## ITMO UNIVERSITY

How to Win Coding Competitions: Secrets of Champions

Week 3: Sorting and Search Algorithms<br>Lecture 10: Introduction to binary search

Maxim Buzdalov
Saint Petersburg 2016

Recall the example from Lecture 1: how to search in sorted data


Recall the example from Lecture 1: how to search in sorted data


Recall the example from Lecture 1: how to search in sorted data


Recall the example from Lecture 1: how to search in sorted data


Recall the example from Lecture 1: how to search in sorted data


This is an example of binary search. We will have more in this video

A very general form of binary search

A very general form of binary search

- Given a function $F: D \rightarrow C$, such that:

A very general form of binary search

- Given a function $F: D \rightarrow C$, such that:
- There exists a totally ordered set $S$ equipped with an average-of-two operation

A very general form of binary search

- Given a function $F: D \rightarrow C$, such that:
- There exists a totally ordered set $S$ equipped with an average-of-two operation
- We will write it $\operatorname{Avg}(a, b)$ for arguments $a$ and $b$
- $\operatorname{AvG}(a, b)$ should be between $a$ and $b$ and should not be equal to neither $a$ nor $b$, unless there is no element of $S$ between $a$ and $b$

A very general form of binary search

- Given a function $F: D \rightarrow C$, such that:
- There exists a totally ordered set $S$ equipped with an average-of-two operation
- We will write it $\operatorname{Avg}(a, b)$ for arguments $a$ and $b$
- $\operatorname{Avg}(a, b)$ should be between $a$ and $b$ and should not be equal to neither $a$ nor $b$, unless there is no element of $S$ between $a$ and $b$
- $D$ is a bounded subset of $S: D=\left\{s \mid s \in S, D_{\text {min }} \leq S, S \leq D_{\max }\right\}$
- Simply speaking, a piece of $S$ between $D_{\text {min }}$ and $D_{\text {max }}$

A very general form of binary search

- Given a function $F: D \rightarrow C$, such that:
- There exists a totally ordered set $S$ equipped with an average-of-two operation
- We will write it $\operatorname{Avg}(a, b)$ for arguments $a$ and $b$
- $\operatorname{Avg}(a, b)$ should be between $a$ and $b$ and should not be equal to neither $a$ nor $b$, unless there is no element of $S$ between $a$ and $b$
- $D$ is a bounded subset of $S: D=\left\{s \mid s \in S, D_{\min } \leq S, S \leq D_{\max }\right\}$
- Simply speaking, a piece of $S$ between $D_{\text {min }}$ and $D_{\text {max }}$
- $C=\{-1,0,+1\}$ with the following meanings:
- -1 : "too early"
- 0: "just in time"
- +1: "too late"

A very general form of binary search

- Given a function $F: D \rightarrow C$, such that:
- There exists a totally ordered set $S$ equipped with an average-of-two operation
- We will write it $\operatorname{Avg}(a, b)$ for arguments $a$ and $b$
- $\operatorname{Avg}(a, b)$ should be between $a$ and $b$ and should not be equal to neither $a$ nor $b$, unless there is no element of $S$ between $a$ and $b$
- $D$ is a bounded subset of $S: D=\left\{s \mid s \in S, D_{\min } \leq S, S \leq D_{\max }\right\}$
- Simply speaking, a piece of $S$ between $D_{\text {min }}$ and $D_{\text {max }}$
- $C=\{-1,0,+1\}$ with the following meanings:
- -1 : "too early"
- 0: "just in time"
- +1: "too late"
- Monotonicity: Whenever $a<b, F(a) \leq F(b)$

A very general form of binary search

- Given a function $F: D \rightarrow C$, such that:
- There exists a totally ordered set $S$ equipped with an average-of-two operation
- We will write it $\operatorname{Avg}(a, b)$ for arguments $a$ and $b$
- $\operatorname{Avg}(a, b)$ should be between $a$ and $b$ and should not be equal to neither $a$ nor $b$, unless there is no element of $S$ between $a$ and $b$
- $D$ is a bounded subset of $S: D=\left\{s \mid s \in S, D_{\min } \leq S, S \leq D_{\max }\right\}$
- Simply speaking, a piece of $S$ between $D_{\text {min }}$ and $D_{\text {max }}$
- $C=\{-1,0,+1\}$ with the following meanings:
- -1 : "too early"
- 0: "just in time"
- +1: "too late"
- Monotonicity: Whenever $a<b, F(a) \leq F(b)$
- Need to find $x \in D$ such that $F(x)=0$

