

ITMO UNIVERSITY

How to Win Coding Competitions: Secrets of Champions

Week 3: Sorting and Search Algorithms Lecture 10: Introduction to binary search

Maxim Buzdalov Saint Petersburg 2016

Recall the example from Lecture 1: how to search in sorted data

This is an example of binary search. We will have more in this video

Binary search – Problem to solve

Binary search – Problem to solve

A very general form of binary search

• Given a function $F : D \rightarrow C$, such that:

- Given a function $F : D \rightarrow C$, such that:
 - ► There exists a totally ordered set *S* equipped with an average-of-two operation

- Given a function $F : D \rightarrow C$, such that:
 - ► There exists a totally ordered set *S* equipped with an average-of-two operation
 - We will write it AVG(a, b) for arguments a and b
 - AVG(a, b) should be between a and b and should not be equal to neither a nor b, unless there is no element of S between a and b

- Given a function $F : D \rightarrow C$, such that:
 - ► There exists a totally ordered set *S* equipped with an average-of-two operation
 - We will write it AVG(a, b) for arguments a and b
 - AVG(a, b) should be between a and b and should not be equal to neither a nor b, unless there is no element of S between a and b
 - ▶ *D* is a bounded subset of *S*: $D = \{s \mid s \in S, D_{\min} \leq S, S \leq D_{\max}\}$
 - ▶ Simply speaking, a piece of S between D_{min} and D_{max}

- Given a function $F : D \rightarrow C$, such that:
 - ► There exists a totally ordered set *S* equipped with an average-of-two operation
 - We will write it AVG(a, b) for arguments a and b
 - ► AVG(a, b) should be between a and b and should not be equal to neither a nor b, unless there is no element of S between a and b
 - ▶ *D* is a bounded subset of *S*: $D = \{s \mid s \in S, D_{\min} \leq S, S \leq D_{\max}\}$
 - Simply speaking, a piece of S between D_{\min} and D_{\max}
 - $C = \{-1, 0, +1\}$ with the following meanings:
 - ▶ -1: "too early"
 - ▶ 0: "just in time"
 - ► +1: "too late"

- Given a function $F : D \rightarrow C$, such that:
 - ► There exists a totally ordered set *S* equipped with an average-of-two operation
 - We will write it AVG(a, b) for arguments a and b
 - AVG(a, b) should be between a and b and should not be equal to neither a nor b, unless there is no element of S between a and b
 - ▶ *D* is a bounded subset of *S*: $D = \{s \mid s \in S, D_{\min} \leq S, S \leq D_{\max}\}$
 - Simply speaking, a piece of S between D_{\min} and D_{\max}
 - $C = \{-1, 0, +1\}$ with the following meanings:
 - ▶ -1: "too early"
 - ▶ 0: "just in time"
 - ► +1: "too late"
 - Monotonicity: Whenever a < b, $F(a) \le F(b)$

- Given a function $F : D \rightarrow C$, such that:
 - ► There exists a totally ordered set *S* equipped with an average-of-two operation
 - We will write it AVG(a, b) for arguments a and b
 - ► AVG(a, b) should be between a and b and should not be equal to neither a nor b, unless there is no element of S between a and b
 - ▶ *D* is a bounded subset of *S*: $D = \{s \mid s \in S, D_{\min} \leq S, S \leq D_{\max}\}$
 - Simply speaking, a piece of S between D_{\min} and D_{\max}
 - $C = \{-1, 0, +1\}$ with the following meanings:
 - ▶ -1: "too early"
 - ▶ 0: "just in time"
 - ► +1: "too late"
 - Monotonicity: Whenever a < b, $F(a) \le F(b)$
- Need to find $x \in D$ such that F(x) = 0

- Given a function $F : D \rightarrow C$, such that:
 - ► There exists a totally ordered set *S* equipped with an average-of-two operation
 - We will write it AVG(a, b) for arguments a and b
 - ► AVG(a, b) should be between a and b and should not be equal to neither a nor b, unless there is no element of S between a and b
 - ▶ *D* is a bounded subset of *S*: $D = \{s \mid s \in S, D_{\min} \leq S, S \leq D_{\max}\}$
 - Simply speaking, a piece of S between D_{\min} and D_{\max}
 - $C = \{-1, 0, +1\}$ with the following meanings:
 - ▶ -1: "too early"
 - ▶ 0: "just in time"
 - ▶ +1: "too late"
 - Monotonicity: Whenever a < b, $F(a) \le F(b)$
- Need to find $x \in D$ such that F(x) = 0
 - Or, if impossible, find x and y as near as possible, such that F(x) = -1, F(y) = 1

