

Video 10.1 Vijay Kumar

Euler Angles

Z-X-Y Euler Angles

 $\mathbf{R} = \operatorname{Rot}(z, \psi) \operatorname{\mathbf{Cot}}(x, \phi) \operatorname{\mathbf{Cot}}(y, \theta)$

Z-X-Y Euler Angles

When are these Euler angles singular?

 $\mathbf{R} = \operatorname{Rot}(z, \psi) \operatorname{Rot}(x, \phi) \operatorname{Rot}(y, \theta)$ $R = \begin{bmatrix} c\psi c\theta - s\phi s\psi s\theta & -c\phi s\psi & c\psi s\theta + c\theta s\phi s\psi \\ c\theta s\psi + c\psi s\phi s\theta & c\phi c\psi & s\psi s\theta - c\theta s\phi c\psi \\ -c\phi s\theta & s\phi & c\phi c\theta \end{bmatrix}$

N. Michael, D. Mellinger, Q. Lindsey, V. Kumar, *The GRASP Multiple Micro-UAV Testbed*, IEEE Robotics & Automation Magazine, vol.17, no.3, pp.56-65, Sept. 2010

Planar Model

$$\dot{x} = \begin{bmatrix} \dot{y} \\ \dot{z} \\ \dot{\phi} \\ 0 \\ -g \\ 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ -\frac{1}{m}\sin\phi & 0 \\ \frac{1}{m}\cos\phi & 0 \\ 0 & \frac{1}{I_{xx}} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

$$\mathbf{y} = h(x) = \begin{bmatrix} y \\ z \end{bmatrix}$$

Repeated differentiation of h(x) does not yield explicit dependence on u

The system is not input output linearizable!

$$\dot{x} = \begin{bmatrix} \dot{y} \\ \dot{z} \\ \dot{\phi} \\ 0 \\ -g \\ 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ -\frac{1}{m}\sin\phi & 0 \\ -\frac{1}{m}\cos\phi & 0 \\ \frac{1}{m}\cos\phi & 0 \\ 0 & -\frac{1}{I_{rr}} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

Repeated differentiation of h(x) does not yield explicit dependence on u

Can extend state with higher order derivatives of input

New

$$\bar{x} = \begin{bmatrix} y & z & \phi & \dot{y} & \dot{z} & \dot{\phi} & u_1 & \dot{u}_1 \end{bmatrix}^T$$

 extended
 New
 $\bar{u} = \begin{bmatrix} \bar{u}_1 \\ \bar{u}_2 \end{bmatrix} = \begin{bmatrix} \ddot{u}_1 \\ u_2 \end{bmatrix}$

 Specifies
 Property of University of Pennsylvania, Vijay Kumar

8

 $\mathbf{y} = h(x) = \begin{vmatrix} y \\ z \end{vmatrix}$

9

Relative Degree of Freedom is 4

Correction: Video 10.1 - This slide has been corrected to reflect this change:

Typo @8:20: the (2,1) element in the matrix $\left(\begin{array}{c} - \\ - \end{array}\right)$

$$-\sin\phi - \frac{u_1}{I_{xx}}\cos\phi$$

 $-\cos\phi - \frac{u_1}{I_{xx}}\sin\phi$ should be co

hould be $\cos\phi$ instead of $-\cos\phi$.

Dynamic State Feedback

$$\begin{bmatrix} y^{(iv)} \\ z^{(iv)} \end{bmatrix} = \frac{1}{m} \begin{bmatrix} -\sin\phi & -\frac{u_1}{I_{zz}}\cos\phi \\ -\cos\phi & -\frac{u_1}{I_{zz}}\sin\phi \end{bmatrix} \begin{bmatrix} \ddot{u}_1 \\ u_2 \end{bmatrix} + \frac{1}{m} \begin{bmatrix} -2\dot{u}_1\cos\phi\dot{\phi} + u_1\dot{\phi}^2\sin\phi \\ -2\dot{u}_1\sin\phi\dot{\phi} - u_1\dot{\phi}^2\cos\phi \end{bmatrix}$$
$$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

Property of University of Pennsylvania, Vijay Kumar

Input-Output Linearization

w system
$$y^{(iv)} = v$$

Nonlinear feedback transforms the original nonlinear system to a new linear system

Linearization is exact (distinct from linear approximations to nonlinear systems) Penn Engineering Property of University of Pennsylvania, Vijay Kumar