A very general form of binary search

- Given a function $F: D \rightarrow C$, such that:
- There exists a totally ordered set $S$ equipped with an average-of-two operation
- We will write it $\operatorname{Avg}(a, b)$ for arguments $a$ and $b$
- $\operatorname{Avg}(a, b)$ should be between $a$ and $b$ and should not be equal to neither $a$ nor $b$, unless there is no element of $S$ between $a$ and $b$
- $D$ is a bounded subset of $S: D=\left\{s \mid s \in S, D_{\min } \leq S, S \leq D_{\max }\right\}$
- Simply speaking, a piece of $S$ between $D_{\text {min }}$ and $D_{\text {max }}$
- $C=\{-1,0,+1\}$ with the following meanings:
- -1 : "too early"
- 0: "just in time"
- +1: "too late"
- Monotonicity: Whenever $a<b, F(a) \leq F(b)$
- Need to find $x \in D$ such that $F(x)=0$
- Or, if impossible, find $x$ and $y$ as near as possible, such that $F(x)=-1, F(y)=1$
- Given a function $F: D \rightarrow C$, such that:
- There exists a totally ordered set $S$ equipped with an $\operatorname{Avg}(a, b)$ operation
- $D$ is a bounded subset of $S: D=\left\{s \mid s \in S, D_{\min } \leq S, S \leq D_{\max }\right\}$
- $C=\{-1$ ("too early"), 0 ("just in time"),+1 ("too late") $\}$
- Monotonicity: Whenever $a<b, F(a) \leq F(b)$
- Need to find $x \in D$ such that $F(x)=0$
- Or, if impossible, find $x, y$ as near as possible, such that $F(x)=-1, F(y)=1$
- Given a function $F: D \rightarrow C$, such that:
- There exists a totally ordered set $S$ equipped with an $\operatorname{Avg}(a, b)$ operation
- $D$ is a bounded subset of $S: D=\left\{s \mid s \in S, D_{\min } \leq S, S \leq D_{\max }\right\}$
- $C=\{-1$ ("too early"), 0 ("just in time"),+1 ("too late") $\}$
- Monotonicity: Whenever $a<b, F(a) \leq F(b)$
- Need to find $x \in D$ such that $F(x)=0$
- Or, if impossible, find $x, y$ as near as possible, such that $F(x)=-1, F(y)=1$

Example: Find where $q$ is in a sorted array

- Given a function $F: D \rightarrow C$, such that:
- There exists a totally ordered set $S$ equipped with an $\operatorname{Avg}(a, b)$ operation
- $D$ is a bounded subset of $S: D=\left\{s \mid s \in S, D_{\min } \leq S, S \leq D_{\max }\right\}$
- $C=\{-1$ ("too early"), 0 ("just in time"),+1 ("too late") $\}$
- Monotonicity: Whenever $a<b, F(a) \leq F(b)$
- Need to find $x \in D$ such that $F(x)=0$
- Or, if impossible, find $x, y$ as near as possible, such that $F(x)=-1, F(y)=1$

Example: Find where $q$ is in a sorted array

- $D=[1 ; N]$ : the set of array indices, ordered naturally
- $\operatorname{Avg}(a, b)=\lfloor(a+b) / 2\rfloor$
- $F(x)$ : " 0 " if $q=x, "-1$ " if $x<q$, " +1 " if $x>q$
- Given a function $F: D \rightarrow C$, such that:
- There exists a totally ordered set $S$ equipped with an $\operatorname{Avg}(a, b)$ operation
- $D$ is a bounded subset of $S: D=\left\{s \mid s \in S, D_{\min } \leq S, S \leq D_{\max }\right\}$
- $C=\{-1$ ("too early"), 0 ("just in time"),+1 ("too late") $\}$
- Monotonicity: Whenever $a<b, F(a) \leq F(b)$
- Need to find $x \in D$ such that $F(x)=0$
- Or, if impossible, find $x, y$ as near as possible, such that $F(x)=-1, F(y)=1$