- Given a function $F : D \rightarrow C$, such that:
 - There exists a totally ordered set S equipped with an AVG(a, b) operation
 - ▶ *D* is a bounded subset of *S*: $D = \{s \mid s \in S, D_{\min} \leq S, S \leq D_{\max}\}$
 - ► C = {-1 ("too early"), 0 ("just in time"), +1 ("too late")}
 - Monotonicity: Whenever a < b, $F(a) \leq F(b)$
- Need to find $x \in D$ such that F(x) = 0
 - Or, if impossible, find x, y as near as possible, such that F(x) = -1, F(y) = 1

- Given a function $F : D \rightarrow C$, such that:
 - There exists a totally ordered set S equipped with an Avg(a, b) operation
 - ▶ *D* is a bounded subset of *S*: $D = \{s \mid s \in S, D_{\min} \leq S, S \leq D_{\max}\}$
 - ► C = {-1 ("too early"), 0 ("just in time"), +1 ("too late")}
 - Monotonicity: Whenever a < b, $F(a) \leq F(b)$
- Need to find $x \in D$ such that F(x) = 0
 - Or, if impossible, find x, y as near as possible, such that F(x) = -1, F(y) = 1

Example: Find where q is in a sorted array

- Given a function $F : D \rightarrow C$, such that:
 - There exists a totally ordered set S equipped with an Avg(a, b) operation
 - ▶ *D* is a bounded subset of *S*: $D = \{s \mid s \in S, D_{\min} \leq S, S \leq D_{\max}\}$
 - ► C = {-1 ("too early"), 0 ("just in time"), +1 ("too late")}
 - Monotonicity: Whenever a < b, $F(a) \leq F(b)$
- Need to find $x \in D$ such that F(x) = 0
 - Or, if impossible, find x, y as near as possible, such that F(x) = -1, F(y) = 1

Example: Find where q is in a sorted array

- D = [1; N]: the set of array indices, ordered naturally
- $\operatorname{AvG}(a, b) = \lfloor (a + b)/2 \rfloor$
- F(x): "0" if q = x, "-1" if x < q, "+1" if x > q

- Given a function $F : D \rightarrow C$, such that:
 - There exists a totally ordered set S equipped with an AVG(a, b) operation
 - ▶ *D* is a bounded subset of *S*: $D = \{s \mid s \in S, D_{\min} \leq S, S \leq D_{\max}\}$
 - ► C = {-1 ("too early"), 0 ("just in time"), +1 ("too late")}
 - Monotonicity: Whenever a < b, $F(a) \leq F(b)$
- Need to find $x \in D$ such that F(x) = 0
 - Or, if impossible, find x, y as near as possible, such that F(x) = -1, F(y) = 1

Example: Find where q is in a sorted array

- D = [1; N]: the set of array indices, ordered naturally
- $\operatorname{AvG}(a, b) = \lfloor (a + b)/2 \rfloor$
- F(x): "0" if q = x, "-1" if x < q, "+1" if x > q
- If no such element, "0" is infeasible: then you will find where to insert q

- Given a function $F : D \rightarrow C$, such that:
 - There exists a totally ordered set S equipped with an Avg(a, b) operation
 - ▶ *D* is a bounded subset of *S*: $D = \{s \mid s \in S, D_{\min} \leq S, S \leq D_{\max}\}$
 - ► C = {-1 ("too early"), 0 ("just in time"), +1 ("too late")}
 - Monotonicity: Whenever a < b, $F(a) \leq F(b)$
- Need to find $x \in D$ such that F(x) = 0
 - Or, if impossible, find x, y as near as possible, such that F(x) = -1, F(y) = 1

