

15.415x Foundations of Modern Finance

Leonid Kogan and Jiang Wang MIT Sloan School of Management

Lecture 7: Arbitrage Pricing Theory (APT)

15.415x

- The Main Idea of APT
- Factor Models
- Well Diversified Portfolios
- Expected Returns on Diversified Portfolios
- Factor Risk Prices / Risk Premia
- Factor-Mimicking Portfolios
- APT for Individual Securities
- Implementation of APT (Macro Factor Model)
- Implementation of APT (Portfolio Factor Model)

- The Main Idea of APT
- Factor Models
- Well Diversified Portfolios
- Expected Returns on Diversified Portfolios
- Factor Risk Prices / Risk Premia
- Factor-Mimicking Portfolios
- APT for Individual Securities
- Implementation of APT (Macro Factor Model)
- Implementation of APT (Portfolio Factor Model)

Main steps of APT

- Factor model of returns in which risk can be decomposed into two components:
 - Systematic risks (common to many assets);
 - Non-systematic risks (specific to individual assets).
- Diversification eliminates risk → For diversified portfolios, \overline{r}_p depends only on systematic factors (arbitrage otherwise).
- Portfolios come from risky assets → For "almost all" risky assets.
 - **Expected return** \overline{r}_i depends only on systematic factors.
- End result: Model to price risky assets by their exposure to systematic risks.

Systematic vs. idiosyncratic risk

- Uncertainty in asset returns has two sources: Common factors and firmspecific shocks.
- Common factors:
 - Proxy for economic conditions or events that affect all firms and investors.
 - Such factors may include interest rates, price of oil, government policy shocks, etc.
 - Example: If return on an asset increases when inflation increases, it can be used to hedge uncertainty in future inflation rate → smaller risk premium as a result of investors' extra demand for this asset.
 - Represent systematic risks that cannot be diversified away.

Systematic vs. idiosyncratic risk

- Firm-specific events:
 - Such events may include new product innovations, lawsuits, changes in management, labor strikes, ...
 - These firm-specific or idiosyncratic risks can be diversified away.

Example: a 2-factor model

- Suppose that the only two systematic sources of risk are:
 - Unanticipated changes in economic growth; and
 - Unanticipated changes in energy prices.
- The return on any stock respond to both sources of macro shocks and to firm-specific shocks:

Example: a 2-factor model

$$\tilde{r}_i = \overline{r}_i + b_{i,GR} \, \tilde{f}_{GR} + b_{i,EN} \, \tilde{f}_{EN} + \tilde{\epsilon}_i$$

- A solar panel installer.
- Cash flows have moderate exposure to economic growth \rightarrow b_{GR} is positive.
- Benefits from rising energy costs $\rightarrow b_{EN}$ is likely positive and large.

- A long-distance trucking firm.
- Cash flows are very sensitive to economic activity $\rightarrow b_{GR}$ is likely positive and large.
- Sensitive to energy costs $\rightarrow b_{EN}$ is negative and large.

- The Main Idea of APT
- Factor Models
- Well Diversified Portfolios
- Expected Returns on Diversified Portfolios
- Factor Risk Prices / Risk Premia
- Factor-Mimicking Portfolios
- APT for Individual Securities
- Implementation of APT (Macro Factor Model)
- Implementation of APT (Portfolio Factor Model)

A single-factor model

- A large number of risk assets, i = 1, 2, 3, ...
 - $ilde{r}_i$ is the (random) return.
 - lacksquare \bar{r}_i is the expected return.
- Returns are driven by a common, systematic factor, and idiosyncratic shocks.
- $ilde{F}$ is a systematic factor that affects most asset returns (e.g., return on the market portfolio).
- $ilde{f}$ is the news component of this common factor: $\tilde{f} = \tilde{F} \overline{F}$.
- Idiosyncratic shock to asset i: $\tilde{\epsilon}_i$ with zero mean, $E[\tilde{\epsilon}_i] = 0$.
- A key assumption: $\tilde{\epsilon}_i$ are asset-specific, i.e., $\tilde{\epsilon}_i$ are uncorrelated across assets:

$$Cov(\tilde{\epsilon}_i, \tilde{\epsilon}_i) = 0 \text{ for } i \neq j$$

A single-factor model

Describe asset returns as

$$\tilde{r}_i = \overline{r}_i + \underbrace{b_i \, \tilde{f} + \tilde{\epsilon}_i}_{\text{risk}}$$
expected risk