Example: Find where $q$ is in a sorted array

- $D=[1 ; N]$ : the set of array indices, ordered naturally
- $\operatorname{Avg}(a, b)=\lfloor(a+b) / 2\rfloor$
- $F(x)$ : " 0 " if $q=x, "-1$ " if $x<q$, " +1 " if $x>q$
- If no such element, " 0 " is infeasible: then you will find where to insert $q$
- Given a function $F: D \rightarrow C$, such that:
- There exists a totally ordered set $S$ equipped with an $\operatorname{Avg}(a, b)$ operation
- $D$ is a bounded subset of $S: D=\left\{s \mid s \in S, D_{\min } \leq S, S \leq D_{\max }\right\}$
- $C=\{-1$ ("too early"), 0 ("just in time"),+1 ("too late") $\}$
- Monotonicity: Whenever $a<b, F(a) \leq F(b)$
- Need to find $x \in D$ such that $F(x)=0$
- Or, if impossible, find $x, y$ as near as possible, such that $F(x)=-1, F(y)=1$

Example: Find first occurence of $q$ in a sorted array

- Given a function $F: D \rightarrow C$, such that:
- There exists a totally ordered set $S$ equipped with an $\operatorname{Avg}(a, b)$ operation
- $D$ is a bounded subset of $S: D=\left\{s \mid s \in S, D_{\min } \leq S, S \leq D_{\max }\right\}$
- $C=\{-1$ ("too early"), 0 ("just in time"),+1 ("too late") $\}$
- Monotonicity: Whenever $a<b, F(a) \leq F(b)$
- Need to find $x \in D$ such that $F(x)=0$
- Or, if impossible, find $x, y$ as near as possible, such that $F(x)=-1, F(y)=1$

Example: Find first occurence of $q$ in a sorted array

- $D=[1 ; N]$ : the set of array indices, ordered naturally
- $\operatorname{Avg}(a, b)=\lfloor(a+b) / 2\rfloor$
- $F(x)$ : "0" never, " -1 " if $x<q$, " +1 " if $x \geq q$
- Given a function $F: D \rightarrow C$, such that:
- There exists a totally ordered set $S$ equipped with an $\operatorname{Avg}(a, b)$ operation
- $D$ is a bounded subset of $S: D=\left\{s \mid s \in S, D_{\min } \leq S, S \leq D_{\max }\right\}$
- $C=\{-1$ ("too early"), 0 ("just in time"),+1 ("too late") $\}$
- Monotonicity: Whenever $a<b, F(a) \leq F(b)$
- Need to find $x \in D$ such that $F(x)=0$
- Or, if impossible, find $x, y$ as near as possible, such that $F(x)=-1, F(y)=1$

Example: Find first occurence of $q$ in a sorted array

- $D=[1 ; N]$ : the set of array indices, ordered naturally
- $\operatorname{Avg}(a, b)=\lfloor(a+b) / 2\rfloor$
- $F(x)$ : "0" never, " -1 " if $x<q$, " +1 " if $x \geq q$
- But first check if $F(y)=q \ldots$
- Given a function $F: D \rightarrow C$, such that:
- There exists a totally ordered set $S$ equipped with an $\operatorname{Avg}(a, b)$ operation
- $D$ is a bounded subset of $S: D=\left\{s \mid s \in S, D_{\min } \leq S, S \leq D_{\max }\right\}$
- $C=\{-1$ ("too early"), 0 ("just in time"),+1 ("too late") $\}$
- Monotonicity: Whenever $a<b, F(a) \leq F(b)$
- Need to find $x \in D$ such that $F(x)=0$
- Or, if impossible, find $x, y$ as near as possible, such that $F(x)=-1, F(y)=1$

Example: Find a root of a monotonically growing function $f$

- Given a function $F: D \rightarrow C$, such that:
- There exists a totally ordered set $S$ equipped with an $\operatorname{Avg}(a, b)$ operation
- $D$ is a bounded subset of $S: D=\left\{s \mid s \in S, D_{\min } \leq S, S \leq D_{\max }\right\}$
- $C=\{-1$ ("too early"), 0 ("just in time"),+1 ("too late") $\}$
- Monotonicity: Whenever $a<b, F(a) \leq F(b)$
- Need to find $x \in D$ such that $F(x)=0$
- Or, if impossible, find $x, y$ as near as possible, such that $F(x)=-1, F(y)=1$

