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■ Factor model of returns in which risk can be decomposed into two 
components:

■ Systematic risks (common to many assets);

■ Non-systematic risks (specific to individual assets).

■ Diversification eliminates risk  For diversified portfolios, 𝑟𝑟𝑝𝑝 depends only 
on systematic factors (arbitrage otherwise).

■ Portfolios come from risky assets  For “almost all” risky assets.

■ Expected return 𝑟𝑟𝑖𝑖 depends only on systematic factors. 

■ End result: Model to price risky assets by their exposure to systematic 
risks.

Main steps of APT
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■ Uncertainty in asset returns has two sources: Common factors and firm-
specific shocks.

■ Common factors:

■ Proxy for economic conditions or events that affect all firms and 
investors.

■ Such factors may include interest rates, price of oil, government policy 
shocks, etc.

■ Example: If return on an asset increases when inflation increases, it 
can be used to hedge uncertainty in future inflation rate  smaller risk 
premium as a result of investors’ extra demand for this asset.

■ Represent systematic risks that cannot be diversified away.

Systematic vs. idiosyncratic risk



Foundations of Modern Finance ©2020 Kogan and Wang 6

15.415x Lecture 7: Arbitrage pricing theory

■ Firm-specific events:

■ Such events may include new product innovations, lawsuits, changes in 
management, labor strikes, …

■ These firm-specific or idiosyncratic risks can be diversified away.

Systematic vs. idiosyncratic risk
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■ Suppose that the only two systematic sources of risk are: 

■ Unanticipated changes in economic growth; and

■ Unanticipated changes in energy prices.

■ The return on any stock respond to both sources of macro shocks and to 
firm-specific shocks:

𝑟̃𝑟𝑖𝑖 = 𝑟𝑟𝑖𝑖 + 𝑏𝑏𝑖𝑖,𝐺𝐺𝐺𝐺 𝑓𝑓𝐺𝐺𝐺𝐺 + 𝑏𝑏𝑖𝑖,𝐸𝐸𝐸𝐸 𝑓𝑓𝐸𝐸𝐸𝐸 + ̃𝜖𝜖𝑖𝑖

Example: a 2-factor model

expected
return

factor
loadings 

systematic 
shocks

firm-specific
shocks
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Example: a 2-factor model

■ A solar panel installer.

■ Cash flows have moderate 
exposure to economic growth 
𝑏𝑏𝐺𝐺𝐺𝐺 is positive.

■ Benefits from rising energy costs 
 𝑏𝑏𝐸𝐸𝐸𝐸 is likely positive and large.

■ A long-distance trucking firm.

■ Cash flows are very sensitive to 
economic activity  𝑏𝑏𝐺𝐺𝐺𝐺 is likely 
positive and large.

■ Sensitive to energy costs  𝑏𝑏𝐸𝐸𝐸𝐸 is 
negative and large.

𝑟̃𝑟𝑖𝑖 = 𝑟𝑟𝑖𝑖 + 𝑏𝑏𝑖𝑖,𝐺𝐺𝐺𝐺 𝑓𝑓𝐺𝐺𝐺𝐺 + 𝑏𝑏𝑖𝑖,𝐸𝐸𝐸𝐸 𝑓𝑓𝐸𝐸𝐸𝐸 + ̃𝜖𝜖𝑖𝑖



Foundations of Modern Finance ©2020 Kogan and Wang 9

15.415x Lecture 7: Arbitrage pricing theory

■ The Main Idea of APT

■ Factor Models

■ Well Diversified Portfolios

■ Expected Returns on Diversified Portfolios

■ Factor Risk Prices / Risk Premia

■ Factor-Mimicking Portfolios 

■ APT for Individual Securities

■ Implementation of APT (Macro Factor Model)

■ Implementation of APT (Portfolio Factor Model)

Key Concepts



Foundations of Modern Finance ©2020 Kogan and Wang 10

15.415x Lecture 7: Arbitrage pricing theory

■ A large number of risk assets, 𝑖𝑖 = 1, 2, 3, …

■ 𝑟̃𝑟𝑖𝑖 is the (random) return.

■ 𝑟̅𝑟𝑖𝑖 is the expected return.

■ Returns are driven by a common, systematic factor, and idiosyncratic 
shocks.