15.415x

Return variance

$$\sigma_i^2 = \underbrace{b_i^2 \sigma_f^2}_{\text{systematic}} + \underbrace{\text{Var}(\tilde{\epsilon}_i)}_{\text{idiosyncratic}}$$
risk risk

Return covariance

$$Cov(\tilde{r}_i, \tilde{r}_j) = Cov(\overline{r}_i + b_i \tilde{f} + \tilde{\epsilon}_i, \overline{r}_j + b_j \tilde{f} + \tilde{\epsilon}_j) = b_i b_j \sigma_f^2$$

because
$$Cov(\tilde{f}, \tilde{\epsilon}_i) = Cov(\tilde{\epsilon}_i, \tilde{\epsilon}_j) = 0$$
.

- Factor exposure determines how much asset returns co-move.
- Idiosyncratic risk affects individual return variance.

Multifactor models

A multifactor model specifies

$$\tilde{r}_i = \bar{r}_i + \underbrace{b_{i,1} \ \tilde{f}_1 + b_{i,2} \ \tilde{f}_2 + \dots + b_{i,K} \ \tilde{f}_K}_{\text{systematic}} + \tilde{\epsilon}_i$$

$$\underbrace{component}$$

- The \tilde{f}_1 , \tilde{f}_2 , ..., \tilde{f}_K are the common factors.
 - Common factors may be correlated with each other.
 - The $b_{i,1}, b_{i,2}, ..., b_{i,K}$, are the asset's factor sensitivities (or factor loadings or factor betas).
- The residuals are firm-specific:

$$Cov(\tilde{\epsilon}_i, \tilde{\epsilon}_j) = 0$$
 for all $i \neq j$

■ We assume that all factor shocks have zero mean, $E[\tilde{f}_k] = 0$, k = 1, 2, ..., K.

- The Main Idea of APT
- Factor Models
- Well Diversified Portfolios
- Expected Returns on Diversified Portfolios
- Factor Risk Prices / Risk Premia
- Factor-Mimicking Portfolios
- APT for Individual Securities
- Implementation of APT (Macro Factor Model)
- Implementation of APT (Portfolio Factor Model)

Portfolio return

■ The return process of a portfolio is

$$\tilde{r}_p = \bar{r}_p + b_{p,1} \, \tilde{f}_1 + b_{p,2} \, \tilde{f}_2 + \dots + b_{p,K} \, \tilde{f}_K + \tilde{\epsilon}_p$$

15.415x

where

$$\bar{r}_p = \sum_{i=1}^{N} w_i \, \bar{r}_i$$
, $b_{p,k} = \sum_{i=1}^{N} w_i \, b_{i,k}$, $\tilde{\epsilon}_p = \sum_{i=1}^{N} w_i \, \tilde{\epsilon}_i$

■ Because $\tilde{\epsilon}_i$'s are uncorrelated, the non-systematic variance of a portfolio is

$$\operatorname{Var}(\tilde{\epsilon}_p) = \operatorname{Var}\left(\sum_{i=1}^N w_i \tilde{\epsilon}_i\right) = \sum_{i=1}^N w_i^2 \operatorname{Var}(\tilde{\epsilon}_i)$$

Well diversified portfolios

- Consider an equally-weighted portfolio with $w_i = 1/N$.
- Let $\overline{\sigma_i^2}$ denote the average non-systematic variance:

$$\overline{\sigma_i^2} = \frac{1}{N} \sum_{i=1}^{N} \text{Var}(\tilde{\epsilon_i})$$

Then, idiosyncratic portfolio variance is

$$\operatorname{Var}(\tilde{\epsilon}_p) = \frac{1}{N} \overline{\sigma_i^2}$$

- When N goes to infinity → non-systematic variance goes to zero!
 - This result does not require that portfolios have equal weights. The conclusion holds as long as portfolio weights are relatively evenly distributed across the assets.