Example: Find first occurence of q in a sorted array

- Given a function $F : D \rightarrow C$, such that:
 - There exists a totally ordered set S equipped with an Avg(a, b) operation
 - ▶ *D* is a bounded subset of *S*: $D = \{s \mid s \in S, D_{\min} \leq S, S \leq D_{\max}\}$
 - ► C = {-1 ("too early"), 0 ("just in time"), +1 ("too late")}
 - Monotonicity: Whenever a < b, $F(a) \leq F(b)$
- Need to find $x \in D$ such that F(x) = 0
 - Or, if impossible, find x, y as near as possible, such that F(x) = -1, F(y) = 1

Example: Find first occurence of q in a sorted array

- D = [1; N]: the set of array indices, ordered naturally
- $\operatorname{AvG}(a, b) = \lfloor (a + b)/2 \rfloor$
- F(x): "0" never, "-1" if x < q, "+1" if $x \ge q$

- Given a function $F : D \rightarrow C$, such that:
 - There exists a totally ordered set S equipped with an Avg(a, b) operation
 - ▶ *D* is a bounded subset of *S*: $D = \{s \mid s \in S, D_{\min} \leq S, S \leq D_{\max}\}$
 - ► C = {-1 ("too early"), 0 ("just in time"), +1 ("too late")}
 - Monotonicity: Whenever a < b, $F(a) \le F(b)$
- Need to find $x \in D$ such that F(x) = 0
 - Or, if impossible, find x, y as near as possible, such that F(x) = -1, F(y) = 1

Example: Find first occurence of q in a sorted array

- D = [1; N]: the set of array indices, ordered naturally
- $\operatorname{AvG}(a, b) = \lfloor (a + b)/2 \rfloor$
- F(x): "0" never, "-1" if x < q, "+1" if $x \ge q$
- But first check if F(y) = q...

- Given a function $F : D \rightarrow C$, such that:
 - There exists a totally ordered set S equipped with an Avg(a, b) operation
 - ▶ *D* is a bounded subset of *S*: $D = \{s \mid s \in S, D_{\min} \leq S, S \leq D_{\max}\}$
 - ► C = {-1 ("too early"), 0 ("just in time"), +1 ("too late")}
 - Monotonicity: Whenever a < b, $F(a) \leq F(b)$
- Need to find $x \in D$ such that F(x) = 0
 - Or, if impossible, find x, y as near as possible, such that F(x) = -1, F(y) = 1

Example: Find a root of a monotonically growing function f

- Given a function $F : D \rightarrow C$, such that:
 - There exists a totally ordered set S equipped with an Avg(a, b) operation
 - ▶ *D* is a bounded subset of *S*: $D = \{s \mid s \in S, D_{\min} \leq S, S \leq D_{\max}\}$
 - ► C = {-1 ("too early"), 0 ("just in time"), +1 ("too late")}
 - Monotonicity: Whenever a < b, $F(a) \le F(b)$
- Need to find $x \in D$ such that F(x) = 0
 - Or, if impossible, find x, y as near as possible, such that F(x) = -1, F(y) = 1

Example: Find a root of a monotonically growing function f

- D = [min; max]: the segment of \mathbb{R} which we are interested in
- $\operatorname{AvG}(a, b) = (a + b)/2$
- F(x): "0" if f(x) = 0, "-1" if f(x) < 0, "+1" if f(x) > 0

- Given a function $F : D \rightarrow C$, such that:
 - There exists a totally ordered set S equipped with an AVG(a, b) operation
 - ▶ *D* is a bounded subset of *S*: $D = \{s \mid s \in S, D_{\min} \leq S, S \leq D_{\max}\}$
 - ► C = {-1 ("too early"), 0 ("just in time"), +1 ("too late")}
 - Monotonicity: Whenever a < b, $F(a) \le F(b)$
- Need to find $x \in D$ such that F(x) = 0
 - Or, if impossible, find x, y as near as possible, such that F(x) = -1, F(y) = 1

Example: Find a root of a monotonically growing function f

- D = [min; max]: the segment of \mathbb{R} which we are interested in
- $\operatorname{AvG}(a, b) = (a + b)/2$
- F(x): "0" if f(x) = 0, "-1" if f(x) < 0, "+1" if f(x) > 0
- ► Warning: you are unlikely to find the root exactly...

