

Video 10.1
 Vijay Kumar

Control

ψ, yaw
θ, pitch
R
ϕ, roll

Euler Angles

Z-X-Y Euler Angles

$$
\mathbf{R}=\operatorname{Rot}(z, \psi)^{\prime} \operatorname{Rot}(x, \phi)^{\prime} \operatorname{Rot}(y, \theta)
$$

Z-X-Y Euler Angles

When are these Euler angles singular?

$$
\mathbf{R}=\operatorname{Rot}(z, \psi)^{\prime} \operatorname{Rot}(x, \phi)^{\prime} \operatorname{Rot}(y, \theta)
$$

$$
R=\left[\begin{array}{ccc}
c \psi c \theta-s \phi s \psi s \theta & -c \phi s \psi & c \psi s \theta+c \theta s \phi s \psi \\
c \theta s \psi+c \psi s \phi s \theta & c \phi c \psi & s \psi s \theta-c \theta s \phi c \psi \\
-c \phi s \theta & s \phi & c \phi c \theta
\end{array}\right]
$$

N. Michael, D. Mellinger, Q. Lindsey, V. Kumar, The GRASP Multiple Micro-UAV Testbed, IEEE Robotics \& Automation Magazine, vol.17, no.3, pp.56-65, Sept. 2010

Planar Model

State Equations

$$
\begin{aligned}
& \text { State Equations } \\
& \dot{x}=\left[\begin{array}{c}
\dot{y} \\
\dot{z} \\
\dot{\phi} \\
0 \\
-g \\
0
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
0 & 0 \\
-\frac{1}{m} \sin \phi & 0 \\
\frac{1}{m} \cos \phi & 0 \\
0 & \frac{1}{I_{x x}}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \quad \mathbf{y}=h(x)=\left[\begin{array}{c}
y \\
z
\end{array}\right]
\end{aligned}
$$

Planar Quadrotor

$$
\dot{x}=\left[\begin{array}{c}
\dot{y} \\
\dot{z} \\
\dot{\phi} \\
0 \\
-g \\
0
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
0 & 0 \\
-\frac{1}{m} \sin \phi & 0 \\
\frac{1}{m} \cos \phi & 0 \\
0 & \frac{1}{I_{x x}}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

$$
\mathbf{y}=h(x)=\left[\begin{array}{l}
y \\
z
\end{array}\right]
$$

Repeated differentiation of $h(x)$ does not yield explicit dependence on u

The system is not input output linearizable!

Planar Quadrotor

$$
\dot{x}=\left[\begin{array}{c}
\dot{y} \\
\dot{z} \\
\dot{\phi} \\
0 \\
-g \\
0
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
0 & 0 \\
-\frac{1}{m} \sin \phi & 0 \\
\frac{1}{m} \cos \phi & 0 \\
0 & \frac{1}{I_{x x}}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

$$
\mathbf{y}=h(x)=\left[\begin{array}{l}
y \\
z
\end{array}\right]
$$

Repeated differentiation of $h(x)$ does not yield explicit dependence on u

Can extend state with higher order derivatives of input

$$
\left.\begin{array}{llllllll}
\begin{array}{l}
\text { New } \\
\text { extended } \\
\text { state }
\end{array} & \bar{x}=\left[\begin{array}{llllll}
y & z & \phi & \dot{y} & \dot{z} & \dot{\phi}
\end{array} u_{1}\right. & \dot{u}_{1}
\end{array}\right]^{T}, ~ \begin{aligned}
& \text { New } \\
& \text { input }
\end{aligned} \quad \bar{u}=\left[\begin{array}{l}
\bar{u}_{1} \\
\bar{u}_{2}
\end{array}\right]=\left[\begin{array}{l}
\ddot{u}_{1} \\
u_{2}
\end{array}\right] \$ \text { menn } \quad \begin{aligned}
& \text { menn }
\end{aligned}
$$