Well diversified portfolios

- Asset-specific risk is uncorrelated across assets, it can be diversified away by holding large diversified portfolios.
- A well-diversified portfolio is a portfolio that distributes holdings over a large number of securities so that the non-systematic variance $Var(\tilde{\epsilon}_p)$ is negligible.
- In a well-diversified portfolio, firm-specific effects average out:

$$\tilde{\epsilon}_p \approx 0$$

■ For a well-diversified portfolio, only systematic (factor) risk is present:

$$\tilde{r}_p = \bar{r}_p + b_{p,1} \, \tilde{f}_1 + b_{p,2} \, \tilde{f}_2 + \dots + b_{p,K} \, \tilde{f}_K$$

Example

- Consider two portfolios:
 - Annual returns, starting in 1926. Source: <u>Kenneth R. French's Data Library.</u>
 - P_1 contains the largest US stocks, top 30% relative to NYSE stocks by size (~500 securities in recent years).
 - P_2 contains mid-cap US stocks, next 40% relative to NYSE stocks by size (~1,000 recently).
- These portfolios are well-diversified, and do not overlap in holdings.
- If return distribution was described by a single-factor model, we would observe an approximate linear relation between the two portfolios

$$\tilde{r}_{P_i} = \bar{r}_{P_i} + b_{P_i} \, \tilde{f}, \qquad i = 1,2$$

Example: returns of size-sorted portfolios

Both portfolios are exposed to the market-wide shocks, which account for most of return variation for each portfolio.

- The Main Idea of APT
- Factor Models
- Well Diversified Portfolios
- Expected Returns on Diversified Portfolios
- Factor Risk Prices / Risk Premia
- Factor-Mimicking Portfolios
- APT for Individual Securities
- Implementation of APT (Macro Factor Model)
- Implementation of APT (Portfolio Factor Model)

An arbitrage argument

■ Example: single systematic factor, two well-diversified portfolios.

	Expected excess return	Factor loading
Portfolio A	5%	1.0
Portfolio B	8%	2.0

- There is arbitrage in this market!
- Arbitrage strategy:
 - Borrow \$1;
 - Short \$1 of Portfolio B;
 - Invest \$2 of Portfolio A.
 - No risk (zero factor loading), zero investment, and positive payoff.

Payoff =
$$-(1 + r_f) \times \$1$$

 $-(1 + r_f + 8\% + 2.0\tilde{f}) \times \1
 $+(1 + r_f + 5\% + 1.0\tilde{f}) \times \2
= $\$0.02$

APT pricing relation

- Expected excess returns and factor loading must be linearly related.
- For a single-factor model, expected excess returns on diversified portfolios must be proportional to the factor loading:

$$\bar{r}_p - r_f = \lambda b_p$$

Suppose this is not the case:

$$\bar{r}_q - r_f = \lambda' b_q$$
, $\lambda' \neq \lambda$, $b_q \neq 0$.

