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Lower bound for comparison sorting

Theorem. For every comparison-based sorting algorithm, there exists an input with N
elements which requires at least b = Ω(N logN) comparisons.

Proof

I Assume inputs are permutations. There are N! different permutations

I From a single comparison, any algorithm receives at most one bit of information

I After making t comparisons, an algorithm can distinguish only 2t cases

I Thus, for the lower bound b, it holds that 2b ≥ N!, or b ≥ log2(N!)

I By Stirling’s approximation:
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= n log2 n −Θ(n) + O(log n) = Θ(n log n)

Mergesort is asymptotically optimal.
Quicksort is asymptotically optimal on average.
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Stable sorting I

What is stable sorting?

I A sorting algorithm is stable if it preserves the order of equal elements
I Why is it useful?

I Assume elements are already ordered by �1

I You wish to sort them by �2, but keep equal elements ordered by �1

I Solution: just use a stable sorting

Which sorting algorithms are stable?

I Insertion sort: stable, as it never swaps A[i ] and A[i + 1] if they are equal

I Mergesort: stable, as merge always picks the left element from two equal ones

I Quicksort: not stable. In an array of two equal items, it will swap them
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Stable sorting II

How to make every sorting stable?

I Keep original indices with the elements
I Before: 5 2 4 4 5 2
I After: 〈5; 1〉 〈2; 2〉 〈4; 3〉 〈4; 4〉 〈5; 5〉 〈2; 6〉

I In the sorting, use a modified ordering �′:
I Given 〈x ; a〉 and 〈y ; b〉
I If x 6= y , return x � y
I If x = y , return a ≤ b

Pros:

I Can use any sorting, don’t need to care of implementation

Cons:

I Additional memory needed for storing the indices

I More complicated ordering, may further decrease performance
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Comparators

A comparator (as in java.util.Comparator<T>)
is a custom ordering for sorting certain objects for specific needs

Requirements for a comparator:

I Total (every two elements should be reported as either “<”, “=”, or “>”)

I If it reports a = b, then a and b must be equal (in a problem-dependent sense)

I More specifically, if a = b, then b = a

I If a < b, then it should be that b > a (and vice versa)

Implementation of a comparator:

I Java-way: return 0 if “equal”, negative if “less”, positive if “greater”

I C++-way: return true if “less”, false otherwise
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A non-trivial comparator

(0; 0) (2; 0)

(0; 3)

(1; 2)

(−1; 1)

(1;−2)(−2;−2)

(−2; 2)

Sort the points counterclockwise around the red dot

I Need to break a circle: start at
−→
Ox
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function LessThan((x1, y1), (x2, y2))
return x1 · y2 − x2 · y1 > 0
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Idea: compare using oriented triangle area
Wait, what happens there?

function LessThan((x1, y1), (x2, y2))
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end function

6 / 6



A non-trivial comparator

(0; 0) (2; 0)

(0; 3)

(1; 2)

(−1; 1)

(1;−2)(−2;−2)

(−2; 2)

Sort the points counterclockwise around the red dot

I Need to break a circle: start at
−→
Ox

Idea: compare using oriented triangle area
. . . but first check the halfplanes

function LessThan((x1, y1), (x2, y2))
h1 ← 0, h2 ← 0
if y1 < 0 or (y1 = 0 and x1 < 0) then h1 ← 1 end if
if y2 < 0 or (y2 = 0 and x2 < 0) then h2 ← 1 end if
if h1 6= h2 then return h1 < h2 end if
return x1 · y2 − x2 · y1 > 0

end function

6 / 6



A non-trivial comparator

(0; 0) (2; 0)

(0; 3)

(1; 2)

(−1; 1)

(1;−2)(−2;−2)

(−2; 2)

Sort the points counterclockwise around the red dot

I Need to break a circle: start at
−→
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Idea: compare using oriented triangle area
. . . but first check the halfplanes
Okay, but what happens for colinear points?
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A non-trivial comparator

(0; 0) (2; 0)

(0; 3)
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(−1; 1)

(1;−2)(−2;−2)

(−2; 2)

Sort the points counterclockwise around the red dot

I Need to break a circle: start at
−→
Ox

Idea: compare using oriented triangle area
. . . but first check the halfplanes
. . . and, from colinear points, favor closer ones.

function LessThan((x1, y1), (x2, y2))
h1 ← 0, h2 ← 0
if y1 < 0 or (y1 = 0 and x1 < 0) then h1 ← 1 end if
if y2 < 0 or (y2 = 0 and x2 < 0) then h2 ← 1 end if
if h1 6= h2 then return h1 < h2 end if
z ← x1 · y2 − x2 · y1
if z = 0 then return x21 + y21 < x22 + y22 end if
return z > 0

end function
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