Planar Quadrotor

$$
\dot{x}=\left[\begin{array}{c}
\dot{y} \\
\dot{z} \\
\dot{\phi} \\
0 \\
-g \\
0
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
0 & 0 \\
-\frac{1}{m} \sin \phi & 0 \\
\frac{1}{m} \cos \phi & 0 \\
0 & \frac{1}{I_{x x}}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

$$
\mathbf{y}=h(x)=\left[\begin{array}{l}
y \\
z
\end{array}\right]
$$

$$
\begin{gathered}
\dot{\bar{x}}=\left[\begin{array}{c}
\dot{y} \\
\dot{z} \\
\dot{\phi} \\
-\frac{u_{1}}{m} \sin \phi \\
\frac{u_{1}}{m} \cos \phi-g \\
0 \\
\dot{u}_{1} \\
0
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & \frac{1}{I_{x x}} \\
0 & 0 \\
1 & 0
\end{array}\right] \\
\bar{f}(\bar{x})
\end{gathered}
$$

Relative Degree of Freedom is 4

$$
\begin{aligned}
& {\left[\begin{array}{l}
{\left[\begin{array}{l}
y^{(i v)} \\
z^{(i v)}
\end{array}\right]}
\end{array}\right]=\begin{array}{|cc|}
\frac{1}{m}\left[\begin{array}{rr}
-\sin \phi & -\frac{u_{1}}{I_{z}} \cos \phi \\
\cos \phi & -\frac{u_{1}}{I_{z z}} \sin \phi
\end{array}\right]
\end{array} \mathcal{L}_{\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]++\left[\begin{array}{l}
-2 \dot{u}_{1} \cos \phi \dot{\phi}+u_{1} \dot{\phi}^{2} \sin \phi \\
-2 \dot{u}_{1} \sin \phi \dot{\phi}-u_{1} \dot{\phi}^{2} \cos \phi
\end{array}\right]}^{\mathcal{L}_{\bar{g}} \mathcal{L}_{\bar{f}}^{3} h} \bar{u} \mathcal{L}_{\bar{f}}^{4} h}
\end{aligned}
$$

Correction:
Video 10.1 - This slide has been corrected to reflect this change:

Dynamic State Feedback

Input-Output Linearization

Nonlinear feedback transforms the original nonlinear system to a new linear system
Linearization is exact (distinct from linear approximations to nonlinear systems)

Linear System

$$
\mathbf{z}=\left[\begin{array}{l}
\mathbf{z}_{1} \\
\mathbf{z}_{2} \\
\mathbf{z}_{3} \\
\mathbf{z}_{4}
\end{array}\right]=\left[\begin{array}{c}
y \\
z \\
\dot{y} \\
\dot{z} \\
\ddot{y} \\
\ddot{\dddot{y}} \\
\ddot{y} \\
\dddot{z}
\end{array}\right]
$$

We can design a linear controller to drive the system along any smooth $\mathbf{z}(t)$

A similar approach can be used for 3-D quadrotors

Video 10.2
 Vijay Kumar

Differential Flatness

All state variables and the inputs can be written as smooth functions of flat outputs and their derivatives
$\left[\begin{array}{c}{\left[\begin{array}{c}y \\ z \\ \dot{y} \\ \dot{z} \\ \ddot{y} \\ \ddot{z} \\ \dddot{y} \\ \dddot{z} \\ y^{(i v)} \\ z^{(i v)}\end{array}\right]} \\ \hline\end{array} \quad \begin{array}{c} \\ \text { diffeomorphism }\end{array}\left[\begin{array}{c}y \\ z \\ \phi \\ \dot{y} \\ \dot{z} \\ \dot{\phi} \\ u_{1} \\ \dot{u}_{1} \\ \ddot{u}_{1} \\ u_{2}\end{array}\right]\right.$
Differential Flatness (Murray et al, 1995)

Planar Quadrotor

The flat outputs and their derivatives can be written as a function of the state, the inputs, and their derivatives