- Create an arbitrage trade:
 - Short \$1 of portfolio p;
 - Buy (b_p/b_q) of portfolio q;
 - Borrow $(b_p/b_q 1)$.

$$\begin{aligned} \text{Payoff} &= - \Big(1 + r_f + \lambda \, b_p + b_p \tilde{f} \Big) \times 1 \\ &\quad + \Big(1 + r_f + \lambda' b_q + b_q \tilde{f} \Big) \times (b_p/b_q) \\ &\quad - \Big(1 + r_f \Big) \times (b_p/b_q - 1) \\ &\quad = (\lambda' - \lambda) b_p \neq 0 \Rightarrow \text{arbitrage} \end{aligned}$$

APT pricing relation

- Arbitrage opportunities cannot exist in a frictionless market.
- To avoid arbitrage, expected excess returns (risk premia) on all welldiversified portfolios must satisfy

$$\bar{r}_p - r_f = \lambda \times b_p$$

Risk premium = Price of risk \times Quantity of risk

- lacktriangleright λ tells us how much compensation one earns in the market for a unit of factor risk exposure.
- \blacksquare λ is called the market price of risk of the factor, or the factor risk premium.

APT relation for multi-factor models

APT pricing relation generalizes to multi-factor models

$$\bar{r}_p - r_f = \lambda_1 b_{p,1} + \lambda_2 b_{p,2} + \dots + \lambda_K b_{p,K}$$

- Expected excess return on a diversified portfolio is determined by its loadings on the common factors:
 - Factor exposures measure portfolio risk;
 - Multi-dimensional nature of risk: each factor exposure carries its own risk premium.
- Intuition: can construct multiple portfolios with the same factor loadings these all must have the same risk premium to avoid arbitrage.
- Therefore, portfolio risk premium is determined by its factor loadings.

15.415x

- The Main Idea of APT
- Factor Models
- Well Diversified Portfolios
- Expected Returns on Diversified Portfolios
- Factor Risk Prices / Risk Premia
- Factor-Mimicking Portfolios
- APT for Individual Securities
- Implementation of APT (Macro Factor Model)
- Implementation of APT (Portfolio Factor Model)

Factor risk premia

We can use the APT relation

$$\bar{r}_p - r_f = \lambda_1 b_{p,1} + \lambda_2 b_{p,2} + \dots + \lambda_K b_{p,K}$$

15.415x

to recover prices of risk for each factor as implied by expected returns on other assets.

Recovering risk prices from portfolio returns

- Consider an example with K = 2 factors: economic growth shock (GR) and energy price shock (EN).
- Start with the general APT relation

$$\bar{r}_p - r_f = \lambda_1 b_{p,1} + \lambda_2 b_{p,2} + \dots + \lambda_K b_{p,K}$$

■ Observe risk premia on two well-diversified portfolios, A and B:

	Expected Return	Factor Loadings	
		GR	EN
Portfolio A	12%	1.0	1.25
Portfolio B	10%	2.0	-0.50
Risk-free asset	2%		

Want to recover factor risk premia for GR and EN.

Recovering risk prices from portfolio returns

APT relation implies two equations for expected excess returns on portfolios A and B:

$$\underbrace{12\% - 2\%}_{\text{risk premium}} = \underbrace{1.0}_{\text{factor loading}} \times \underbrace{\lambda_{GR}}_{\text{price of risk}} + \underbrace{1.25}_{\text{factor loading}} \times \underbrace{\lambda_{EN}}_{\text{price of risk}}$$

$$10\% - 2\% = 2.0 \ \lambda_{GR} - 0.50 \ \lambda_{EN}$$
 (B)

Solving these equations, we find

$$\lambda_{GR} = 5\%,$$
 $\lambda_{EN} = 4\%.$

■ All other portfolios must have expected returns consistent with these factor premia, e.g., if portfolio C has factor loadings $b_{GR}=1.0$, and $b_{EN}=0.5$, then

$$\bar{r}_C - r_f = 1.0 \, \lambda_{GR} + 0.5 \, \lambda_{EN} = 7\%$$

15.415x

- The Main Idea of APT
- Factor Models
- Well Diversified Portfolios
- Expected Returns on Diversified Portfolios
- Factor Risk Prices / Risk Premia
- Factor-Mimicking Portfolios
- APT for Individual Securities
- Implementation of APT (Macro Factor Model)
- Implementation of APT (Portfolio Factor Model)

Factor mimicking portfolios

- Consider a special case of a single-factor model.
- Factor mimicking portfolios are portfolios with unit factor exposure, $b_P = 1$.
- Risk premium on the factormimicking portfolio equals the factor risk premium.
- This portfolio is perfectly correlated with the factor – can use it instead of the factor in the APT relation.