function BINARYSEARCH(F, AVG, D_{min} , D_{max}) $L \leftarrow D_{\min}, R \leftarrow D_{\max}, V_{\min} \leftarrow F(L), V_{\max} \leftarrow F(R)$ if $V_{\min} = 1$ then return (NULL, D_{\min}) end if if $V_{\max} = -1$ then return $\langle D_{\max}, \text{Null} \rangle$ end if if $V_{\min} = 0$ then return $\langle D_{\min}, D_{\min} \rangle$ end if if $V_{\text{max}} = 0$ then return $\langle D_{\text{max}}, D_{\text{max}} \rangle$ end if for ever do $M \leftarrow \operatorname{Avg}(L, R)$ if M = L or M = R then return $\langle L, R \rangle$ end if $v \leftarrow F(M)$ if v = 0 then return $\langle M, M \rangle$ end if if v = -1 then $L \leftarrow M$ else $R \leftarrow M$ end if end for end function

function BINARYSEARCH(F, AVG, D_{min} , D_{max}) $L \leftarrow D_{\min}, R \leftarrow D_{\max}, V_{\min} \leftarrow F(L), V_{\max} \leftarrow F(R)$ ▷ First evaluate endpoints if $V_{\min} = 1$ then return (NULL, D_{\min}) end if if $V_{\max} = -1$ then return $\langle D_{\max}, \text{Null} \rangle$ end if if $V_{\min} = 0$ then return $\langle D_{\min}, D_{\min} \rangle$ end if if $V_{\text{max}} = 0$ then return $\langle D_{\text{max}}, D_{\text{max}} \rangle$ end if for ever do $M \leftarrow \operatorname{Avg}(L, R)$ if M = L or M = R then return $\langle L, R \rangle$ end if $v \leftarrow F(M)$ if v = 0 then return $\langle M, M \rangle$ end if if v = -1 then $L \leftarrow M$ else $R \leftarrow M$ end if end for end function

function BINARYSEARCH(F, AVG, D_{min} , D_{max}) $L \leftarrow D_{\min}, R \leftarrow D_{\max}, V_{\min} \leftarrow F(L), V_{\max} \leftarrow F(R)$ if $V_{\min} = 1$ then return (NULL, D_{\min}) end if if $V_{\text{max}} = -1$ then return $\langle D_{\text{max}}, \text{Null} \rangle$ end if if $V_{\min} = 0$ then return $\langle D_{\min}, D_{\min} \rangle$ end if if $V_{\text{max}} = 0$ then return $\langle D_{\text{max}}, D_{\text{max}} \rangle$ end if for ever do $M \leftarrow \operatorname{Avg}(L, R)$ if M = L or M = R then return $\langle L, R \rangle$ end if $v \leftarrow F(M)$ if v = 0 then return $\langle M, M \rangle$ end if if v = -1 then $L \leftarrow M$ else $R \leftarrow M$ end if end for end function

First evaluate endpointsIf true, no zeros at all

function BINARYSEARCH(F, AVG, D_{min} , D_{max}) $L \leftarrow D_{\min}, R \leftarrow D_{\max}, V_{\min} \leftarrow F(L), V_{\max} \leftarrow F(R)$ if $V_{\min} = 1$ then return (NULL, D_{\min}) end if if $V_{\text{max}} = -1$ then return $\langle D_{\text{max}}, \text{Null} \rangle$ end if if $V_{\min} = 0$ then return $\langle D_{\min}, D_{\min} \rangle$ end if if $V_{\text{max}} = 0$ then return $\langle D_{\text{max}}, D_{\text{max}} \rangle$ end if for ever do $M \leftarrow \operatorname{Avg}(L, R)$ if M = L or M = R then return $\langle L, R \rangle$ end if $v \leftarrow F(M)$ if v = 0 then return $\langle M, M \rangle$ end if if v = -1 then $L \leftarrow M$ else $R \leftarrow M$ end if end for end function

▷ First evaluate endpoints
 ▷ If true, no zeros at all
 ▷ If true, no zeros at all

function BINARYSEARCH(F, AVG, D_{\min} , D_{\max}) $L \leftarrow D_{\min}$, $R \leftarrow D_{\max}$, $V_{\min} \leftarrow F(L)$, $V_{\max} \leftarrow F(R)$ if $V_{\min} = 1$ then return $\langle NULL, D_{\min} \rangle$ end if if $V_{\max} = -1$ then return $\langle D_{\max}, NULL \rangle$ end if if $V_{\min} = 0$ then return $\langle D_{\min}, D_{\min} \rangle$ end if if $V_{\max} = 0$ then return $\langle D_{\max}, D_{\max} \rangle$ end if for ever do $M \leftarrow AvG(L, R)$