Example: Find a root of a monotonically growing function $f$

- $D=[\mathrm{min} ; \max ]$ : the segment of $\mathbb{R}$ which we are interested in
- $\operatorname{AvG}(a, b)=(a+b) / 2$
- $F(x)$ : " 0 " if $f(x)=0, "-1$ " if $f(x)<0, "+1$ " if $f(x)>0$
- Given a function $F: D \rightarrow C$, such that:
- There exists a totally ordered set $S$ equipped with an $\operatorname{Avg}(a, b)$ operation
- $D$ is a bounded subset of $S: D=\left\{s \mid s \in S, D_{\min } \leq S, S \leq D_{\max }\right\}$
- $C=\{-1$ ("too early"), 0 ("just in time"),+1 ("too late") $\}$
- Monotonicity: Whenever $a<b, F(a) \leq F(b)$
- Need to find $x \in D$ such that $F(x)=0$
- Or, if impossible, find $x, y$ as near as possible, such that $F(x)=-1, F(y)=1$

Example: Find a root of a monotonically growing function $f$

- $D=[\mathrm{min} ; \max ]$ : the segment of $\mathbb{R}$ which we are interested in
- $\operatorname{Avg}(a, b)=(a+b) / 2$
- $F(x)$ : " 0 " if $f(x)=0, "-1$ " if $f(x)<0, "+1$ " if $f(x)>0$
- Warning: you are unlikely to find the root exactly...

```
function BinarySearch \(\left(F, A v g, D_{\min }, D_{\max }\right)\)
    \(L \leftarrow D_{\text {min }}, R \leftarrow D_{\text {max }}, V_{\min } \leftarrow F(L), V_{\max } \leftarrow F(R)\)
    if \(V_{\text {min }}=1\) then return \(\left\langle\right.\) NuLL, \(\left.D_{\text {min }}\right\rangle\) end if
    if \(V_{\max }=-1\) then return \(\left\langle D_{\text {max }}\right.\), NULL \(\rangle\) end if
    if \(V_{\text {min }}=0\) then return \(\left\langle D_{\text {min }}, \quad D_{\text {min }}\right\rangle\) end if
    if \(V_{\max }=0\) then return \(\left\langle D_{\max }, D_{\max }\right\rangle\) end if
    for ever do
        \(M \leftarrow \operatorname{AvG}(L, R)\)
    if \(M=L\) or \(M=R\) then return \(\langle L, R\rangle\) end if
    \(v \leftarrow F(M)\)
    if \(v=0\) then return \(\langle M, M\rangle\) end if
    if \(v=-1\) then \(L \leftarrow M\) else \(R \leftarrow M\) end if
    end for
end function
```

```
function BinarySearch \(\left(F, A v g, D_{\text {min }}, D_{\text {max }}\right)\)
    \(L \leftarrow D_{\min }, R \leftarrow D_{\max }, V_{\min } \leftarrow F(L), V_{\max } \leftarrow F(R) \quad \triangleright\) First evaluate endpoints
    if \(V_{\text {min }}=1\) then return \(\left\langle\right.\) NuLL, \(\left.D_{\text {min }}\right\rangle\) end if
    if \(V_{\max }=-1\) then return \(\left\langle D_{\text {max }}\right.\), NuLL \(\rangle\) end if
    if \(V_{\text {min }}=0\) then return \(\left\langle D_{\text {min }}, \quad D_{\text {min }}\right\rangle\) end if
    if \(V_{\max }=0\) then return \(\left\langle D_{\max }, D_{\max }\right\rangle\) end if
    for ever do
    \(M \leftarrow \operatorname{AvG}(L, R)\)
    if \(M=L\) or \(M=R\) then return \(\langle L, R\rangle\) end if
    \(v \leftarrow F(M)\)
    if \(v=0\) then return \(\langle M, M\rangle\) end if
    if \(v=-1\) then \(L \leftarrow M\) else \(R \leftarrow M\) end if
    end for
end function
```

```
function Binary SEARCH \(\left(F, \operatorname{Avg}, D_{\min }, D_{\max }\right)\)
    \(L \leftarrow D_{\min }, R \leftarrow D_{\max }, V_{\min } \leftarrow F(L), V_{\max } \leftarrow F(R) \quad \triangleright\) First evaluate endpoints
    if \(V_{\text {min }}=1\) then return \(\left\langle N U L L, D_{\min }\right\rangle\) end if
    if \(V_{\max }=-1\) then return \(\left\langle D_{\max }, N\right.\) UL \(\rangle\) end if
    if \(V_{\min }=0\) then return \(\left\langle D_{\min }, \quad D_{\min }\right\rangle\) end if
    if \(V_{\max }=0\) then return \(\left\langle D_{\max }, D_{\max }\right\rangle\) end if
    for ever do
    \(M \leftarrow \operatorname{Avg}(L, R)\)
    if \(M=L\) or \(M=R\) then return \(\langle L, R\rangle\) end if
    \(v \leftarrow F(M)\)
    if \(v=0\) then return \(\langle M, M\rangle\) end if
    if \(v=-1\) then \(L \leftarrow M\) else \(R \leftarrow M\) end if
    end for
end function
```