Multiple factors

- A model with K factors and linearly independent portfolios P_1, P_2, \ldots, P_K .
- Construct factor-mimicking portfolios: risk premium of each factor equals the expected excess return on the factor-mimicking portfolio.
- A factor-mimicking portfolio for factor j is a well-diversified portfolio with a beta of 1 on factor *j* and a beta of 0 on any other factor.
- A factor-mimicking portfolio for factor k with weights $(w_0, w_1, w_2, ..., w_K)$, w_0 in the risk-free asset, satisfies

$$\underbrace{w_1}_{\text{portfolio weight of }P_1} \times \underbrace{b_{P_1,1}}_{\text{factor loading of }P_1} + w_2b_{P_2,1} + \dots + w_Kb_{P_K,1} = 0 \tag{1}$$

$$w_1 b_{P_1,j} + w_2 b_{P_2,j} + \dots + w_K b_{P_K,j} = 1$$
 (j)

$$w_1 b_{P_1,K} + w_2 b_{P_2,K} + \dots + w_K b_{P_K,K} = 0 \qquad (K)$$

Example

■ Mimic the Energy shock (EN) using portfolios A and B: weights w_A , w_B .

	Expected Return	Factor Loadings	
		GR	EN
Portfolio A	12%	1.0	1.25
Portfolio B	10%	2.0	-0.50
Risk-free asset	2%		

$$1.0 w_A + 2.0 w_B = 0$$
 (GR)
 $1.25 w_A - 0.50 w_B = 1$ (EN)

- Result: $w_A = 0.67$, $w_B = -0.33$.
- The risk premium on the Energy factor is then

$$\lambda_{EN} = 10\% w_A + 8\% w_B = 4\%$$

15.415x

- The Main Idea of APT
- Factor Models
- Well Diversified Portfolios
- Expected Returns on Diversified Portfolios
- Factor Risk Prices / Risk Premia
- Factor-Mimicking Portfolios
- APT for Individual Securities
- Implementation of APT (Macro Factor Model)
- Implementation of APT (Portfolio Factor Model)

APT for individual securities

For any well-diversified portfolio p with factor sensitivities $b_{p,1},\dots,b_{p,K}$, the risk premium equals

$$\bar{r}_p - r_f = \lambda_1 b_{p,1} + \lambda_2 b_{p,2} + \dots + \lambda_K b_{p,K}$$

where λ_n is the risk premium on the n^{th} factor.

- This result also applies to almost all individual securities.
- This is the Arbitrage Pricing Theory (APT), developed by Stephen Ross in 1976.

APT for individual securities: intuition

- Suppose that many assets violate the APT relation.
- Then can find many assets for which $\alpha_i \neq 0$ in

$$\bar{r}_i - r_f = \alpha_i + \lambda_1 b_{i,1} + \lambda_2 b_{i,2} + \dots + \lambda_K b_{i,K}$$

15.415x

- Suppose many assets have a positive alpha (negative values work analogously).
- Combine them in a well-diversified, equally-weighted portfolio p^* :

$$\bar{r}_{p^*} - r_f = \overline{\alpha} + \lambda_1 b_{p^*,1} + \lambda_2 b_{p^*,2} + \dots + \lambda_K b_{p^*,K}$$

where $\overline{\alpha}$ is the average alpha across assets in p^* .

