
COMP 102.2x
Introduction to Java Programming – Part 2

Lecture 4

T.C. Pong

Department of Computer Science & Engineering

HKUST

Recursion

Lecture 4

 Example: The Handshake Problem

 There are n people in a room. If each person
shakes hands once with every other person.
What is the total number of handshakes h(n)?

 Example: The Handshake Problem

 There are n people in a room. If each person
shakes hands once with every other person.
What is the total number of handshakes h(n)?

 h(2) = 1

 Example: The Handshake Problem

 There are n people in a room. If each person
shakes hands once with every other person.
What is the total number of handshakes h(n)?

 h(2) = 1 h(3) = h(2) + 2

 Example: The Handshake Problem

 There are n people in a room. If each person
shakes hands once with every other person.
What is the total number of handshakes h(n)?

 h(2) = 1 h(3) = h(2) + 2 h(4) = h(3) + 3

 Example: The Handshake Problem

 There are n people in a room. If each person
shakes hands once with every other person.
What is the total number of handshakes h(n)?

 h(2) = 1 h(3) = h(2) + 2 h(4) = h(3) + 3 h(n) = h(n-1) + n-1

Recursion

• In some problems, it may be natural to define
the problem in terms of the problem itself.

• Recursion is useful for problems that can be
represented by a simpler version of the same
problem.

• Consider for example the factorial function:

 6! = 6 * 5 * 4 * 3 * 2 * 1

 We could also write:

 6! = 6 * 5!

Recursion

 In general, we can express the factorial function as
follows:

 n! = n * (n-1)! // Are we done? Well… almost.

 The factorial function is only defined for non-
negative integers. So we should be a little bit more
precise:

 n! = 1 // if n is equal to 1

 n! = n * (n-1)! // if n is larger than 1

Recursion

• When a function calls itself, we speak of
recursion.

• Implement n! using a recursive function:

 public static int fact(int n){

 if(n<=1)

 return 1;

 else

 return n * fact(n-1);

 }

 Recursive method calls
• Assume the number typed is 3, that is, n=3.
fact(3) :

3 <= 1 ? No.

fact3 = 3 * fact(2)

fact(2) :

2 <= 1 ?

No.

fact2 = 2 * fact(1)
fact(1) :

1 <= 1 ?

Yes.

return 1
fact2 = 2 * 1 = 2

return fact2

fact3 = 3 * 2 = 6

return fact3

fact(3) has the value 6

public static int fact(int n){

 if(n<=1)

 return 1;

 else

 return n * fact(n-1);

 }

Recursion
 For certain problems (such as the factorial function), a recursive solution

often leads to short and elegant code. Here is a comparison of the
recursive solution with the iterative solution:

public static int fact(int n){

 int t = 1;

 int counter = 1;

 while (counter <= n) {

 t = t * counter;

 counter = counter + 1;

 }

 return t;

}

public static int fact(int n){

 if(n<=1)

 return 1;

 else

 return n * fact(n-1);

 }

 Recursion: Handshake problem
• Total number of handshakes for n persons:

 h(n) = h(n-1) + (n-1)

• Implement h(n) using a recursive method:

 public static int handShake(int n){

 if(n <= 2)

 return n - 1;

 else

 return handShake(n-1) + (n-1);

 }

• Alternative implementation:

 Sum of integers from 1 to n-1 = n(n-1) / 2

Recursion

• When we use recursion we must be careful not to
create an infinite chain of recursive method calls:

 public int fac(int n){

 return n * fac(n-1);

 }

 or:

 public int fact(int n){
 if (n<=1)

 return 1;

 else

 return n * fact(n+1);

 }

// Oops! no termination condition

// Oops!

How many pairs of rabbits can be produced from a

single pair in a year's time?

• Assumptions:
– Each pair of rabbits produce a new pair of offspring every month;

– each new pair becomes fertile at the age of one month;

– none of the rabbits dies in that year.

• Example:
– After 1 month there will be 2 pairs of rabbits;

– after 2 months, there will be 3;

– after 3 months, there will be 5 (since the following month the original pair and
the pair born during the first month will both produce in a new pair and there
will be 5 in all).