function BinarySearch $\left(F, \operatorname{Avg}, D_{\text {min }}, D_{\text {max }}\right)$
$L \leftarrow D_{\text {min }}, R \leftarrow D_{\text {max }}, V_{\text {min }} \leftarrow F(L), V_{\max } \leftarrow F(R) \quad \triangleright$ First evaluate endpoints
if $V_{\text {min }}=1$ then return $\left\langle\mathrm{NuLL}, D_{\text {min }}\right\rangle$ end if
if $V_{\max }=-1$ then return $\left\langle D_{\max }\right.$, NULL $\rangle$ end if
if $V_{\text {min }}=0$ then return $\left\langle D_{\text {min }}, \quad D_{\text {min }}\right\rangle$ end if
if $V_{\max }=0$ then return $\left\langle D_{\max }, D_{\max }\right\rangle$ end if
for ever do
$M \leftarrow \operatorname{AvG}(L, R)$
if $M=L$ or $M=R$ then return $\langle L, R\rangle$ end if
$v \leftarrow F(M)$
if $v=0$ then return $\langle M, M\rangle$ end if
if $v=-1$ then $L \leftarrow M$ else $R \leftarrow M$ end if
end for
end function
function BinarySearch $\left(F, \operatorname{Avg}, D_{\text {min }}, D_{\text {max }}\right)$
$L \leftarrow D_{\text {min }}, R \leftarrow D_{\text {max }}, V_{\text {min }} \leftarrow F(L), V_{\max } \leftarrow F(R) \quad \triangleright$ First evaluate endpoints
if $V_{\text {min }}=1$ then return $\left\langle\right.$ NuLL, $\left.D_{\text {min }}\right\rangle$ end if
if $V_{\max }=-1$ then return $\left\langle D_{\text {max }}\right.$, NULL $\rangle$ end if
if $V_{\text {min }}=0$ then return $\left\langle D_{\text {min }}, \quad D_{\text {min }}\right\rangle$ end if
if $V_{\max }=0$ then return $\left\langle D_{\max }, D_{\max }\right\rangle$ end if
for ever do
$M \leftarrow \operatorname{AvG}(L, R)$
if $M=L$ or $M=R$ then return $\langle L, R\rangle$ end if
$v \leftarrow F(M)$
if $v=0$ then return $\langle M, M\rangle$ end if
if $v=-1$ then $L \leftarrow M$ else $R \leftarrow M$ end if
end for
end function
function BinarySearch $\left(F, \operatorname{Avg}, D_{\text {min }}, D_{\text {max }}\right)$
$L \leftarrow D_{\text {min }}, R \leftarrow D_{\text {max }}, V_{\text {min }} \leftarrow F(L), V_{\max } \leftarrow F(R) \quad \triangleright$ First evaluate endpoints
if $V_{\text {min }}=1$ then return $\left\langle\mathrm{NuLL}, D_{\text {min }}\right\rangle$ end if
if $V_{\max }=-1$ then return $\left\langle D_{\max }\right.$, NULL $\rangle$ end if
if $V_{\text {min }}=0$ then return $\left\langle D_{\text {min }}, \quad D_{\text {min }}\right\rangle$ end if
if $V_{\max }=0$ then return $\left\langle D_{\max }, D_{\max }\right\rangle$ end if
for ever do
$M \leftarrow \operatorname{AvG}(L, R)$
if $M=L$ or $M=R$ then return $\langle L, R\rangle$ end if
$v \leftarrow F(M)$
if $v=0$ then return $\langle M, M\rangle$ end if
if $v=-1$ then $L \leftarrow M$ else $R \leftarrow M$ end if
end for
end function
function Binary Search $\left(F\right.$, Avg, $\left.D_{\text {min }}, D_{\max }\right)$
$L \leftarrow D_{\text {min }}, R \leftarrow D_{\text {max }}, V_{\text {min }} \leftarrow F(L), V_{\max } \leftarrow F(R) \quad \triangleright$ First evaluate endpoints
if $V_{\text {min }}=1$ then return $\left\langle\mathrm{NuLL}, D_{\text {min }}\right\rangle$ end if
if $V_{\max }=-1$ then return $\left\langle D_{\max }\right.$, NULL $\rangle$ end if
if $V_{\text {min }}=0$ then return $\left\langle D_{\text {min }}, \quad D_{\text {min }}\right\rangle$ end if
if $V_{\max }=0$ then return $\left\langle D_{\max }, D_{\max }\right\rangle$ end if $\triangleright$ If true, no zeros at all $\triangleright$ If true, no zeros at all $\triangleright$ If true, zero is found