Flat outputs

$$
\left[\begin{array}{l}
y \\
z
\end{array}\right]
$$

$$
\left[\begin{array}{l}
\ddot{y} \\
\ddot{z}
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{m} \sin \phi \\
\frac{1}{m} \cos \phi
\end{array}\right] u_{1}
$$

$$
\left[\begin{array}{l}
y^{(i i i)} \\
z^{(i i i)}
\end{array}\right]=\frac{1}{m}\left[\begin{array}{l}
-u_{1} \dot{\phi} \cos \phi-\dot{u}_{1} \sin \phi \\
-u_{1} \dot{\phi} \sin \phi+\dot{u}_{1} \cos \phi
\end{array}\right]
$$

$$
\left[\begin{array}{l}
y^{(i v)} \\
z^{(i v)}
\end{array}\right]=\frac{1}{m}\left[\begin{array}{cc}
-\sin \phi & -\frac{u_{1}}{I_{x x}} \cos \phi \\
\cos \phi & -\frac{u_{1}}{I_{x x}} \sin \phi
\end{array}\right]\left[\begin{array}{l}
\ddot{u}_{1} \\
u_{2}
\end{array}\right]+\frac{1}{m}\left[\begin{array}{l}
-2 \dot{u}_{1} \dot{\phi} \cos \phi+u_{1} \dot{\phi}^{2} \sin \phi \\
-2 \dot{u}_{1} \dot{\phi} \sin \phi-u_{1} \dot{\phi}^{2} \cos \phi
\end{array}\right]
$$

Planar Quadrotor

The state, the inputs, and their derivatives can be written as a function of the flat outputs and their derivatives

Flat outputs State Input

$$
\left[\begin{array}{l}
y \\
z
\end{array}\right]
$$

$\left[\begin{array}{c}y \\ z \\ \phi \\ \dot{y} \\ \dot{z} \\ \dot{\phi}\end{array}\right]$

$$
\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

$$
\begin{aligned}
u_{1} & =m\left(\ddot{y}^{2}+\ddot{z}^{2}\right) \\
\phi & =\operatorname{atan} 2\left(-\frac{m \ddot{y}}{u_{1}}, \frac{m \ddot{z}}{u_{1}}\right)
\end{aligned}
$$

$$
\dot{u}_{1}=m\left(-y^{(i i i)} \sin \phi+z^{(i i i)} \cos \phi\right)
$$

$$
\begin{aligned}
\ddot{u}_{1} & =\ldots \\
\ddot{\phi} & =\ldots \\
u_{2} & =\ldots
\end{aligned}
$$

$$
\text { Pennineering } \dot{\phi}=\frac{-m}{u_{1}}\left(y^{(i i i)} \underset{\text { Property of Univesity of Pennsyvania, Viay Kumar }}{\cos \phi+z^{(i i i)} \sin \phi}\right)^{\text {End }}
$$

Differential Flatness (3-D Quadrotor)

Inputs

$$
u_{1}, \mathbf{u}_{2}
$$

$$
u_{1}=\sum_{i=1}^{4} F_{i}
$$

State

$$
\mathbf{u}_{2}=L\left[\begin{array}{cccc}
0 & 1 & 0 & -1 \\
-1 & 0 & 1 & 0 \\
\mu & -\mu & \mu & -\mu
\end{array}\right]\left[\begin{array}{l}
F_{1} \\
F_{2} \\
F_{3} \\
F_{4}
\end{array}\right]
$$

Trajectory Planner

Minimum Snap Trajectory

Minimum Snap Trajectory

Video 10.3
 Vijay Kumar

Input Output Linearization

$$
\begin{aligned}
& {\left[\begin{array}{l}
y^{(i v)} \\
z^{(i v)}
\end{array}\right]=\left[\frac{1}{m}\left[\begin{array}{ll}
-\sin \phi & -\frac{u_{1}}{I_{z z}} \cos \phi \\
-\cos \phi & -\frac{u_{1}}{I_{z z}} \sin \phi
\end{array}\right]\left[\begin{array}{l}
\ddot{u}_{1} \\
u_{2}
\end{array}\right]+\left[\frac{1}{m}\left[\begin{array}{l}
-2 \dot{u}_{1} \cos \phi \dot{\phi}+u_{1} \dot{\phi}^{2} \sin \phi \\
-2 \dot{u}_{1} \sin \phi \dot{\phi}-u_{1} \dot{\phi}^{2} \cos \phi
\end{array}\right]\right.\right.} \\
& h^{(i v)} \quad \mathcal{L}_{\bar{g}} \mathcal{L}_{f}^{3} h \quad \bar{u} \quad \mathcal{L}_{f}^{4} h
\end{aligned}
$$

