41 + 0.59× 85.0 = 91.15

Then the residual is given by

residual+ = y+ − ŷ+ = 98.6− 91.15 = 7.45

This was close to the earlier estimate of 7.
(4) ŷ4 = 41 + 0.59x4 = 97.3. residual4 = y4 − ŷ4 = −3.3, close to the estimate of -4.
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Figure 8.8: Residual plot for the model in Figure 8.7.

 Example 8.7 One purpose of residual plots is to identify characteristics or patterns
still apparent in data after fitting a model. Figure 8.9 shows three scatterplots with
linear models in the first row and residual plots in the second row. Can you identify
any patterns remaining in the residuals?

In the first data set (first column), the residuals show no obvious patterns. The
residuals appear to be scattered randomly around the dashed line that represents 0.

The second data set shows a pattern in the residuals. There is some curvature in the
scatterplot, which is more obvious in the residual plot. We should not use a straight
line to model these data. Instead, a more advanced technique should be used.

The last plot shows very little upwards trend, and the residuals also show no obvious
patterns. It is reasonable to try to fit a linear model to the data. However, it is
unclear whether there is statistically significant evidence that the slope parameter is
different from zero. The point estimate of the slope parameter, labeled b1, is not zero,
but we might wonder if this could just be due to chance. We will address this sort of
scenario in Section 8.4.
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334 CHAPTER 8. INTRODUCTION TO LINEAR REGRESSION

8.2 Fitting a line by least squares regression

Fitting linear models by eye is open to criticism since it is based on an individual preference.
In this section, we use least squares regression as a more rigorous approach.

This section considers family income and gift aid data from a random sample of fifty
students in the 2011 freshman class of Elmhurst College in Illinois.5 Gift aid is financial
aid that does not need to be paid back, as opposed to a loan. A scatterplot of the data
is shown in Figure 8.12 along with two linear fits. The lines follow a negative trend in
the data; students who have higher family incomes tended to have lower gift aid from the
university.⊙

Guided Practice 8.10 Is the correlation positive or negative in Figure 8.12?6

8.2.1 An objective measure for finding the best line

We begin by thinking about what we mean by “best”. Mathematically, we want a line
that has small residuals. Perhaps our criterion could minimize the sum of the residual
magnitudes:

|y1 − ŷ1|+ |y2 − ŷ2|+ · · ·+ |yn − ŷn| (8.11)

which we could accomplish with a computer program. The resulting dashed line shown
in Figure 8.12 demonstrates this fit can be quite reasonable. However, a more common

5These data were sampled from a table of data for all freshman from the 2011 class at Elmhurst
College that accompanied an article titled What Students Really Pay to Go to College published online by
The Chronicle of Higher Education: chronicle.com/article/What-Students-Really-Pay-to-Go/131435

6Larger family incomes are associated with lower amounts of aid, so the correlation will be negative.
Using a computer, the correlation can be computed: -0.499.

practice is to choose the line that minimizes the sum of the squared residuals:

(y1 − ŷ1)2 + (y2 − ŷ2)2 + · · ·+ (yn − ŷn)2 (8.12)

The line that minimizes this least squares criterion is represented as the solid line in
Figure 8.12. This is commonly called the least squares line. The following are three
possible reasons to choose Criterion (8.12) over Criterion (8.11):

1. It is the most commonly used method.

2. Computing the line based on Criterion (8.12) is much easier by hand and in most
statistical software.

3. In many applications, a residual twice as large as another residual is more than twice
as bad. For example, being off by 4 is usually more than twice as bad as being off by
2. Squaring the residuals accounts for this discrepancy.

The first two reasons are largely for tradition and convenience; the last reason explains why
Criterion (8.12) is typically most helpful.7
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8.2.2 Conditions for the least squares line

When fitting a least squares line, we generally require

Linearity. The data should show a linear trend. If there is a nonlinear trend (e.g. left
panel of Figure 8.13), an advanced regression method from another book or later
course should be applied.

Nearly normal residuals. Generally the residuals must be nearly normal. When this
condition is found to be unreasonable, it is usually because of outliers or concerns
about influential points, which we will discuss in greater depth in Section 8.3. An
example of non-normal residuals is shown in the second panel of Figure 8.13.