$\triangleright$ If true, zero is found
for ever do
$\triangleright$ Invariant: $F(L)=-1, F(R)=1$
$M \leftarrow \operatorname{AvG}(L, R)$
if $M=L$ or $M=R$ then return $\langle L, R\rangle$ end if
$v \leftarrow F(M)$
if $v=0$ then return $\langle M, M\rangle$ end if
if $v=-1$ then $L \leftarrow M$ else $R \leftarrow M$ end if
end for
end function
function BinarySearch $\left(F, \operatorname{Avg}, D_{\text {min }}, D_{\text {max }}\right)$
$L \leftarrow D_{\text {min }}, R \leftarrow D_{\text {max }}, V_{\text {min }} \leftarrow F(L), V_{\max } \leftarrow F(R) \quad \triangleright$ First evaluate endpoints
if $V_{\text {min }}=1$ then return $\left\langle\mathrm{NuLL}, D_{\text {min }}\right\rangle$ end if
if $V_{\max }=-1$ then return $\left\langle D_{\max }\right.$, NULL $\rangle$ end if
if $V_{\text {min }}=0$ then return $\left\langle D_{\text {min }}, \quad D_{\text {min }}\right\rangle$ end if
if $V_{\max }=0$ then return $\left\langle D_{\max }, D_{\max }\right\rangle$ end if $\triangleright$ If true, no zeros at all $\triangleright$ If true, no zeros at all $\triangleright$ If true, zero is found
$\triangleright$ If true, zero is found
for ever do
$M \leftarrow \operatorname{AvG}(L, R)$
$\triangleright$ Invariant: $F(L)=-1, F(R)=1$
$\triangleright$ Getting new query point
if $M=L$ or $M=R$ then return $\langle L, R\rangle$ end if
$v \leftarrow F(M)$
if $v=0$ then return $\langle M, M\rangle$ end if
if $v=-1$ then $L \leftarrow M$ else $R \leftarrow M$ end if
end for
end function
function BinarySearch $\left(F, \operatorname{Avg}, D_{\text {min }}, D_{\text {max }}\right)$
$L \leftarrow D_{\text {min }}, R \leftarrow D_{\text {max }}, V_{\text {min }} \leftarrow F(L), V_{\max } \leftarrow F(R) \quad \triangleright$ First evaluate endpoints
if $V_{\text {min }}=1$ then return $\left\langle\mathrm{NuLL}, D_{\text {min }}\right\rangle$ end if
if $V_{\max }=-1$ then return $\left\langle D_{\max }\right.$, NULL $\rangle$ end if
if $V_{\text {min }}=0$ then return $\left\langle D_{\text {min }}, \quad D_{\text {min }}\right\rangle$ end if
if $V_{\max }=0$ then return $\left\langle D_{\max }, D_{\max }\right\rangle$ end if $\triangleright$ If true, no zeros at all $\triangleright$ If true, no zeros at all $\triangleright$ If true, zero is found
$\triangleright$ If true, zero is found
for ever do
$M \leftarrow \operatorname{AvG}(L, R)$
$\triangleright$ Invariant: $F(L)=-1, F(R)=1$
if $M=L$ or $M=R$ then return $\langle L, R\rangle$ end if $\triangleright$ Getting new query point
$v \leftarrow F(M)$
if $v=0$ then return $\langle M, M\rangle$ end if
if $v=-1$ then $L \leftarrow M$ else $R \leftarrow M$ end if
end for
end function
function BinarySearch $\left(F, \operatorname{Avg}, D_{\text {min }}, D_{\text {max }}\right)$
$L \leftarrow D_{\text {min }}, R \leftarrow D_{\text {max }}, V_{\text {min }} \leftarrow F(L), V_{\max } \leftarrow F(R) \quad \triangleright$ First evaluate endpoints
if $V_{\text {min }}=1$ then return $\left\langle\mathrm{NuLL}, D_{\text {min }}\right\rangle$ end if
if $V_{\max }=-1$ then return $\left\langle D_{\max }\right.$, NULL $\rangle$ end if
if $V_{\text {min }}=0$ then return $\left\langle D_{\text {min }}, \quad D_{\text {min }}\right\rangle$ end if
if $V_{\max }=0$ then return $\left\langle D_{\max }, D_{\max }\right\rangle$ end if $\triangleright$ If true, no zeros at all $\triangleright$ If true, no zeros at all $\triangleright$ If true, zero is found
$\triangleright$ If true, zero is found