Trajectory Tracking

Given $\mathbf{r}_{T}(t), \dot{\mathbf{r}}_{T}(t), \ddot{\mathbf{r}}_{T}(t)$

$$
\mathbf{r}^{d e s}(t), \dot{\mathbf{r}}^{d e s}(t), \ddot{\mathbf{r}}^{d e s}(t)
$$

, $\psi^{d e s}(t), \dot{\psi}^{d e s}(t), \ddot{\psi} d e s(t) \quad \mathbf{r}_{T}(t)$ (position, yaw)

Want

$$
\left(\ddot{\mathbf{r}}_{T}(t)-\ddot{\mathbf{r}}_{c}\right)+k_{d, x} e_{v}+k_{p, x} e_{p}=0
$$

$$
m \ddot{\mathbf{r}}=\left[\begin{array}{c}
0 \\
0 \\
-m g
\end{array}\right]+R\left[\begin{array}{c}
0 \\
0 \\
F_{1}+F_{2}+F_{3}+F_{4}
\end{array}\right]
$$

$$
I\left[\begin{array}{c}
\dot{p} \\
\dot{q} \\
\dot{r}
\end{array}\right]=\left[\begin{array}{c}
L\left(F_{2}-F_{4}\right) \\
L\left(F_{3}-F_{1}\right) \\
M_{1}-M_{2}+M_{3}-M_{4}
\end{array}\right]-\left[\begin{array}{c}
p \\
q \\
r
\end{array}\right] \times I\left[\begin{array}{c}
p \\
q \\
r
\end{array}\right]
$$

Trajectory Tracking

$\mathbf{(u}_{2}=\omega \times \mathbf{I} \omega+\mathbf{I}\left(-K_{R} \mathbf{e}_{R}-K_{\omega} \mathbf{e}_{\omega}\right)$

How to determine $\mathbf{R}^{\text {des }}$?

You are given two pieces of information

$$
\begin{aligned}
{\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \stackrel{\mathbf{R}^{d e s} \mathbf{b}_{3}}{\hat{u}} } & =\frac{\mathbf{t}}{\|\mathbf{t}\|} \\
\psi & =\psi^{d e s}
\end{aligned}
$$

You know that the rotation matrix has the form
$\mathbf{R}=\left[\begin{array}{ccc}c \psi c \theta-s \phi s \psi s \theta & -c \phi s \psi & c \psi s \theta+c \theta s \phi s \psi \\ c \theta s \psi+c \psi s \phi s \theta & c \phi c \psi & s \psi s \theta-c \theta s \phi c \psi \\ -c \phi s \theta & s \phi & c \phi c \theta\end{array}\right]$
You should be able to find the roll and pitch angles.

How to calculate the error $\mathbf{e}_{R}\left(\mathbf{R}^{d e s}, \mathbf{R}\right)$?

Cannot simply take the difference of two rotation matrices
What is the magnitude of the rotation required to go from the current orientation to the desired orientation?

$$
\mathbf{R} \rightarrow \mathbf{R}^{d e s}
$$

The required rotation is

$$
\Delta R=\mathbf{R}^{T} \mathbf{R}^{d e s}
$$

The angle and axis of rotation can be determined using Rodrigues formula

Asymptotic Stability

T. Lee, M. Leoky, and N. H. McClamroch, Geometric tracking control of a quadrotor UAV on SE(3), IEEE Conference on Decision and Control, 2010.
D. Mellinger and V. Kumar, "Minimum Snap Trajectory Generation and Control for Quadrotors," Proc. IEEE Int. Conf. on Robotics and Automation. May, 2011.