Constant variability. The variability of points around the least squares line remains
roughly constant. An example of non-constant variability is shown in the third panel
of Figure 8.13.

These conditions are best checked using a residual plot. If a residual plot has no
pattern, such as a U-shape or the presence of outliers or non-constant variability in the
residuals, then the conditions above may be considered to be satisfied.

TIP: Use a residual plot to determine if a linear model is appropriate
When a residual plot appears as a random cloud of points, a linear model is generally
appropriate. If a residual plot has any type of pattern, a linear model is not
appropriate.

Be cautious about applying regression to data collected sequentially in what is called
a time series. Such data may have an underlying structure that should be considered in
a model and analysis.

7There are applications where Criterion (8.11) may be more useful, and there are plenty of other criteria
we might consider. However, this book only applies the least squares criterion.
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Figure 8.13: Four examples showing when the methods in this chapter are
insufficient to apply to the data. In the left panel, a straight line does not
fit the data. In the second panel, there are outliers; two points on the left
are relatively distant from the rest of the data, and one of these points
is very far away from the line. In the third panel, the variability of the
data around the line increases with larger values of x. In the last panel,
a time series data set is shown, where successive observations are highly
correlated.

⊙
Guided Practice 8.13 Should we have concerns about applying least squares
regression to the Elmhurst data in Figure 8.12?8

8.2.3 Finding the least squares line

For the Elmhurst data, we could write the equation of the least squares regression line as

âid = β0 + β1 × family income

Here the equation is set up to predict gift aid based on a student’s family income, which
would be useful to students considering Elmhurst. These two values, β0 and β1, are the
parameters of the regression line.

As in Chapters 4-6, the parameters are estimated using observed data. In practice,
this estimation is done using a computer in the same way that other estimates, like a
sample mean, can be estimated using a computer or calculator. However, we can also find
the parameter estimates by applying two properties of the least squares line:

• The slope of the least squares line can be estimated by

b1 = r
sy
sx

(8.14)

where r is the correlation between the two variables, and sx and sy are the sample
standard deviations of the explanatory variable and response, respectively.

• If x̄ is the mean of the horizontal variable (from the data) and ȳ is the mean of the
vertical variable, then the point (x̄, ȳ) is on the least squares line. Plugging this point
in for x and y in the least squares equation and solving for b0 gives

ȳ = b0 + b1x̄ b0 = ȳ − b1x̄ (8.15)

8The trend appears to be linear, the data fall around the line with no obvious outliers, the variance is
roughly constant. These are also not time series observations. Least squares regression can be applied to
these data.
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8.2. FITTING A LINE BY LEAST SQUARES REGRESSION 337

When solving for the y-intercept, first find the slope, b1, and plug the slope and the
point (x̄, ȳ) into the least squares equation.

b0, b1
Sample
estimates
of β0, β1

We use b0 and b1 to represent the point estimates of the parameters β0 and β1.

⊙
Guided Practice 8.16 Table 8.14 shows the sample means for the family income
and gift aid as $101,800 and $19,940, respectively. Plot the point (101.8, 19.94) on
Figure 8.12 on page 334 to verify it falls on the least squares line (the solid line).9

family income, in $1000s (“x”) gift aid, in $1000s (“y”)

mean x̄ = 101.8 ȳ = 19.94
sd sx = 63.2 sy = 5.46

r = −0.499

Table 8.14: Summary statistics for family income and gift aid.

⊙
Guided Practice 8.17 Using the summary statistics in Table 8.14, compute the
slope and y-intercept for the regression line of gift aid against family income. Write
the equation of the regression line.10

We mentioned earlier that a computer is usually used to compute the least squares
line. A summary table based on computer output is shown in Table 8.15 for the Elmhurst
data. The first column of numbers provides estimates for b0 and b1, respectively. Compare
these to the result from Guided Practice 8.17.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 24.3193 1.2915 18.83 0.0000
family income -0.0431 0.0108 -3.98 0.0002

Table 8.15: Summary of least squares fit for the Elmhurst data. Com-
pare the parameter estimates in the first column to the results of Guided
Practice 8.17.