■ �𝐹𝐹 is a systematic factor that affects most asset returns (e.g., return on the 
market portfolio).

■ 𝑓𝑓 is the news component of this common factor: 𝑓𝑓 = �𝐹𝐹 − 𝐹𝐹.

■ Idiosyncratic shock to asset 𝑖𝑖: ̃𝜖𝜖𝑖𝑖 with zero mean, 𝐸𝐸 ̃𝜖𝜖𝑖𝑖 = 0.

■ A key assumption: ̃𝜖𝜖𝑖𝑖 are asset-specific, i.e., ̃𝜖𝜖𝑖𝑖 are uncorrelated across 
assets:

𝐶𝐶𝐶𝐶𝐶𝐶 ̃𝜖𝜖𝑖𝑖 , ̃𝜖𝜖𝑗𝑗 = 0 for 𝑖𝑖 ≠ 𝑗𝑗

A single-factor model
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■ Describe asset returns as

𝑟̃𝑟𝑖𝑖 = ⏟𝑟𝑟𝑖𝑖
expected
return

+ 𝑏𝑏𝑖𝑖 𝑓𝑓 + ̃𝜖𝜖𝑖𝑖
risk

■ Return variance

𝜎𝜎𝑖𝑖2 = 𝑏𝑏𝑖𝑖2𝜎𝜎𝑓𝑓2

systematic
risk

+ Var ̃𝜖𝜖𝑖𝑖
idiosyncratic

risk

■ Return covariance

Cov 𝑟̃𝑟𝑖𝑖 , 𝑟̃𝑟𝑗𝑗 = Cov(𝑟𝑟𝑖𝑖 + 𝑏𝑏𝑖𝑖 𝑓𝑓 + ̃𝜖𝜖𝑖𝑖 , 𝑟𝑟𝑗𝑗 + 𝑏𝑏𝑗𝑗 𝑓𝑓 + ̃𝜖𝜖𝑗𝑗) = 𝑏𝑏𝑖𝑖𝑏𝑏𝑗𝑗𝜎𝜎𝑓𝑓2

because Cov 𝑓𝑓, ̃𝜖𝜖𝑖𝑖 = Cov( ̃𝜖𝜖𝑖𝑖 , ̃𝜖𝜖𝑗𝑗) = 0.

■ Factor exposure determines how much asset returns co-move.

■ Idiosyncratic risk affects individual return variance.

A single-factor model
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■ A multifactor model specifies  

𝑟̃𝑟𝑖𝑖 = 𝑟̅𝑟𝑖𝑖 + 𝑏𝑏𝑖𝑖,1 𝑓𝑓1 + 𝑏𝑏𝑖𝑖,2 𝑓𝑓2 + ⋯+ 𝑏𝑏𝑖𝑖,𝐾𝐾 𝑓𝑓𝐾𝐾
systematic
component

+ ̃𝜖𝜖𝑖𝑖

■ The 𝑓𝑓1, 𝑓𝑓2, …, 𝑓𝑓𝐾𝐾 are the common factors.

■ Common factors may be correlated with each other.

■ The 𝑏𝑏𝑖𝑖,1, 𝑏𝑏𝑖𝑖,2,…, 𝑏𝑏𝑖𝑖,𝐾𝐾, are the asset’s factor sensitivities (or factor 
loadings or factor betas).

■ The residuals are firm-specific:

Cov ̃𝜖𝜖𝑖𝑖 , ̃𝜖𝜖𝑗𝑗 = 0 for all 𝑖𝑖 ≠ 𝑗𝑗

■ We assume that all factor shocks have zero mean, E 𝑓𝑓𝑘𝑘 = 0, 𝑘𝑘 =
1,2, … ,𝐾𝐾.  

