eHarmony
Maximizing the Probability of Love

> 15.071x - The Analytics Edge

About eHarmony

- Goal: take a scientific approach to love and marriage and offer it to the masses through an online dating website focused on long term relationships
- Successful at matchmaking
- Nearly 4% of US marriages in 2012 are a result of eHarmony
- Successful business
- Has generated over $\$ 1$ billion in cumulative revenue

The eHarmony Difference

- Unlike other online dating websites, eHarmony does not have users browse others' profiles
- Instead, eHarmony computes a compatibility score between two people and uses optimization algorithms to determine their users' best matches

eHarmony's Compatibility Score

- Based on 29 different "dimensions of personality" including character, emotions, values, traits, etc.
- Assessed through a 436 question questionnaire
- Matches must meet $>25 / 29$ compatibility areas

Dr. Neil Clark Warren

- Clinical psychologist who counseled couples and began to see that many marriages ended in divorce because couples were not initially compatible
- Has written many relationship books: "Finding the Love of Your Life", "The Triumphant Marriage", "Learning to Live with the Love of Your Life and Loving It", "Finding Commitment", and others

Research \rightarrow Business

- In 1997, Warren began an extensive research project interviewing 5000+ couples across the US, which became the basis of eHarmony's compatibility profile
- www.eHarmony.com went live in 2000
- Interested users may fill out the compatibility quiz, but in order to see matches, members must pay a membership fee to eHarmony

eHarmony Stands Out From the Crowd

- eHarmony was not the first online dating website and faced serious competition
- Key difference from other dating websites: takes a quantitative optimization approach to matchmaking, rather than letting users browse

Integer Optimization Example

- Suppose we have three men and three women
- Compatibility scores between 1 and 5 for all pairs

Integer Optimization Example

- How should we match pairs together to maximize compatibility?

Data and Decision Variables

- Decision variables: Let $x_{i j}$ be a binary variable taking value 1 if we match user i and user j together and value 0 otherwise
- Data: Let $w_{i j}$ be the compatibility score between user i and j

Objective Function

- Maximize compatibility between matches: $\max w_{11} x_{11}+w_{12} x_{12}+w_{13} x_{13}+w_{21} x_{21}+\ldots+w_{33} x_{33}$

Constraints

- Match each man to exactly one woman:

$$
x_{11}+x_{12}+x_{13}=1
$$

Constraints

- Similarly, match each woman to exactly one man:

$$
x_{11}+x_{21}+x_{31}=1
$$

15.071x - eHarmony: Maximizing the Probability of Love

Full Optimization Problem

$\max \quad w_{11} x_{11}+w_{12} x_{12}+w_{13} x_{13}+w_{21} x_{21}+\ldots+w_{33} x_{33}$ subject to: $x_{11}+x_{12}+x_{13}=1$

$$
\begin{aligned}
& x_{21}+x_{22}+x_{23}=1 \\
& x_{31}+x_{32}+x_{33}=1
\end{aligned}
$$

$$
x_{11}+x_{21}+x_{31}=1
$$

$$
x_{12}+x_{22}+x_{32}=1
$$

$$
x_{13}+x_{23}+x_{33}=1
$$

$x_{11}, x_{21}, x_{31}, x_{12}, x_{22}, x_{32}, x_{13}, x_{23}, x_{33}$ are binary

Extend to Multiple Matches

- Show woman 1 her top two male matches:

$$
x_{11}+x_{21}+x_{31}=2
$$

Compatibility Scores

- In the optimization problem, we assumed the compatibility scores were data that we could input directly into the optimization model
- But where do these scores come from?
- "Opposites attract, then they attack"
- Neil Clark Warren
- eHarmony's compatibility match score is based on similarity between users' answers to the questionnaire

Predictive Model

- Public data set from eHarmony containing features for $\sim 275,000$ users and binary compatibility results from an interaction suggested by eHarmony
- Feature names and exact values are masked to protect users' privacy
- 'Try logistic regression on pairs of users' differences to predict compatibility

Reduce the Size of the Problem

- Filtered the data to include only users in the Boston area who had compatibility scores listed in the dataset
- Computed absolute difference in features for these 1475 pairs
- Trained a logistic regression model on these differences

Predicting Compatibility is Hard!

- If we use a low threshold we will predict more false positives but also get more true positives
- Classification matrix for threshold $=0.2$:

Act \backslash Pred	0	1
0	1030	227
1	126	92

- Model AUC $=0.685$

Other Potential Techniques

- Trees
- Especially useful for predicting compatibility if there are nonlinear relationships between variables
- Clustering
- User segmentation
- Text Analytics
- Analyze the text of users' profiles
- And much more...

Feature Importance: Distance

15.071x - eHarmony: Maximizing the Probability of Love

Feature Importance: Attractiveness

Feature Importance: Height Difference

How Successful is eHarmony?

- By 2004, eHarmony had made over $\$ 100$ million in sales.
- In 2005, 90 eHarmony members married every day
- In 2007, 236 eHarmony members married every day
- In 2009, 542 eHarmony members married every day

15.071x - eHarmony: Maximizing the Probability of Love

eHarmony Maintains its Edge

- 14% of the US online dating market.
- The only competitor with a larger portion is Match.com with 24%.
- Nearly 4\% of US marriages in 2012 are a result of eHarmony.

- eHarmony has successfully leveraged the power of analytics to create a successful and thriving business.