9If you need help finding this location, draw a straight line up from the x-value of 100 (or thereabout).
Then draw a horizontal line at 20 (or thereabout). These lines should intersect on the least squares line.

10Apply Equations (8.14) and (8.15) with the summary statistics from Table 8.14 to compute the slope
and y-intercept:

b1 = r
sy

sx
= (−0.499)

5.46

63.2
= −0.0431

b0 = ȳ − b1x̄ = 19.94− (−0.0431)(101.8) = 24.3

ŷ = 24.3− 0.0431x or âid = 24.3− 0.0431family income
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 Example 8.18 Examine the second, third, and fourth columns in Table 8.15. Can
you guess what they represent?

We’ll describe the meaning of the columns using the second row, which corresponds
to β1. The first column provides the point estimate for β1, as we calculated in
an earlier example: -0.0431. The second column is a standard error for this point
estimate: 0.0108. The third column is a t test statistic for the null hypothesis that
β1 = 0: T = −3.98. The last column is the p-value for the t test statistic for the null
hypothesis β1 = 0 and a two-sided alternative hypothesis: 0.0002. We will get into
more of these details in Section 8.4.

 Example 8.19 Suppose a high school senior is considering Elmhurst College. Can
she simply use the linear equation that we have estimated to calculate her financial
aid from the university?

She may use it as an estimate, though some qualifiers on this approach are important.
First, the data all come from one freshman class, and the way aid is determined by
the university may change from year to year. Second, the equation will provide an
imperfect estimate. While the linear equation is good at capturing the trend in the
data, no individual student’s aid will be perfectly predicted.

8.2.4 Interpreting regression line parameter estimates

Interpreting parameters in a regression model is often one of the most important steps in
the analysis.

 Example 8.20 The slope and intercept estimates for the Elmhurst data are -0.0431
and 24.3. What do these numbers really mean?

Interpreting the slope parameter is helpful in almost any application. For each addi-
tional $1,000 of family income, we would expect a student to receive a net difference
of $1,000 × (−0.0431) = −$43.10 in aid on average, i.e. $43.10 less. Note that a
higher family income corresponds to less aid because the coefficient of family income
is negative in the model. We must be cautious in this interpretation: while there
is a real association, we cannot interpret a causal connection between the variables
because these data are observational. That is, increasing a student’s family income
may not cause the student’s aid to drop. (It would be reasonable to contact the
college and ask if the relationship is causal, i.e. if Elmhurst College’s aid decisions
are partially based on students’ family income.)

The estimated intercept b0 = 24.3 (in $1000s) describes the average aid if a student’s
family had no income. The meaning of the intercept is relevant to this application
since the family income for some students at Elmhurst is $0. In other applications,
the intercept may have little or no practical value if there are no observations where
x is near zero.
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Interpreting parameters in a linear model

• The slope, b1, describes the estimated difference in the y variable if the
explanatory variable x for a case happened to be one unit larger.

• The y-intercept, b0, describes the average or predicted outcome of y if x = 0.
The linear model must be valid all the way to x = 0 for this to make sense,
which in many applications is not the case.

8.2.5 Extrapolation is treacherous

When those blizzards hit the East Coast this winter, it proved to my satisfaction that global warming

was a fraud. That snow was freezing cold. But in an alarming trend, temperatures this spring have

risen. Consider this: On February 6th it was 10 degrees. Today it hit almost 80. At this rate, by

August it will be 220 degrees. So clearly folks the climate debate rages on.

Stephen Colbert
April 6th, 2010 11

Linear models can be used to approximate the relationship between two variables.
However, these models have real limitations. Linear regression is simply a modeling frame-
work. The truth is almost always much more complex than our simple line. For example,
we do not know how the data outside of our limited window will behave.

 Example 8.21 Use the model âid = 24.3 − 0.0431 × family income to estimate
the aid of another freshman student whose family had income of $1 million.