## for ever do

$M \leftarrow \operatorname{AvG}(L, R)$
$\triangleright$ Invariant: $F(L)=-1, F(R)=1$
$\triangleright$ Getting new query point
if $M=L$ or $M=R$ then return $\langle L, R\rangle$ end if
$v \leftarrow F(M)$
if $v=0$ then return $\langle M, M\rangle$ end if
if $v=-1$ then $L \leftarrow M$ else $R \leftarrow M$ end if
end for
end function
function BinarySearch $\left(F, \operatorname{Avg}, D_{\text {min }}, D_{\text {max }}\right)$
$L \leftarrow D_{\text {min }}, R \leftarrow D_{\text {max }}, V_{\text {min }} \leftarrow F(L), V_{\max } \leftarrow F(R) \quad \triangleright$ First evaluate endpoints
if $V_{\text {min }}=1$ then return $\left\langle\right.$ NuLL, $\left.D_{\text {min }}\right\rangle$ end if
if $V_{\max }=-1$ then return $\left\langle D_{\text {max }}\right.$, NULL $\rangle$ end if
if $V_{\text {min }}=0$ then return $\left\langle D_{\text {min }}, \quad D_{\text {min }}\right\rangle$ end if
if $V_{\max }=0$ then return $\left\langle D_{\max }, D_{\max }\right\rangle$ end if $\triangleright$ If true, no zeros at all $\triangleright$ If true, no zeros at all $\triangleright$ If true, zero is found
$\triangleright$ If true, zero is found
for ever do
$M \leftarrow \operatorname{AvG}(L, R)$
$\triangleright$ Invariant: $F(L)=-1, F(R)=1$
if $M=L$ or $M=R$ then return $\langle L, R\rangle$ end if
$v \leftarrow F(M)$
if $v=0$ then return $\langle M, M\rangle$ end if $\triangleright$ Getting new query point $\triangleright(L, R)$ empty $\rightarrow$ no zeros $\triangleright$ Evaluating $M$
if $v=-1$ then $L \leftarrow M$ else $R \leftarrow M$ end if
end for
end function
function BinarySearch $\left(F, \operatorname{Avg}, D_{\text {min }}, D_{\text {max }}\right)$
$L \leftarrow D_{\text {min }}, R \leftarrow D_{\text {max }}, V_{\text {min }} \leftarrow F(L), V_{\max } \leftarrow F(R) \quad \triangleright$ First evaluate endpoints
if $V_{\text {min }}=1$ then return $\left\langle N U L L, D_{\text {min }}\right\rangle$ end if $\quad \triangleright$ If true, no zeros at all
if $V_{\max }=-1$ then return $\left\langle D_{\max }\right.$, NULL $\rangle$ end if
if $V_{\text {min }}=0$ then return $\left\langle D_{\text {min }}, \quad D_{\text {min }}\right\rangle$ end if
if $V_{\max }=0$ then return $\left\langle D_{\max }, D_{\max }\right\rangle$ end if $\triangleright$ If true, no zeros at all $\triangleright$ If true, zero is found
$\triangleright$ If true, zero is found
for ever do
$\triangleright$ Invariant: $F(L)=-1, F(R)=1$
$M \leftarrow \operatorname{AvG}(L, R)$
$\triangleright$ Getting new query point
if $M=L$ or $M=R$ then return $\langle L, R\rangle$ end if
$v \leftarrow F(M)$
if $v=0$ then return $\langle M, M\rangle$ end if $\triangleright(L, R)$ empty $\rightarrow$ no zeros $\triangleright$ Evaluating $M$
if $v=-1$ then $L \leftarrow M$ else $R \leftarrow M$ end if $\quad$ "Too early": use right part
end for
end function
function BinarySearch $\left(F, \operatorname{Avg}, D_{\text {min }}, D_{\text {max }}\right)$
$L \leftarrow D_{\text {min }}, R \leftarrow D_{\text {max }}, V_{\text {min }} \leftarrow F(L), V_{\max } \leftarrow F(R) \quad \triangleright$ First evaluate endpoints
if $V_{\text {min }}=1$ then return $\left\langle N U L L, D_{\text {min }}\right\rangle$ end if $\quad \triangleright$ If true, no zeros at all
if $V_{\max }=-1$ then return $\left\langle D_{\max }\right.$, NULL $\rangle$ end if
if $V_{\text {min }}=0$ then return $\left\langle D_{\text {min }}, \quad D_{\text {min }}\right\rangle$ end if
if $V_{\max }=0$ then return $\left\langle D_{\max }, D_{\max }\right\rangle$ end if $\triangleright$ If true, no zeros at all $\triangleright$ If true, zero is found
$\triangleright$ If true, zero is found
for ever do
$M \leftarrow \operatorname{AvG}(L, R)$
if $M=L$ or $M=R$ then return $\langle L, R\rangle$ end if
$v \leftarrow F(M)$
if $v=0$ then return $\langle M, M\rangle$ end if
if $v=-1$ then $L \leftarrow M$ else $R \leftarrow M$ end if
end for
$\triangleright$ Invariant: $F(L)=-1, F(R)=1$
$\triangleright$ Getting new query point $\triangleright(L, R)$ empty $\rightarrow$ no zeros $\triangleright$ Evaluating $M$
$\triangleright$ Direct hit!
$\triangleright$ "Too early": use right part - "Too late": use left part

