Content of the Course Part I

Seif Haridi KTH

Reliable distributed algorithms Part I

- First week
 - Introduction to distributed systems (Lecture 1)
 - Formal models of asynchronous systems (Lecture 2)
- Second week
 - Basic abstractions (Lecture 3)
 - Failure detectors (Lecture 4)
- Third week
 - Reliable broadcast (Lecture 5)
 - Causal-order broadcast (Lecture 6)

Reliable distributed algorithms Part I

• Fourth week

- Distributed shared memory and consistency models (Lecture 7)
- Fifth week
 - Consensus problems (Lecture 8)
 - Paxos for single value consensus (Lecture 9)
- Programming assignment and graded quizzes

Recommended Readings

Introduction to

Reliable and Secure Distributed Programming

Second Edition

Springer

Luis Rodrigues

Rachid Guerraoui

Christian Cachin

Readings: Input-Output Automata

Nancy Lynch

Other Readings

Second week

- Failure detectors (Lecture 4)
 - Reducibility and equivalence of various distributed abstractions
- Fourth week
 - Distributed shared memory (Lecture 7)
 - Algorithms for sequential consistency
 - Compositionality of consistency conditions

Fifth week

- Consensus using weaker failure detectors in a control-oriented notations (Lecture 8)
- Paxos (Lecture 9)

Acknowledgments

Course Team

Seif Haridi

Paris Carbone

Lars Kroll

Contributors

Ali Ghodsi

Cosmin Arad

Niklas Ekström