Multifactor models
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■ The return process of a portfolio is

𝑟̃𝑟𝑝𝑝 = 𝑟̅𝑟𝑝𝑝 + 𝑏𝑏𝑝𝑝,1 𝑓𝑓1 + 𝑏𝑏𝑝𝑝,2 𝑓𝑓2 + ⋯+ 𝑏𝑏𝑝𝑝,𝐾𝐾 𝑓𝑓𝐾𝐾 + ̃𝜖𝜖𝑝𝑝

where

𝑟̅𝑟𝑝𝑝 = �
𝑖𝑖=1

𝑁𝑁

𝑤𝑤𝑖𝑖 𝑟̅𝑟𝑖𝑖 , 𝑏𝑏𝑝𝑝,𝑘𝑘= �
𝑖𝑖=1

𝑁𝑁

𝑤𝑤𝑖𝑖 𝑏𝑏𝑖𝑖,𝑘𝑘 , ̃𝜖𝜖𝑝𝑝= �
𝑖𝑖=1

𝑁𝑁

𝑤𝑤𝑖𝑖 ̃𝜖𝜖𝑖𝑖

■ Because ̃𝜖𝜖𝑖𝑖’s are uncorrelated, the non-systematic variance of a portfolio is

Var ̃𝜖𝜖𝑝𝑝 = Var �
𝑖𝑖=1

𝑁𝑁

𝑤𝑤𝑖𝑖 ̃𝜖𝜖𝑖𝑖 = �
𝑖𝑖=1

𝑁𝑁

𝑤𝑤𝑖𝑖2Var( ̃𝜖𝜖𝑖𝑖)

Portfolio return
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■ Consider an equally-weighted portfolio with 𝑤𝑤𝑖𝑖 = 1/𝑁𝑁.

■ Let 𝜎𝜎𝑖𝑖2 denote the average non-systematic variance:

𝜎𝜎𝑖𝑖2 =
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

Var( ̃𝜖𝜖𝑖𝑖)

■ Then, idiosyncratic portfolio variance is

Var ̃𝜖𝜖𝑝𝑝 =
1
𝑁𝑁
𝜎𝜎𝑖𝑖2

■ When N goes to infinity  non-systematic variance goes to zero!

■ This result does not require that portfolios have equal weights. The 
conclusion holds as long as portfolio weights are relatively evenly 
distributed across the assets.

Well diversified portfolios
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■ Asset-specific risk is uncorrelated across assets, it can be diversified away 
by holding large diversified portfolios.

■ A well-diversified portfolio is a portfolio that distributes holdings over a 
large number of securities so that the non-systematic variance Var( ̃𝜖𝜖𝑝𝑝) is 
negligible.

■ In a well-diversified portfolio, firm-specific effects average out:

̃𝜖𝜖𝑝𝑝 ≈ 0

■ For a well-diversified portfolio, only systematic (factor) risk is present:

𝑟̃𝑟𝑝𝑝 = 𝑟̅𝑟𝑝𝑝 + 𝑏𝑏𝑝𝑝,1 𝑓𝑓1 + 𝑏𝑏𝑝𝑝,2 𝑓𝑓2 + ⋯+ 𝑏𝑏𝑝𝑝,𝐾𝐾 𝑓𝑓𝐾𝐾

Well diversified portfolios
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■ Consider two portfolios: 

■ Annual returns, starting in 1926. Source: Kenneth R. French’s Data 
Library.

■ 𝑃𝑃1 contains the largest US stocks, top 30% relative to NYSE stocks by 
size (~500 securities in recent years).

■ 𝑃𝑃2 contains mid-cap US stocks, next 40% relative to NYSE stocks by 
size (~1,000 recently).

■ These portfolios are well-diversified, and do not overlap in holdings.  

■ If return distribution was described by a single-factor model, we would 
observe an approximate linear relation between the two portfolios  

𝑟̃𝑟𝑃𝑃𝑖𝑖 = 𝑟̅𝑟𝑃𝑃𝑖𝑖 + 𝑏𝑏𝑃𝑃𝑖𝑖 𝑓𝑓, 𝑖𝑖 = 1,2

Example

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/Portfolios_Formed_on_ME_CSV.zip
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Large-cap portfolio

Example: returns of size-sorted portfolios  

■ Both portfolios are exposed to the market-wide shocks, which account for 
most of return variation for each portfolio. 
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■ Example: single systematic factor, two well-diversified portfolios.

■ There is arbitrage in this market!           

■ Arbitrage strategy:

■ Borrow $1;

■ Short $1 of Portfolio B;

■ Invest $2 of Portfolio A. 

■ No risk (zero factor loading), zero investment, and positive payoff.

Expected 
excess return Factor loading

Portfolio A 5% 1.0
Portfolio B 8% 2.0

Payoff = − 1 + 𝑟𝑟𝑓𝑓 × $1
− 1 + 𝑟𝑟𝑓𝑓 + 8% + 2.0𝑓𝑓 × $1
+ 1 + 𝑟𝑟𝑓𝑓 + 5% + 1.0𝑓𝑓 × $2

= $0.02

An arbitrage argument
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■ Expected excess returns and factor loading must be linearly related.