 This contradicts the APT results for diversified portfolios, so we cannot find many assets that violate APT. 15.415x

- The Main Idea of APT
- Factor Models
- Well Diversified Portfolios
- Expected Returns on Diversified Portfolios
- Factor Risk Prices / Risk Premia
- Factor-Mimicking Portfolios
- APT for Individual Securities
- Implementation of APT (Macro Factor Model)
- Implementation of APT (Portfolio Factor Model)

Implementation of APT

- Three steps:
 - Identify/choose the factors.
 - Economic variables that are thought to affect asset returns.
 - o How many and which?
 - Estimate factor loadings of assets.
 - Usually by a time-series regression of diversified portfolio returns on factors.
 - Estimate factor premia.
 - Usually by a cross-sectional regression of excess returns on factor loadings.
- End up with an assessment of which factors matter and how much.

A Macro-factor model

- Chen, Roll, and Ross (1986, *Journal of Business*).
- In addition to the market factor, use economic variables to represent systematic factors explaining the returns of financial assets.

15.415x

- Monthly growth rate of industrial production (MP).
- Changes in expected inflation (DEI).
 - Measured by changes in T-Bill rates.
- Unexpected inflation (UI).

A Macro-factor model

■ Unexpected changes in risk premium (UPR), measured as the difference between returns on bonds rated Baa (or lower), and long-term government bonds.

15.415x

- Unexpected changes in the term premium (UTS), measured as the difference between returns on long-term government bonds and T-Bills.
- Data: Monthly observations from 1953 to 1984.

Estimation: betas

- Group stocks into 20 size portfolios (5% smallest to 5% largest).
- Run time-series regressions (5 years of monthly data) to obtain factor sensitivities.
 - For each size portfolio i, estimate β 's in

$$R_{i,t} = a_i + \beta_{i,RM}RM_t + \beta_{i,MP}MP_t + \beta_{i,DEI}DEI_t$$
$$+\beta_{i,UI}UI_t + \beta_{i,UPR}UPR_t + \beta_{i,UTS}UTS_t + \epsilon_{i,t}$$

where RM is for the return on the market index (e.g., value-weighted stock index).

■ Result: estimates $\beta_{i,RM}$, $\beta_{i,MP}$, $\beta_{i,DEI}$, $\beta_{i,UI}$, $\beta_{i,UPR}$, $\beta_{i,UTS}$ for each portfolio i.

Estimation: risk premia

Run cross-sectional regressions to get factor risk premia and determine if they are statistically significant.

15.415x

■ Using the β 's of the 20 portfolios, estimate λ 's in a cross-sectional regression of monthly returns on the betas

$$R_{i} = a_{i} + \lambda_{RM} \beta_{i,RM} + \lambda_{MP} \beta_{i,MP} + \lambda_{DEI} \beta_{i,DEI} + \lambda_{UI} \beta_{i,UI} + \lambda_{UPR} \beta_{i,UPR} + \lambda_{UTS} \beta_{i,UTS} + \epsilon_{i}$$

- Average $\hat{\lambda}_k$ over time to estimate the risk premium for factor k.
- **Result:** estimates of the risk premium (λ) for each of the factors.

- Factors are not very highly correlated.
- All economic factors are priced.
- Market factor is not priced separately from other factors.

	VWNY	MP	DEI	UI	UPR	UTS	Constant
1958–84	-2.403	11.756	123	795	8.274	-5.905	10.713
	(633)	(3.054)	(-1.600)	(-2.376)	(2.972)	(-1.879)	(2.755)
1958-67	1.359	12.394	.005	209	5.204	086	9.527
	(.277)	(1.789)	(.064)	(415)	(1.815)	(040)	(1.984)
1968-77	-5.269	13.466	– `.255 [°]	-1.421	12.897	-11.708	8.582
	(717)	(2.038)	(-3.237)	(-3.106)	(2.955)	(-2.299)	(1.167)
1978-84	-3.683	8.402	116	739	6.056	-5.928	15.452
	(491)	(1.432)	(458)	(869)	(.782)	(644)	(1.867)

Note.—VWNY = return on the value-weighted NYSE index; EWNY = return on the equally weighted NYSE index; MP = monthly growth rate in industrial production; DEI = change in expected inflation; UI = unanticipated inflation; UPR = unanticipated change in the risk premium (Baa and under return - long-term government bond return); UTS = unanticipated change in the term structure (long-term government bond return - Treasury-bill rate); and YP = yearly growth rate in industrial production. t-statistics are in parentheses.

