Foundations of Computer Graphics

Online Lecture 2: Review of Basic Math Vectors and Dot Products

Ravi Ramamoorthi

Course: Next Steps

- Complete HW 0
 - Sets up basic compilation issues
 - Verifies you can work with feedback/grading servers
- First few lectures core math ideas in graphics
 This lecture is a revision of basic math concepts
- HW 1 has few lines of code (but start early)
 Use some ideas discussed in lecture, create images
- Textbooks: None required
 - OpenGL/GLSL reference helpful (but not required)

Motivation and Outline

Many graphics concepts need basic math like linear algebra
 Vectors (dot products, cross products, ...)

- Matrices (matrix-matrix, matrix-vector mult., ...)
- E.g: a point is a vector, and an operation like translating or rotating points on object can be matrix-vector multiply
- Should be refresher on very basic material for most of you
 Only basic high school math required

Vector Multiplication

- Dot product
- Cross product
- Orthonormal bases and coordinate frames
- Note: We use right-handed (standard) coordinates

- Find angle between two vectors (e.g. cosine of angle between light source and surface for shading)
- Finding projection of one vector on another (e.g. coordinates of point in arbitrary coordinate system)
- Advantage: computed easily in cartesian components

Cross prod	Cross product: Properties					
$x \times y = +z$ $y \times x = -z$ $y \times z = +x$ $z \times y = -x$ $z \times x = +y$ $x \times z = -y$	$a \times b = -b \times a$ $a \times a = 0$ $a \times (b + c) = a \times b + a \times c$ $a \times (kb) = k(a \times b)$					

Cross product: Cartesian formula?				
$\begin{bmatrix} \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $				
$a \times b = A^* b = \begin{pmatrix} 0 & -z_a & y_a \\ z_a & 0 & -x_a \\ -y_a & x_a & 0 \end{pmatrix} \begin{pmatrix} x_b \\ y_b \\ z_b \end{pmatrix}$				
Dual matrix of vector a				

Foundations of Computer Graphics

Online Lecture 2: Review of Basic Math Vectors: Orthonormal Basis Frames Ravi Ramamoorthi

Orthonormal bases/coordinate frames

- Important for representing points, positions, locations
- Often, many sets of coordinate systems (not just X, Y, Z)
 Global, local, world, model, parts of model (head, hands, ...)
- Critical issue is transforming between these systems/bases
 Topic of next 3 lectures

Coordinate Frames

Any set of 3 vectors (in 3D) so that
 ||u|| = ||v|| = ||w|| = 1
 u · v = v · w = u · w = 0
 w = u × v

$$p = (p \cdot u)u + (p \cdot v)v + (p \cdot w)w$$

Constructing a coordinate frame

- Often, given a vector **a** (viewing direction in HW1), want to construct an orthonormal basis
- Need a second vector **b** (up direction of camera in HW1)
- Construct an orthonormal basis (for instance, camera coordinate frame to transform world objects into in HW1)

Constructing a coordinate frame?

We want to associate $\,w$ with a, and v with b

- But **a** and **b** are neither orthogonal nor unit norm
- And we also need to find u

Constructing a coordinate frame?

- We want to associate **w** with **a**, and **v** with **b**
- But a and b are neither orthogonal nor unit norm

$$W = \frac{a}{\|a\|}$$

Foundations of Computer Graphics

Online Lecture 2: Review of Basic Math Matrices

Ravi Ramamoorthi

Matrices

 Can be used to transform points (vectors)
 Translation, rotation, shear, scale (more detail next lecture)

Matrix-matrix multiplication

Number of columns in first must = rows in second

 Element (i,j) in product is dot product of row i of first matrix and column j of second matrix

Matrix-matrix multiplication							
• Number of columns in first must = rows in second							
$ \begin{pmatrix} \boxed{1 & 3} \\ 5 & 2 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} 3 & 6 & 9 & 4 \\ 2 & 7 & 8 & 3 \end{pmatrix} = $	9	27	33	13			
5 2 2 7 8 3	19	44	61	26			
$\begin{pmatrix} 0 & 4 \end{pmatrix}$	8	28	32	12)			
 Element (i,j) in product is dot product of row i of first matrix and column j of second matrix 							

 Element (i,j) in product is dot product of row i of first matrix and column j of second matrix

Transpose of a Matrix (or vector?)		
	$ \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}^{T} = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix} $	
($(AB)^{T} = B^{T}A^{T}$	

Identity Matrix and Inverses							
$I_{3\times 3} = \begin{pmatrix} 1 \end{pmatrix}$	0	0					
0	1	0					
0	0	1					
$I_{3\times3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $AA^{-1} = A^{-1}A = I$							
$(AB)^{-1} = B^{-1}A^{-1}$							