■ For a single-factor model, expected excess returns on diversified          
portfolios must be proportional to the factor loading: 

𝑟̅𝑟𝑝𝑝 − 𝑟𝑟𝑓𝑓 = 𝜆𝜆 𝑏𝑏𝑝𝑝

■ Suppose this is not the case: 

𝑟̅𝑟𝑞𝑞 − 𝑟𝑟𝑓𝑓 = 𝜆𝜆′𝑏𝑏𝑞𝑞 , 𝜆𝜆′ ≠ 𝜆𝜆, 𝑏𝑏𝑞𝑞 ≠ 0.

■ Create an arbitrage trade:

■ Short $1 of portfolio 𝑝𝑝;

■ Buy $(𝑏𝑏𝑝𝑝/𝑏𝑏𝑞𝑞) of portfolio 𝑞𝑞;

■ Borrow $(𝑏𝑏𝑝𝑝/𝑏𝑏𝑞𝑞 − 1).

Payoff = − 1 + 𝑟𝑟𝑓𝑓 + 𝜆𝜆 𝑏𝑏𝑝𝑝 + 𝑏𝑏𝑝𝑝𝑓𝑓 × 1
+ 1 + 𝑟𝑟𝑓𝑓 + 𝜆𝜆′𝑏𝑏𝑞𝑞 + 𝑏𝑏𝑞𝑞𝑓𝑓 × (𝑏𝑏𝑝𝑝/𝑏𝑏𝑞𝑞)
− 1 + 𝑟𝑟𝑓𝑓 × (𝑏𝑏𝑝𝑝/𝑏𝑏𝑞𝑞 − 1)

= 𝜆𝜆′ − 𝜆𝜆 𝑏𝑏𝑝𝑝 ≠ 0 ⇒ arbitrage

APT pricing relation
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■ Arbitrage opportunities cannot exist in a frictionless market. 

■ To avoid arbitrage, expected excess returns (risk premia) on all well-
diversified portfolios must satisfy   

𝑟̅𝑟𝑝𝑝−𝑟𝑟𝑓𝑓 = 𝜆𝜆 × 𝑏𝑏𝑝𝑝

Risk premium  =  Price of risk × Quantity of risk 

■ 𝜆𝜆 tells us how much compensation one earns in the market for a unit of 
factor risk exposure.

■ 𝜆𝜆 is called the market price of risk of the factor, or the factor risk premium. 

APT pricing relation
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■ APT pricing relation generalizes to multi-factor models

𝑟̅𝑟𝑝𝑝 − 𝑟𝑟𝑓𝑓 = 𝜆𝜆1𝑏𝑏𝑝𝑝,1 + 𝜆𝜆2𝑏𝑏𝑝𝑝,2 + ⋯+ 𝜆𝜆𝐾𝐾𝑏𝑏𝑝𝑝,𝐾𝐾

■ Expected excess return on a diversified portfolio is determined by its 
loadings on the common factors:

■ Factor exposures measure portfolio risk;

■ Multi-dimensional nature of risk: each factor exposure carries its own 
risk premium.

■ Intuition: can construct multiple portfolios with the same factor loadings –
these all must have the same risk premium to avoid arbitrage.

■ Therefore, portfolio risk premium is determined by its factor loadings.

APT relation for multi-factor models
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■ We can use the APT relation

𝑟̅𝑟𝑝𝑝 − 𝑟𝑟𝑓𝑓 = 𝜆𝜆1𝑏𝑏𝑝𝑝,1 + 𝜆𝜆2𝑏𝑏𝑝𝑝,2 + ⋯+ 𝜆𝜆𝐾𝐾𝑏𝑏𝑝𝑝,𝐾𝐾

to recover prices of risk for each factor as implied by expected returns on 
other assets. 

Factor risk premia
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■ Consider an example with 𝐾𝐾 = 2 factors: economic growth shock (GR) and 
energy price shock (EN).