15.415x

Key Concepts

- The Main Idea of APT
- Factor Models
- Well Diversified Portfolios
- Expected Returns on Diversified Portfolios
- Factor Risk Prices / Risk Premia
- Factor-Mimicking Portfolios
- APT for Individual Securities
- Implementation of APT (Macro Factor Model)
- Implementation of APT (Portfolio Factor Model)

The Fama-French factor model

- Fama and French (1993 Journal of Financial Economics, 1996 Journal of Finance).
- Factors do not necessarily have to be macroeconomic variables.
- Sufficient that they correlate with changes in the macroeconomy.
- Generate factor-mimicking portfolios by sorting firms by size and book-tomarket ratio.
 - Intuition: small firms and high B/M firms are exposed differently to macroeconomic factors.

The Fama-French factor model

- Factor portfolios:
 - \blacksquare $R_M R_f$: Return on the value-weighted market minus the T-Bill rate.
 - SMB ("Small minus Big"): Return on small-cap stocks minus return on large-cap stocks.
 - *HML* ("High minus Low"): Return on stocks with high B/M ratio minus return on stocks with low B/M ratio.
- Factors carry significant risk premia: $\lambda_{R_M-R_f} = 0.43\%$, $\lambda_{SMB} = 0.27\%$, $\lambda_{HML} = 0.40\%$ (per month) (Fama and French 1993).

The Fama-French factor model

- Data: Monthly returns on all NYSE, AMEX, and NASDAQ stocks from 1963 to 1991.
- Methodology:
 - Form 25 stock portfolios based on size and book-to-market equity.
 - Run time-series regressions of monthly excess returns on the returns to the market portfolio and mimicking portfolios for size and book-tomarket equity (see next page).

$$R_i - R_f = \alpha_i + b_i (R_M - R_f) + s_i SMB + h_i HML + \epsilon_i$$

Evaluate factor loadings and the intercepts (APT alphas).

- B/M and Size portfolios exhibit a large spread in average returns.
- Small stocks ("Small" row) outperform large stocks ("Big" row) on average.
- Value stocks ("High" column) outperform growth stocks ("Low" column) on average.

Size	Low	2	3	4	High	Low	2	3	4	High	
			I	Panel A:	Summary	Statistic	s				
			Means		Standard Deviations						
Small	0.31	0.70	0.82	0.95	1.08	7.67	6.74	6.14	5.85	6.14	
2	0.48	0.71	0.91	0.93	1.09	7.13	6.25	5.71	5.23	5.94	
3	0.44	0.68	0.75	0.86	1.05	6.52	5.53	5.11	4.79	5.48	
4	0.51	0.39	0.64	0.80	1.04	5.86	5.28	4.97	4.81	5.67	
Big	0.37	0.39	0.36	0.58	0.71	4.84	4.61	4.28	4.18	4.89	

Book-to-Market Equity (BE/ME) Quintiles

■ Factors do a good job explaining the cross-section of returns.