Recall that the units of family income are in $1000s, so we want to calculate the aid
for family income = 1000:

âid = 24.3− 0.0431× family income

âid = 24.3− 0.431(1000) = −18.8

The model predicts this student will have -$18,800 in aid (!). Elmhurst College cannot
(or at least does not) require any students to pay extra on top of tuition to attend.

Applying a model estimate to values outside of the realm of the original data is called
extrapolation. Generally, a linear model is only an approximation of the real relation-
ship between two variables. If we extrapolate, we are making an unreliable bet that the
approximate linear relationship will be valid in places where it has not been analyzed.

8.2.6 Using R2 to describe the strength of a fit

We evaluated the strength of the linear relationship between two variables earlier using the
correlation coefficient, r. However, it is more common to explain the strength of a linear fit
using R2, called R-squared or the explained variance. If provided with a linear model,
we might like to describe how closely the data cluster around the linear fit.

The R2 of a linear model describes the amount of variation in the response that is
explained by the least squares line. For example, consider the Elmhurst data, shown in

11http://www.colbertnation.com/the-colbert-report-videos/269929/
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Figure 8.16: Gift aid and family income for a random sample of 50 freshman
students from Elmhurst College, shown with the least squares regression
line.

Figure 8.16. The variance of the response variable, aid received, is s2
aid = 29.8. However,

if we apply our least squares line, then this model reduces our uncertainty in predicting
aid using a student’s family income. The variability in the residuals describes how much
variation remains after using the model: s2

RES
= 22.4. In short, there was a reduction of

s2
aid − s2

RES

s2
aid

=
29.8− 22.4

29.8
=

7.5

29.8
= 0.25

This is how we compute the R2 value.12 It also corresponds to the square of the correlation
coefficient, r, that is, R2 = r2.

R2 = 0.25 r = −0.499

R2 is the explained variance
R2 is always between 0 and 1, inclusive. It tells us the proportion of variation in
the y values that is explained by a regression model. The higher the value of R2,
the better the model “explains” the reponse variable.

⊙
Guided Practice 8.22 If a linear model has a very strong negative relationship
with a correlation of -0.97, how much of the variation in the response is explained by
the explanatory variable?13

⊙
Guided Practice 8.23 If a linear model has an R2 or explained variance of 0.94,
what is the correlation coefficient?14

12R2 = 1− s2RES
s2y

13About R2 = (−0.97)2 = 0.94 or 94% of the variation in aid is explained by the linear model.
14We take the square root of R2 and get 0.97, but we must be careful, because r could be 0.97 or -0.97.

Without knowing the slope or seeing the scatterplot, we have no way of knowing if r is positive or negative.
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8.3 Types of outliers in linear regression

In this section, we identify criteria for determining which outliers are important and influ-
ential.

Outliers in regression are observations that fall far from the “cloud” of points. These
points are especially important because they can have a strong influence on the least squares
line.

 Example 8.26 There are six plots shown in Figure 8.19 along with the least squares
line and residual plots. For each scatterplot and residual plot pair, identify any
obvious outliers and note how they influence the least squares line. Recall that an
outlier is any point that doesn’t appear to belong with the vast majority of the other
points.

(1) There is one outlier far from the other points, though it only appears to slightly
influence the line.

(2) There is one outlier on the right, though it is quite close to the least squares
line, which suggests it wasn’t very influential.

(3) There is one point far away from the cloud, and this outlier appears to pull the
least squares line up on the right; examine how the line around the primary
cloud doesn’t appear to fit very well.

(4) There is a primary cloud and then a small secondary cloud of four outliers. The
secondary cloud appears to be influencing the line somewhat strongly, making
the least square line fit poorly almost everywhere. There might be an interesting
explanation for the dual clouds, which is something that could be investigated.

(5) There is no obvious trend in the main cloud of points and the outlier on the
right appears to largely control the slope of the least squares line.

(6) There is one outlier far from the cloud, however, it falls quite close to the least
squares line and does not appear to be very influential.

Examine the residual plots in Figure 8.19. You will probably find that there is some
trend in the main clouds of (3) and (4). In these cases, the outliers influenced the slope of
the least squares lines. In (5), data with no clear trend were assigned a line with a large
trend simply due to one outlier (!).