## Termination

Termination

- Guaranteed to terminate if $D$ is finite

Termination

- Guaranteed to terminate if $D$ is finite
- Proof: $[L, R]$ shrinks at least by one item on every iteration

Correctness

Termination

- Guaranteed to terminate if $D$ is finite
- Proof: $[L, R]$ shrinks at least by one item on every iteration

Correctness

- Loop invariant: $F(L)=-1, F(R)=1$

Termination

- Guaranteed to terminate if $D$ is finite
- Proof: $[L, R]$ shrinks at least by one item on every iteration

Correctness

- Loop invariant: $F(L)=-1, F(R)=1$
- Zeros are always between $\rightarrow$ will be found if exist

Termination

- Guaranteed to terminate if $D$ is finite
- Proof: $[L, R]$ shrinks at least by one item on every iteration

Correctness

- Loop invariant: $F(L)=-1, F(R)=1$
- Zeros are always between $\rightarrow$ will be found if exist
- Nonexisting zeros: will report a point where -1 switches to 1

Running time

Termination

- Guaranteed to terminate if $D$ is finite
- Proof: $[L, R]$ shrinks at least by one item on every iteration

Correctness

- Loop invariant: $F(L)=-1, F(R)=1$
- Zeros are always between $\rightarrow$ will be found if exist
- Nonexisting zeros: will report a point where -1 switches to 1

Running time

- Strongly depends on properties of Avg

Termination

- Guaranteed to terminate if $D$ is finite
- Proof: $[L, R]$ shrinks at least by one item on every iteration

Correctness

- Loop invariant: $F(L)=-1, F(R)=1$
- Zeros are always between $\rightarrow$ will be found if exist
- Nonexisting zeros: will report a point where -1 switches to 1

Running time

- Strongly depends on properties of Avg
- If Avg is a "real" average, the running time is $O(\log D)$
- the size of $[L ; R)$ range is divided by two on every iteration