			b	8140 & Lo 1000				t(b)		-10.
Small	1.03	1.01	0.94	0.89	0.94	39.10	50.89	59.93	58.47	57.71
2	1.10	1.04	0.99	0.97	1.08	52.94	61.14	58.17	62.97	65.58
3	1.10	1.02	0.98	0.97	1.07	57.08	55.49	53.11	55.96	52.37
4	1.07	1.07	1.05	1.03	1.18	54.77	54.48	51.79	45.76	46.27
Big	0.96	1.02	0.98	0.99	1.07	60.25	57.77	47.03	53.25	37.18
			s					t(s)		
Small	1.47	1.27	1.18	1.17	1.23	39.01	44.48	52.26	53.82	52.65
2	1.01	0.97	0.88	0.73	0.90	34.10	39.94	36.19	32.92	38.17
3	0.75	0.63	0.59	0.47	0.64	27.09	24.13	22.37	18.97	22.01
4	0.36	0.30	0.29	0.22	0.41	12.87	10.64	10.17	6.82	11.26
\mathbf{Big}	-0.16	-0.13	-0.25	-0.16	-0.03	-6.97	-5.12	-8.45	-6.21	-0.77
			h					t(h)		
Small	-0.27	0.10	0.25	0.37	0.63	-6.28	3.03	9.74	15.16	23.62
2	-0.49	0.00	0.26	0.46	0.69	-14.66	0.34	9.21	18.14	25.59
3	-0.39	0.03	0.32	0.49	0.68	-12.56	0.89	10.73	17.45	20.43
4	-0.44	0.03	0.31	0.54	0.72	-13.98	0.97	9.45	14.70	17.34
${f Big}$	-0.47	0.00	0.20	0.56	0.82	-18.23	0.18	6.04	18.71	17.57

- Factors do a good job explaining the cross-section of returns: high R^2
- Portfolios are well diversified, returns are well explained by the common factors.

			R^2			N. 1		s(e)		
Small	0.93 0.95	0.95 0.96	0.96 0.95	0.96 0.95	0.96 0.96	1.97 1.55	$1.49 \\ 1.27$	1.18 1.28	1.13 1.16	1.22 1.23
3	0.95	0.94	0.93	0.93	0.92	1.44	1.37	1.38	1.30	1.52
4	0.94	0.92	0.91	0.88	0.89	1.46	1.47	1.51	1.69	1.91
\mathbf{Big}	0.94	0.92	0.87	0.89	0.81	1.19	1.32	1.55	1.39	2.15

- Intercepts (α_i) from 3-factor regressions are close to 0.
 - Estimates of alphas are statistically indistinguishable from 0 for most portfolios.
- Some violations for small stocks (extreme B/M quintiles).

	7.00	Book-to-Market Equity (BE/ME) Quintiles											
Size	Low	2	3	4	High	Low	2	3	4	High			
	Pane	el B: Reg	ressions:	$R_i - R_f =$	$a_i + b_i$	$R_M - R_f$	$+ s_{\iota}SME$	$3 + h_i HM$	$IL + e_i$				
	a						t(a)						
Small	-0.45	-0.16	-0.05	0.04	0.02	-4.19	-2.04	-0.82	0.69	0.29			
2	-0.07	-0.04	0.09	0.07	0.03	-0.80	-0.59	1.33	1.13	0.51			
3	-0.08	0.04	-0.00	0.06	0.07	-1.07	0.47	-0.06	0.88	0.89			
4	0.14	-0.19	-0.06	0.02	0.06	1.74	-2.43	-0.73	0.27	0.59			
Big	0.20	-0.04	-0.10	-0.08	-0.14	3.14	-0.52	-1.23	-1.07	-1.17			

Conclusion

- We showed how risk premia on common risk factors can be inferred from historical returns on financial assets.
- Multiple techniques available, including cross-sectional and time-series regression methods.
- The main weakness of APT: the theory does not tell us what the common factors are, this is an empirical question.
- APT model is a flexible and general valuation framework.
- Absence of arbitrage imposes internal consistency, APT connects expected returns to measures of risk – loadings on the common factors.

15.415x

Summary

- The Main Idea of APT
- Factor Models
- Well Diversified Portfolios
- Expected Returns on Diversified Portfolios
- Factor Risk Prices / Risk Premia
- Factor-Mimicking Portfolios
- APT for Individual Securities
- Implementation of APT (Macro Factor Model)
- Implementation of APT (Portfolio Factor Model)