Leverage
Points that fall horizontally away from the center of the cloud tend to pull harder
on the line, so we call them points with high leverage.

Points that fall horizontally far from the line are points of high leverage; these points
can strongly influence the slope of the least squares line. If one of these high leverage
points does appear to actually invoke its influence on the slope of the line – as in cases (3),
(4), and (5) of Example 8.26 – then we call it an influential point. Usually we can say
a point is influential if, had we fitted the line without it, the influential point would have
been unusually far from the least squares line.

It is tempting to remove outliers. Don’t do this without a very good reason. Models
that ignore exceptional (and interesting) cases often perform poorly. For instance, if a
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(1) (2) (3)

(4) (5) (6)

Figure 8.19: Six plots, each with a least squares line and residual plot. All
data sets have at least one outlier.
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financial firm ignored the largest market swings – the “outliers” – they would soon go
bankrupt by making poorly thought-out investments.

Caution: Don’t ignore outliers when fitting a final model
If there are outliers in the data, they should not be removed or ignored without
a good reason. Whatever final model is fit to the data would not be very helpful if
it ignores the most exceptional cases.

Caution: Outliers for a categorical predictor with two levels
Be cautious about using a categorical predictor when one of the levels has very few
observations. When this happens, those few observations become influential points.
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8 Introduction to linear regression

8.1 (a) The residual plot will show randomly
distributed residuals around 0. The variance is
also approximately constant. (b) The residuals
will show a fan shape, with higher variability for
smaller x. There will also be many points on the
right above the line. There is trouble with the
model being fit here.

8.3 (a) Strong relationship, but a straight line
would not fit the data. (b) Strong relationship,
and a linear fit would be reasonable. (c) Weak
relationship, and trying a linear fit would be
reasonable. (d) Moderate relationship, but a
straight line would not fit the data. (e) Strong
relationship, and a linear fit would be reason-
able. (f) Weak relationship, and trying a linear
fit would be reasonable.

8.5 (a) Exam 2 since there is less of a scatter in
the plot of final exam grade versus exam 2. No-
tice that the relationship between Exam 1 and
the Final Exam appears to be slightly nonlinear.
(b) Exam 2 and the final are relatively close to
each other chronologically, or Exam 2 may be
cumulative so has greater similarities in mate-
rial to the final exam. Answers may vary for
part (b).

8.7 (a) R = −0.7 → (4). (b) R = 0.45 → (3).
(c) R = 0.06 → (1). (d) R = 0.92 → (2).

8.9 (a) The relationship is positive, weak, and
possibly linear. However, there do appear to
be some anomalous observations along the left
where several students have the same height
that is notably far from the cloud of the other
points. Additionally, there are many students
who appear not to have driven a car, and they
are represented by a set of points along the bot-
tom of the scatterplot. (b) There is no obvious
explanation why simply being tall should lead a
person to drive faster. However, one confound-
ing factor is gender. Males tend to be taller
than females on average, and personal experi-
ences (anecdotal) may suggest they drive faster.
If we were to follow-up on this suspicion, we
would find that sociological studies confirm this
suspicion. (c) Males are taller on average and

they drive faster. The gender variable is indeed
an important confounding variable.

8.11 (a) There is a somewhat weak, positive,
possibly linear relationship between the distance
traveled and travel time. There is clustering
near the lower left corner that we should take
special note of. (b) Changing the units will not
change the form, direction or strength of the re-
lationship between the two variables. If longer
distances measured in miles are associated with
longer travel time measured in minutes, longer
distances measured in kilometers will be associ-
ated with longer travel time measured in hours.
(c) Changing units doesn’t affect correlation:
R = 0.636.

8.13 (a) There is a moderate, positive, and
linear relationship between shoulder girth and
height. (b) Changing the units, even if just for
one of the variables, will not change the form,
direction or strength of the relationship between
the two variables.