■ Start with the general APT relation

𝑟̅𝑟𝑝𝑝 − 𝑟𝑟𝑓𝑓 = 𝜆𝜆1𝑏𝑏𝑝𝑝,1 + 𝜆𝜆2𝑏𝑏𝑝𝑝,2 + ⋯+ 𝜆𝜆𝐾𝐾𝑏𝑏𝑝𝑝,𝐾𝐾

■ Observe risk premia on two well-diversified portfolios, A and B:

■ Want to recover factor risk premia for GR and EN.

Expected Return Factor Loadings
GR EN

Portfolio A 12% 1.0 1.25
Portfolio B 10% 2.0 -0.50
Risk-free asset 2%

Recovering risk prices from portfolio returns
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■ APT relation implies two equations for expected excess returns on 
portfolios A and B:

12% − 2%
risk premium

= �1.0
factor loading

× �𝜆𝜆𝐺𝐺𝐺𝐺
price of risk

+ �1.25
factor loading

× �𝜆𝜆𝐸𝐸𝐸𝐸
price of risk

𝐴𝐴

10% − 2% = 2.0 𝜆𝜆𝐺𝐺𝐺𝐺 − 0.50 𝜆𝜆𝐸𝐸𝐸𝐸 𝐵𝐵

■ Solving these equations, we find

𝜆𝜆𝐺𝐺𝐺𝐺 = 5%,

𝜆𝜆𝐸𝐸𝐸𝐸 = 4%.

■ All other portfolios must have expected returns consistent with these factor 
premia, e.g., if portfolio C has factor loadings 𝑏𝑏𝐺𝐺𝐺𝐺 = 1.0, and 𝑏𝑏𝐸𝐸𝐸𝐸 = 0.5, 
then 

𝑟̅𝑟𝐶𝐶 − 𝑟𝑟𝑓𝑓 = 1.0 𝜆𝜆𝐺𝐺𝐺𝐺 + 0.5 𝜆𝜆𝐸𝐸𝐸𝐸 = 7%

Recovering risk prices from portfolio returns
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Factor mimicking portfolios

■ Consider a special case of a 
single-factor model.

■ Factor mimicking portfolios are 
portfolios with unit factor 
exposure, 𝑏𝑏𝑃𝑃 = 1.

■ Risk premium on the factor-
mimicking portfolio equals the 
factor risk premium.

■ This portfolio is perfectly 
correlated with the factor – can 
use it instead of the factor in the 
APT relation.

𝑟̅𝑟𝑃𝑃

𝑏𝑏𝑃𝑃

𝑟𝑟𝑓𝑓

𝜆𝜆

1.0
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■ A model with 𝐾𝐾 factors and linearly independent portfolios 𝑃𝑃1, 𝑃𝑃2, …, 𝑃𝑃𝐾𝐾.

■ Construct factor-mimicking portfolios: risk premium of each factor equals 
the expected excess return on the factor-mimicking portfolio. 

■ A factor-mimicking portfolio for factor j is a well-diversified portfolio with a 
beta of 1 on factor j and a beta of 0 on any other factor.

■ A factor-mimicking portfolio for factor 𝑘𝑘 with weights (𝑤𝑤0, 𝑤𝑤1, 𝑤𝑤2, …, 𝑤𝑤𝐾𝐾), 
𝑤𝑤0 in the risk-free asset, satisfies

�𝑤𝑤1
portfolio weight

of 𝑃𝑃1

× �𝑏𝑏𝑃𝑃1,1
factor loading
of 𝑃𝑃1 on factor 1

+ 𝑤𝑤2𝑏𝑏𝑃𝑃2,1 + ⋯+ 𝑤𝑤𝐾𝐾𝑏𝑏𝑃𝑃𝐾𝐾,1 = 0 1

…
𝑤𝑤1𝑏𝑏𝑃𝑃1,𝑗𝑗 + 𝑤𝑤2𝑏𝑏𝑃𝑃2,𝑗𝑗 + ⋯+ 𝑤𝑤𝐾𝐾𝑏𝑏𝑃𝑃𝐾𝐾,𝑗𝑗 = 1 𝑗𝑗

…

𝑤𝑤1𝑏𝑏𝑃𝑃1,𝐾𝐾 + 𝑤𝑤2𝑏𝑏𝑃𝑃2,𝐾𝐾 + ⋯+ 𝑤𝑤𝐾𝐾𝑏𝑏𝑃𝑃𝐾𝐾,𝐾𝐾 = 0 𝐾𝐾

Multiple factors
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■ Mimic the Energy shock (EN) using portfolios A and B: weights 𝑤𝑤𝐴𝐴, 𝑤𝑤𝐵𝐵.