▷ First evaluate endpoints
 ▷ If true, no zeros at all
 ▷ If true, no zeros at all
 ▷ If true, zero is found

```
M \leftarrow \operatorname{Avg}(L, R)

if M = L or M = R then return \langle L, R \rangle end if

v \leftarrow F(M)

if v = 0 then return \langle M, M \rangle end if

if v = -1 then L \leftarrow M else R \leftarrow M end if

end for

end function
```


function BINARYSEARCH(F, AVG, D_{min} , D_{max}) $L \leftarrow D_{min}$, $R \leftarrow D_{max}$, $V_{min} \leftarrow F(L)$, $V_{max} \leftarrow F(R)$ if $V_{min} = 1$ then return $\langle NULL, D_{min} \rangle$ end if if $V_{max} = -1$ then return $\langle D_{max}, NULL \rangle$ end if if $V_{min} = 0$ then return $\langle D_{min}, D_{min} \rangle$ end if if $V_{max} = 0$ then return $\langle D_{max}, D_{max} \rangle$ end if for ever do

 $M \leftarrow \operatorname{AvG}(L, R)$ if M = L or M = R then return $\langle L, R \rangle$ end if $v \leftarrow F(M)$ if v = 0 then return $\langle M, M \rangle$ end if if v = -1 then $L \leftarrow M$ else $R \leftarrow M$ end if end for end function ▷ First evaluate endpoints
 ▷ If true, no zeros at all
 ▷ If true, no zeros at all
 ▷ If true, zero is found
 ▷ If true, zero is found

function BINARYSEARCH(F, AVG, D_{min} , D_{max}) $L \leftarrow D_{\min}, R \leftarrow D_{\max}, V_{\min} \leftarrow F(L), V_{\max} \leftarrow F(R)$ ▷ First evaluate endpoints if $V_{\min} = 1$ then return (NULL, D_{\min}) end if \triangleright If true. no zeros at all if $V_{\text{max}} = -1$ then return $\langle D_{\text{max}}, \text{Null} \rangle$ end if \triangleright If true, no zeros at all if $V_{\min} = 0$ then return $\langle D_{\min}, D_{\min} \rangle$ end if \triangleright If true. zero is found if $V_{\text{max}} = 0$ then return $\langle D_{\text{max}}, D_{\text{max}} \rangle$ end if \triangleright If true. zero is found \triangleright Invariant: F(L) = -1, F(R) = 1for ever do $M \leftarrow \operatorname{Avg}(L, R)$ if M = L or M = R then return $\langle L, R \rangle$ end if $v \leftarrow F(M)$ if v = 0 then return $\langle M, M \rangle$ end if if v = -1 then $L \leftarrow M$ else $R \leftarrow M$ end if end for end function

function BINARYSEARCH(F, AVG, D_{min} , D_{max}) $L \leftarrow D_{\min}, R \leftarrow D_{\max}, V_{\min} \leftarrow F(L), V_{\max} \leftarrow F(R)$ ▷ First evaluate endpoints if $V_{\min} = 1$ then return (NULL, D_{\min}) end if \triangleright If true. no zeros at all if $V_{\text{max}} = -1$ then return $\langle D_{\text{max}}, \text{Null} \rangle$ end if \triangleright If true, no zeros at all if $V_{\min} = 0$ then return $\langle D_{\min}, D_{\min} \rangle$ end if \triangleright If true. zero is found if $V_{\text{max}} = 0$ then return $\langle D_{\text{max}}, D_{\text{max}} \rangle$ end if \triangleright If true. zero is found \triangleright Invariant: F(L) = -1, F(R) = 1for ever do $M \leftarrow \operatorname{Avg}(L, R)$ ▷ Getting new query point if M = L or M = R then return $\langle L, R \rangle$ end if $v \leftarrow F(M)$ if v = 0 then return $\langle M, M \rangle$ end if if v = -1 then $L \leftarrow M$ else $R \leftarrow M$ end if end for end function