Linear System

We can design a linear controller to drive the system along any smooth $\mathbf{z}(t)$

$$\begin{bmatrix} y^{(iv)} \\ z^{(iv)} \\ z^{(iv)} \end{bmatrix} = \frac{1}{m} \begin{bmatrix} -\sin\phi & -\frac{u_1}{I_{zz}}\cos\phi \\ -\cos\phi & -\frac{u_1}{I_{zz}}\sin\phi \end{bmatrix} \begin{bmatrix} \ddot{u}_1 \\ u_2 \end{bmatrix} + \frac{1}{m} \begin{bmatrix} -2\dot{u}_1\cos\phi\dot{\phi} + u_1\dot{\phi}^2\sin\phi \\ -2\dot{u}_1\sin\phi\dot{\phi} - u_1\dot{\phi}^2\cos\phi \end{bmatrix}$$
$$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \dot{z} = \begin{bmatrix} 0_{2\times2} & 0_{2\times2} & 0_{2\times2} & 0_{2\times2} \\ 0_{2\times2} & 0_{2\times2} & 0_{2\times2} & 0_{2\times2} \\ 0_{2\times2} & 0_{2\times2} & 0_{2\times2} & 0_{2\times2} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + \begin{bmatrix} -2\dot{u}_1\cos\phi\dot{\phi} + u_1\dot{\phi}^2\sin\phi \\ -2\dot{u}_1\sin\phi\dot{\phi} - u_1\dot{\phi}^2\cos\phi \end{bmatrix}$$
$$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
$$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

A similar approach can be used for 3-D quadrotors

Video 10.2 Vijay Kumar

Differential Flatness

All state variables and the inputs can be written as smooth functions of *flat outputs* and their derivatives

16

The flat outputs and their derivatives can be written as a function of the state, the inputs, and their derivatives

The state, the inputs, and their derivatives can be written as a function of the flat outputs and their derivatives

Differential Flatness (3-D Quadrotor)

Inputs u_1, \mathbf{u}_2

State $(\mathbf{x}, \dot{\mathbf{x}})$

D. Mellinger and V. Kumar, "Minimum Snap Trajectory Generation and Control for Quadrotors," *Proc. IEEE Int. Conf. on Robotics and Automation*. May, 2011. Property of University of Pennsylvania, Vijay Kumar

Minimum Snap Trajectory

Minimum Snap Trajectory

Minimum Snap Trajectory

Video 10.3 Vijay Kumar

Input Output Linearization

Trajectory Tracking

Property of University of Pennsylvania, Vijay Kumar

Trajectory Tracking

How to determine \mathbf{R}^{des} ?

You are given two pieces of information

$$\mathbf{R}^{des}\mathbf{b}_{3} = \frac{\mathbf{t}}{\|\mathbf{t}\|}$$
$$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \underbrace{\psi}^{1} = \psi^{des}$$

You know that the rotation matrix has the form

$$\mathbf{R} = \begin{bmatrix} c\psi c\theta - s\phi s\psi s\theta & -c\phi s\psi & c\psi s\theta + c\theta s\phi s\psi \\ c\theta s\psi + c\psi s\phi s\theta & c\phi c\psi & s\psi s\theta - c\theta s\phi c\psi \\ -c\phi s\theta & s\phi & c\phi c\theta \end{bmatrix}$$

You should be able to find the roll and pitch angles. Penn Engineering Property of University of Pennsylvania, Vijay Kumar

How to calculate the error $\mathbf{e}_R(\mathbf{R}^{des}, \mathbf{R})$?

Cannot simply take the difference of two rotation matrices

What is the magnitude of the rotation required to go from the current orientation to the desired orientation?

$$\mathbf{R}
ightarrow \mathbf{R}^{des}$$

The required rotation is $\Delta R = \mathbf{R}^T \mathbf{R}^{des}$

The angle and axis of rotation can be determined using Rodrigues formula

Asymptotic Stability

T. Lee, M. Leoky, and N. H. McClamroch, Geometric tracking control of a quadrotor UAV on SE(3), *IEEE Conference on Decision and Control*, 2010.

D. Mellinger and V. Kumar, "Minimum Snap Trajectory Generation and Control for Quadrotors," *Proc. IEEE Int. Conf. on Robotics and Automation*. May, 2011. Property of University of Pennsylvania, Vijay Kumar