1.0 𝑤𝑤𝐴𝐴+2.0 𝑤𝑤𝐵𝐵 = 0 𝐺𝐺𝐺𝐺
1.25 𝑤𝑤𝐴𝐴 − 0.50 𝑤𝑤𝐵𝐵 = 1 𝐸𝐸𝐸𝐸

■ Result: 𝑤𝑤𝐴𝐴 = 0.67, 𝑤𝑤𝐵𝐵 = −0.33.

■ The risk premium on the Energy factor is then

𝜆𝜆𝐸𝐸𝐸𝐸 = 10% 𝑤𝑤𝐴𝐴 + 8% 𝑤𝑤𝐵𝐵 = 4%

Expected Return Factor Loadings
GR EN

Portfolio A 12% 1.0 1.25
Portfolio B 10% 2.0 -0.50
Risk-free asset 2%

Example
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■ The Main Idea of APT

■ Factor Models

■ Well Diversified Portfolios

■ Expected Returns on Diversified Portfolios

■ Factor Risk Prices / Risk Premia

■ Factor-Mimicking Portfolios 

■ APT for Individual Securities

■ Implementation of APT (Macro Factor Model)

■ Implementation of APT (Portfolio Factor Model)

Key Concepts
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■ For any well-diversified portfolio 𝑝𝑝 with factor sensitivities 𝑏𝑏𝑝𝑝,1, … , 𝑏𝑏𝑝𝑝,𝐾𝐾, the 
risk premium equals

𝑟̅𝑟𝑝𝑝 − 𝑟𝑟𝑓𝑓 = 𝜆𝜆1𝑏𝑏𝑝𝑝,1 + 𝜆𝜆2𝑏𝑏𝑝𝑝,2 + ⋯+ 𝜆𝜆𝐾𝐾𝑏𝑏𝑝𝑝,𝐾𝐾

where 𝜆𝜆𝑛𝑛 is the risk premium on the nth factor.

■ This result also applies to almost all individual securities.

■ This is the Arbitrage Pricing Theory (APT), developed by Stephen Ross in 
1976.

APT for individual securities
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■ Suppose that many assets violate the APT relation.

■ Then can find many assets for which 𝛼𝛼𝑖𝑖 ≠ 0 in

𝑟̅𝑟𝑖𝑖 − 𝑟𝑟𝑓𝑓 = 𝛼𝛼𝑖𝑖 + 𝜆𝜆1𝑏𝑏𝑖𝑖,1 + 𝜆𝜆2𝑏𝑏𝑖𝑖,2 + ⋯+ 𝜆𝜆𝐾𝐾𝑏𝑏𝑖𝑖,𝐾𝐾

■ Suppose many assets have a positive alpha (negative values work 
analogously). 

■ Combine them in a well-diversified, equally-weighted portfolio 𝑝𝑝∗:

𝑟̅𝑟𝑝𝑝∗ − 𝑟𝑟𝑓𝑓 = 𝛼𝛼 + 𝜆𝜆1𝑏𝑏𝑝𝑝∗,1 + 𝜆𝜆2𝑏𝑏𝑝𝑝∗,2 + ⋯+ 𝜆𝜆𝐾𝐾𝑏𝑏𝑝𝑝∗,𝐾𝐾

where 𝛼𝛼 is the average alpha across assets in 𝑝𝑝∗.

■ This contradicts the APT results for diversified portfolios, so we cannot find 
many assets that violate APT.

APT for individual securities: intuition
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■ The Main Idea of APT

■ Factor Models

■ Well Diversified Portfolios

■ Expected Returns on Diversified Portfolios

■ Factor Risk Prices / Risk Premia

■ Factor-Mimicking Portfolios 

■ APT for Individual Securities

■ Implementation of APT (Macro Factor Model)

■ Implementation of APT (Portfolio Factor Model)

Key Concepts
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■ Three steps:

■ Identify/choose the factors.

o Economic variables that are thought to affect asset returns.

o How many and which?

■ Estimate factor loadings of assets.

o Usually by a time-series regression of diversified portfolio returns on 
factors.