function BINARYSEARCH(F, AVG, D_{min} , D_{max}) $L \leftarrow D_{\min}, R \leftarrow D_{\max}, V_{\min} \leftarrow F(L), V_{\max} \leftarrow F(R)$ ▷ First evaluate endpoints if $V_{\min} = 1$ then return (NULL, D_{\min}) end if \triangleright If true. no zeros at all if $V_{\text{max}} = -1$ then return $\langle D_{\text{max}}, \text{Null} \rangle$ end if \triangleright If true, no zeros at all if $V_{\min} = 0$ then return $\langle D_{\min}, D_{\min} \rangle$ end if \triangleright If true. zero is found if $V_{\text{max}} = 0$ then return $\langle D_{\text{max}}, D_{\text{max}} \rangle$ end if \triangleright If true, zero is found \triangleright Invariant: F(L) = -1, F(R) = 1for ever do $M \leftarrow \operatorname{Avg}(L, R)$ ▷ Getting new query point if M = L or M = R then return (L, R) end if (L, R) empty \rightarrow no zeros $v \leftarrow F(M)$ if v = 0 then return $\langle M, M \rangle$ end if if v = -1 then $L \leftarrow M$ else $R \leftarrow M$ end if end for end function

function BINARYSEARCH(F, AVG, D_{min} , D_{max}) $L \leftarrow D_{\min}, R \leftarrow D_{\max}, V_{\min} \leftarrow F(L), V_{\max} \leftarrow F(R)$ ▷ First evaluate endpoints if $V_{\min} = 1$ then return (NULL, D_{\min}) end if \triangleright If true. no zeros at all if $V_{\text{max}} = -1$ then return $\langle D_{\text{max}}, \text{Null} \rangle$ end if \triangleright If true, no zeros at all if $V_{\min} = 0$ then return $\langle D_{\min}, D_{\min} \rangle$ end if \triangleright If true. zero is found if $V_{\text{max}} = 0$ then return $\langle D_{\text{max}}, D_{\text{max}} \rangle$ end if \triangleright If true, zero is found \triangleright Invariant: F(L) = -1, F(R) = 1for ever do $M \leftarrow \operatorname{Avg}(L, R)$ ▷ Getting new query point if M = L or M = R then return (L, R) end if (L, R) empty \rightarrow no zeros $v \leftarrow F(M)$ \triangleright Evaluating M if v = 0 then return $\langle M, M \rangle$ end if if v = -1 then $L \leftarrow M$ else $R \leftarrow M$ end if end for end function

function BINARYSEARCH(F, AVG, D_{min} , D_{max}) $L \leftarrow D_{\min}, R \leftarrow D_{\max}, V_{\min} \leftarrow F(L), V_{\max} \leftarrow F(R)$ ▷ First evaluate endpoints if $V_{\min} = 1$ then return (NULL, D_{\min}) end if \triangleright If true. no zeros at all if $V_{\text{max}} = -1$ then return $\langle D_{\text{max}}, \text{Null} \rangle$ end if \triangleright If true, no zeros at all if $V_{\min} = 0$ then return $\langle D_{\min}, D_{\min} \rangle$ end if \triangleright If true. zero is found if $V_{\text{max}} = 0$ then return $\langle D_{\text{max}}, D_{\text{max}} \rangle$ end if \triangleright If true. zero is found \triangleright Invariant: F(L) = -1, F(R) = 1for ever do $M \leftarrow \operatorname{Avg}(L, R)$ ▷ Getting new query point if M = L or M = R then return (L, R) end if (L, R) empty \rightarrow no zeros $v \leftarrow F(M)$ \triangleright Evaluating M if v = 0 then return $\langle M, M \rangle$ end if ▷ Direct hit! if v = -1 then $L \leftarrow M$ else $R \leftarrow M$ end if end for end function