8.15 In each part, we may write the husband
ages as a linear function of the wife ages: (a)
ageH = ageW + 3; (b) ageH = ageW − 2; and
(c) ageH = 2×ageW . Therefore, the correlation
will be exactly 1 in all three parts. An alterna-
tive way to gain insight into this solution is to
create a mock data set, such as a data set of
5 women with ages 26, 27, 28, 29, and 30 (or
some other set of ages). Then, based on the de-
scription, say for part (a), we can compute their
husbands’ ages as 29, 30, 31, 32, and 33. We can
plot these points to see they fall on a straight
line, and they always will. The same approach
can be applied to the other parts as well.

8.17 (a) There is a positive, very strong, linear
association between the number of tourists and
spending. (b) Explanatory: number of tourists
(in thousands). Response: spending (in millions
of US dollars). (c) We can predict spending for a
given number of tourists using a regression line.
This may be useful information for determin-
ing how much the country may want to spend
in advertising abroad, or to forecast expected
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revenues from tourism. (d) Even though the re-
lationship appears linear in the scatterplot, the
residual plot actually shows a nonlinear relation-
ship. This is not a contradiction: residual plots
can show divergences from linearity that can be
difficult to see in a scatterplot. A simple linear
model is inadequate for modeling these data. It
is also important to consider that these data are
observed sequentially, which means there may
be a hidden structure that it is not evident in
the current data but that is important to con-
sider.

8.19 (a) First calculate the slope: b1 = R ×
sy/sx = 0.636 × 113/99 = 0.726. Next, make
use of the fact that the regression line passes
through the point (x̄, ȳ): ȳ = b0 + b1 × x̄. Plug
in x̄, ȳ, and b1, and solve for b0: 51. Solution:̂travel time = 51 + 0.726 × distance. (b) b1:
For each additional mile in distance, the model
predicts an additional 0.726 minutes in travel
time. b0: When the distance traveled is 0 miles,
the travel time is expected to be 51 minutes. It
does not make sense to have a travel distance
of 0 miles in this context. Here, the y-intercept
serves only to adjust the height of the line and
is meaningless by itself. (c) R2 = 0.6362 = 0.40.
About 40% of the variability in travel time is
accounted for by the model, i.e. explained by
the distance traveled. (d) ̂travel time = 51 +
0.726 × distance = 51 + 0.726 × 103 ≈ 126
minutes. (Note: we should be cautious in our
predictions with this model since we have not
yet evaluated whether it is a well-fit model.)
(e) ei = yi − ŷi = 168 − 126 = 42 minutes. A
positive residual means that the model underes-
timates the travel time. (f) No, this calculation
would require extrapolation.

8.21 (a)
√
R2 = 0.849. Since the trend is

negative, R is also negative: R = −0.849.
(b) b0 = 55.34. b1 = −0.537. (c) For a neigh-
borhood with 0% reduced-fee lunch, we would
expect 55.34% of the bike riders to wear hel-
mets. (d) For every additional percentage point
of reduced fee lunches in a neighborhood, we
would expect 0.537% fewer kids to be wearing
helmets. (e) ŷ = 40× (−0.537) + 55.34 = 33.86,
e = 40 − ŷ = 6.14. There are 6.14% more bike
riders wearing helmets than predicted by the re-
gression model in this neighborhood.

8.23 (a) The outlier is in the upper-left corner.
Since it is horizontally far from the center of the
data, it is a point with high leverage. Since the
slope of the regression line would be very differ-

ent if fit without this point, it is also an influen-
tial point. (b) The outlier is located in the lower-
left corner. It is horizontally far from the rest
of the data, so it is a high-leverage point. The
line again would look notably different if the fit
excluded this point, meaning it the outlier is in-
fluential. (c) The outlier is in the upper-middle
of the plot. Since it is near the horizontal center
of the data, it is not a high-leverage point. This
means it also will have little or no influence on
the slope of the regression line.

8.25 (a) There is a negative, moderate-to-
strong, somewhat linear relationship between
percent of families who own their home and the
percent of the population living in urban areas
in 2010. There is one outlier: a state where
100% of the population is urban. The variability
in the percent of homeownership also increases
as we move from left to right in the plot. (b) The
outlier is located in the bottom right corner, hor-
izontally far from the center of the other points,
so it is a point with high leverage. It is an influ-
ential point since excluding this point from the
analysis would greatly affect the slope of the re-
gression line.
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