■ Estimate factor premia.

o Usually by a cross-sectional regression of excess returns on factor 
loadings.

■ End up with an assessment of which factors matter and how much.

Implementation of APT
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■ Chen, Roll, and Ross (1986, Journal of Business).

■ In addition to the market factor, use economic variables to represent 
systematic factors explaining the returns of financial assets.

■ Monthly growth rate of industrial production (MP).

■ Changes in expected inflation (DEI).

■ Measured by changes in T-Bill rates.

■ Unexpected inflation (UI).

A Macro-factor model
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■ Unexpected changes in risk premium (UPR), measured as the difference 
between returns on bonds rated Baa (or lower), and long-term government 
bonds.

■ Unexpected changes in the term premium (UTS), measured as the 
difference between returns on long-term government bonds and T-Bills.

■ Data: Monthly observations from 1953 to 1984.

A Macro-factor model
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■ Group stocks into 20 size portfolios (5% smallest to 5% largest).

■ Run time-series regressions (5 years of monthly data) to obtain factor 
sensitivities.

■ For each size portfolio 𝑖𝑖, estimate 𝛽𝛽’s in

𝑅𝑅𝑖𝑖,𝑡𝑡 = 𝑎𝑎𝑖𝑖 + 𝛽𝛽𝑖𝑖,𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀𝑡𝑡 + 𝛽𝛽𝑖𝑖,𝑀𝑀𝑀𝑀𝑀𝑀𝑃𝑃𝑡𝑡 + 𝛽𝛽𝑖𝑖,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝑡𝑡
+𝛽𝛽𝑖𝑖,𝑈𝑈𝑈𝑈𝑈𝑈𝐼𝐼𝑡𝑡 + 𝛽𝛽𝑖𝑖,𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑅𝑅𝑡𝑡 + 𝛽𝛽𝑖𝑖,𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑆𝑆𝑡𝑡 + 𝜖𝜖𝑖𝑖,𝑡𝑡

where RM is for the return on the market index (e.g., value-weighted 

stock index).

■ Result: estimates 𝛽𝛽𝑖𝑖,𝑅𝑅𝑅𝑅,𝛽𝛽𝑖𝑖,𝑀𝑀𝑀𝑀 ,𝛽𝛽𝑖𝑖,𝐷𝐷𝐷𝐷𝐷𝐷 ,𝛽𝛽𝑖𝑖,𝑈𝑈𝑈𝑈 ,𝛽𝛽𝑖𝑖,𝑈𝑈𝑈𝑈𝑈𝑈 ,𝛽𝛽𝑖𝑖,𝑈𝑈𝑈𝑈𝑈𝑈 for each portfolio 𝑖𝑖.

Estimation: betas
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■ Run cross-sectional regressions to get factor risk premia and determine if 
they are statistically significant.

■ Using the 𝛽𝛽’s of the 20 portfolios, estimate 𝜆𝜆’s in a cross-sectional 
regression of monthly returns on the betas

𝑅𝑅𝑖𝑖 = 𝑎𝑎𝑖𝑖 + 𝜆𝜆𝑅𝑅𝑅𝑅𝛽𝛽𝑖𝑖,𝑅𝑅𝑅𝑅 + 𝜆𝜆𝑀𝑀𝑀𝑀𝛽𝛽𝑖𝑖,𝑀𝑀𝑀𝑀 + 𝜆𝜆𝐷𝐷𝐷𝐷𝐷𝐷𝛽𝛽𝑖𝑖,𝐷𝐷𝐷𝐷𝐷𝐷
+𝜆𝜆𝑈𝑈𝑈𝑈𝛽𝛽𝑖𝑖,𝑈𝑈𝑈𝑈 + 𝜆𝜆𝑈𝑈𝑈𝑈𝑈𝑈𝛽𝛽𝑖𝑖,𝑈𝑈𝑈𝑈𝑈𝑈 + 𝜆𝜆𝑈𝑈𝑈𝑈𝑈𝑈𝛽𝛽𝑖𝑖,𝑈𝑈𝑈𝑈𝑈𝑈 + 𝜖𝜖𝑖𝑖

■ Average 𝜆̂𝜆𝑘𝑘 over time to estimate the risk premium for factor 𝑘𝑘.

■ Result: estimates of the risk premium (λ) for each of the factors.

Estimation: risk premia
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■ Factors are not very highly correlated.