function BINARYSEARCH(F, AVG, D_{min} , D_{max}) $L \leftarrow D_{\min}, R \leftarrow D_{\max}, V_{\min} \leftarrow F(L), V_{\max} \leftarrow F(R)$ ▷ First evaluate endpoints if $V_{\min} = 1$ then return (NULL, D_{\min}) end if \triangleright If true. no zeros at all if $V_{\text{max}} = -1$ then return $\langle D_{\text{max}}, \text{Null} \rangle$ end if \triangleright If true, no zeros at all if $V_{\min} = 0$ then return $\langle D_{\min}, D_{\min} \rangle$ end if \triangleright If true. zero is found if $V_{\text{max}} = 0$ then return $\langle D_{\text{max}}, D_{\text{max}} \rangle$ end if \triangleright If true, zero is found \triangleright Invariant: F(L) = -1, F(R) = 1for ever do $M \leftarrow \operatorname{Avg}(L, R)$ ▷ Getting new query point if M = L or M = R then return (L, R) end if $\triangleright (L, R)$ empty \rightarrow no zeros $v \leftarrow F(M)$ \triangleright Evaluating M if v = 0 then return $\langle M, M \rangle$ end if ▷ Direct hit! if v = -1 then $L \leftarrow M$ else $R \leftarrow M$ end if \triangleright "Too early": use right part end for end function

function BINARYSEARCH(F, AVG, D_{min} , D_{max}) $L \leftarrow D_{\min}, R \leftarrow D_{\max}, V_{\min} \leftarrow F(L), V_{\max} \leftarrow F(R)$ ▷ First evaluate endpoints if $V_{\min} = 1$ then return (NULL, D_{\min}) end if \triangleright If true. no zeros at all if $V_{\text{max}} = -1$ then return $\langle D_{\text{max}}, \text{Null} \rangle$ end if \triangleright If true, no zeros at all if $V_{\min} = 0$ then return $\langle D_{\min}, D_{\min} \rangle$ end if \triangleright If true. zero is found if $V_{\text{max}} = 0$ then return $\langle D_{\text{max}}, D_{\text{max}} \rangle$ end if \triangleright If true, zero is found \triangleright Invariant: F(L) = -1, F(R) = 1for ever do $M \leftarrow \operatorname{Avg}(L, R)$ ▷ Getting new query point if M = L or M = R then return $\langle L, R \rangle$ end if \triangleright (*L*, *R*) empty \rightarrow no zeros $v \leftarrow F(M)$ \triangleright Evaluating M if v = 0 then return $\langle M, M \rangle$ end if ▷ Direct hit! if v = -1 then $L \leftarrow M$ else $R \leftarrow M$ end if \triangleright "Too early": use right part end for ▷ "Too late": use left part end function

• Guaranteed to terminate if D is finite

- Guaranteed to terminate if D is finite
- Proof: [L, R] shrinks at least by one item on every iteration

Correctness

- Guaranteed to terminate if D is finite
- Proof: [L, R] shrinks at least by one item on every iteration

Correctness

• Loop invariant: F(L) = -1, F(R) = 1

- Guaranteed to terminate if D is finite
- Proof: [L, R] shrinks at least by one item on every iteration

Correctness

- Loop invariant: F(L) = -1, F(R) = 1
- \blacktriangleright Zeros are always between \rightarrow will be found if exist

- Guaranteed to terminate if D is finite
- Proof: [L, R] shrinks at least by one item on every iteration

Correctness

- Loop invariant: F(L) = -1, F(R) = 1
- \blacktriangleright Zeros are always between \rightarrow will be found if exist
- \blacktriangleright Nonexisting zeros: will report a point where -1 switches to 1

Running time

- Guaranteed to terminate if D is finite
- Proof: [L, R] shrinks at least by one item on every iteration

Correctness

- Loop invariant: F(L) = -1, F(R) = 1
- \blacktriangleright Zeros are always between \rightarrow will be found if exist
- \blacktriangleright Nonexisting zeros: will report a point where -1 switches to 1

Running time

 \blacktriangleright Strongly depends on properties of Avg

- Guaranteed to terminate if D is finite
- Proof: [L, R] shrinks at least by one item on every iteration

Correctness

- Loop invariant: F(L) = -1, F(R) = 1
- \blacktriangleright Zeros are always between \rightarrow will be found if exist
- \blacktriangleright Nonexisting zeros: will report a point where -1 switches to 1

Running time

- \blacktriangleright Strongly depends on properties of Avg
- If AVG is a "real" average, the running time is $O(\log D)$
 - the size of [L; R) range is divided by two on every iteration