■ All economic factors are priced.

■ Market factor is not priced separately from other factors.

Results
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■ The Main Idea of APT

■ Factor Models

■ Well Diversified Portfolios

■ Expected Returns on Diversified Portfolios

■ Factor Risk Prices / Risk Premia

■ Factor-Mimicking Portfolios 

■ APT for Individual Securities

■ Implementation of APT (Macro Factor Model)

■ Implementation of APT (Portfolio Factor Model)

Key Concepts
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■ Fama and French (1993 Journal of Financial Economics, 1996 Journal of 
Finance).

■ Factors do not necessarily have to be macroeconomic variables.

■ Sufficient that they correlate with changes in the macroeconomy.

■ Generate factor-mimicking portfolios by sorting firms by size and book-to-
market ratio. 

■ Intuition: small firms and high B/M firms are exposed differently to 
macroeconomic factors.

The Fama-French factor model
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■ Factor portfolios:  

■ 𝑅𝑅𝑀𝑀 − 𝑅𝑅𝑓𝑓: Return on the value-weighted market minus the T-Bill rate.

■ 𝑆𝑆𝑆𝑆𝑆𝑆 (“Small minus Big”): Return on small-cap stocks minus return on 
large-cap stocks.

■ 𝐻𝐻𝐻𝐻𝐻𝐻 (“High minus Low”): Return on stocks with high B/M ratio minus 
return on stocks with low B/M ratio.

■ Factors carry significant risk premia: 𝜆𝜆𝑅𝑅𝑀𝑀−𝑅𝑅𝑓𝑓 = 0.43%, 𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆 = 0.27%, 
𝜆𝜆𝐻𝐻𝐻𝐻𝐻𝐻 = 0.40% (per month) (Fama and French 1993).

The Fama-French factor model
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■ Data: Monthly returns on all NYSE, AMEX, and NASDAQ stocks from 
1963 to 1991.

■ Methodology:

■ Form 25 stock portfolios based on size and book-to-market equity.

■ Run time-series regressions of monthly excess returns on the returns to 
the market portfolio and mimicking portfolios for size and book-to-
market equity (see next page).

𝑅𝑅𝑖𝑖 − 𝑅𝑅𝑓𝑓 = 𝛼𝛼𝑖𝑖 + 𝑏𝑏𝑖𝑖 𝑅𝑅𝑀𝑀 − 𝑅𝑅𝑓𝑓 + 𝑠𝑠𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 + ℎ𝑖𝑖𝐻𝐻𝐻𝐻𝐻𝐻 + 𝜖𝜖𝑖𝑖

■ Evaluate factor loadings and the intercepts (APT alphas).

The Fama-French factor model
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■ B/M and Size portfolios exhibit a large spread in average returns.

■ Small stocks (“Small” row) outperform large stocks (“Big” row) on average.

■ Value stocks (“High” column) outperform growth stocks (“Low” column) on 
average.

Results
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■ Factors do a good job explaining the cross-section of returns.

Results
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■ Factors do a good job explaining the cross-section of returns: high 𝑅𝑅2

■ Portfolios are well diversified, returns are well explained by the common 
factors.

Results



Foundations of Modern Finance ©2020 Kogan and Wang 49
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■ Intercepts (𝛼𝛼𝑖𝑖) from 3-factor regressions are close to 0.

■ Estimates of alphas are statistically indistinguishable from 0 for most 
portfolios. 

■ Some violations for small stocks (extreme B/M quintiles).

Results
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■ We showed how risk premia on common risk factors can be inferred from 
historical returns on financial assets.

■ Multiple techniques available, including cross-sectional and time-series 
regression methods.

■ The main weakness of APT: the theory does not tell us what the common 
factors are, this is an empirical question.

■ APT model is a flexible and general valuation framework.

■ Absence of arbitrage imposes internal consistency, APT connects 
expected returns to measures of risk – loadings on the common factors.

Conclusion
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■ The Main Idea of APT

■ Factor Models

■ Well Diversified Portfolios

■ Expected Returns on Diversified Portfolios

■ Factor Risk Prices / Risk Premia

■ Factor-Mimicking Portfolios 

■ APT for Individual Securities

■ Implementation of APT (Macro Factor Model)

■ Implementation of APT (Portfolio Factor Model)

Summary
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