 Example: Fibonacci Sequence

“True Albino”
by Tomi Tapio K

is licensed under CC BY 2.0

https://www.flickr.com/photos/tomitapio/5026514571/in/photolist-hHrkBr-95RQyJ-8EbcEk-bGeJTP-9AC3a1-enFP3o-9Az7UZ-9AC36Q-9Wrumx-9Az7Jn-9ALoWj-9AC3zN-nd3n5-97Y51v-9wJUS6-97Y51r-drZaZa-9JZ1hv-9dpNrd-csgsjw-36Bt6x-4ypvcg-ckC4Z7-2h2dz5-9dpR4w-geeaiv-9DkYGU-8Zwjp7-e2GGmQ-e2GMd9-2w9PKR-ckBQrS-8aVHKv-95NMyr-8aVHrt-9AC3oQ-8RPT4D-9Az88P-9AC3wQ-95RQZG-95RQTs-9kHqEN-9py2yV-rjvrjF-9HLKQo-e7ujGA-7p9SYg-9gobdf-842KQt-6BTNqe
https://www.flickr.com/photos/tomitapio/5026514571/in/photolist-hHrkBr-95RQyJ-8EbcEk-bGeJTP-9AC3a1-enFP3o-9Az7UZ-9AC36Q-9Wrumx-9Az7Jn-9ALoWj-9AC3zN-nd3n5-97Y51v-9wJUS6-97Y51r-drZaZa-9JZ1hv-9dpNrd-csgsjw-36Bt6x-4ypvcg-ckC4Z7-2h2dz5-9dpR4w-geeaiv-9DkYGU-8Zwjp7-e2GGmQ-e2GMd9-2w9PKR-ckBQrS-8aVHKv-95NMyr-8aVHrt-9AC3oQ-8RPT4D-9Az88P-9AC3wQ-95RQZG-95RQTs-9kHqEN-9py2yV-rjvrjF-9HLKQo-e7ujGA-7p9SYg-9gobdf-842KQt-6BTNqe
https://www.flickr.com/photos/tomitapio/
https://www.flickr.com/photos/tomitapio/
https://www.flickr.com/photos/tomitapio/
https://www.flickr.com/photos/tomitapio/
https://www.flickr.com/photos/tomitapio/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/

 Computation Methods

• Fibonacci numbers:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

 where each number is the sum of the
preceding two.

• Recursive definition:

– F(0) = 0;

– F(1) = 1;

– F(n) = F(n-1)+ F(n-2);

Number of
Rabbit Pairs

1

1

2

3

5

 Computing Fibonacci numbers
//Calculate Fibonacci numbers using recursive method

public class Fibonacci

{

 static int fib(int n){

 if (n == 0) return 0;

 if (n == 1) return 1;

 return (fib(n-1) + fib(n-2));

 }

 public static void main(String[] args) {

 IO.output("Enter the value n: ");

 int n = IO.inputInteger();

 int fibN = fib(n);

 IO.outputln("Fib(" + n + ") = " + fibN) ;

 }

}

 Computation Methods

• Fibonacci numbers:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

 where each number is the sum of the
preceding two.

• Recursive definition:

– F(0) = 0;

– F(1) = 1;

– F(n) = F(n-1)+ F(n-2);

• Calculating the 4th Fibonacci number fib(4)
using recursion:

– Many intermediate steps are re-calculated
(underlined items)

fib(4)

fib(3) fib(2)

fib(2)

fib(1)

fib(1) fib(1) fib(0)

fib(0)

 Computing Fibonacci numbers

Fibonacci Numbers

• Fibonacci numbers can also be represented by the following
formula.

 Other Recursive Applications

• Binary search:
– Given a sorted array, the binary search find

an element in the array efficiently.

• Compare search element with middle
element of the array

• If not equal, then apply binary search to
half of the array (if not empty) where
the search element could be found

 Binary Search with Recursion
/**

 * @param data input array

 * @param lower lower bound index

 * @param upper upper bound index

 * @param value value to search for

 * @return index if found, otherwise return -1

 */

public int binSearch(int[] data, int lower, int upper, int value)

{

 int middle = (lower + upper) / 2;

 if (data[middle] == value)

 return middle;

 else if (lower >= upper)

 return -1;

 else if (value < data[middle])

 return binSearch(data, lower, middle-1, value);

 else

 return binSearch(data, middle+1, upper, value);

 }

The Towers of Hanoi
• According to legend, monks in a remote monastery

could predict when the world would end.

– They had a set of 3 diamond needles.

– Stacked on the first diamond needle were 64 disks of
decreasing size.

– Their task is to move all the disks from one needle to
another by following certain rules.

From http://commons.wikimedia.org/wiki/File:Tower_of_Hanoi.jpeg

The world would end when they
finished the task!

The Towers of Hanoi

• The monks moved one disk to another needle
each day, subject to the following rules:
– Only one disk could be moved at a time

– A larger disk must never be stacked above a
smaller one

– One and only one extra needle could be used for
intermediate placement of disks

• This task requires 264-1 moves!
– It will take 580 billion years to complete the task if

it takes 1 sec. to moved each disk.

– For n disks, 2n-1 moves are required

Copyright © 2000 by Brooks/Cole Publishing Company

A division of International Thomson Publishing Inc.

Let's try some simple examples:

The Towers of Hanoi

Copyright © 2000 by Brooks/Cole Publishing Company

A division of International Thomson Publishing Inc.

Move all three disks from source to destination

The Towers of Hanoi

Copyright © 2000 by Brooks/Cole Publishing Company

A division of International Thomson Publishing Inc.

Moving 2 disks from A to C

The Towers of Hanoi

Moving first two

disk from A to B

Moving third

disk from A to C

Moving first two

disk from B to C

Non-recursive step

Recursive calls

The Towers of Hanoi

Move largest disk from A to C

public void towers(int num, int from, int to) {

 int temp = 6 - from - to;

 if (num == 1){

 IO.outputln(“Move disk 1 from " + from + " to " + to);

 } else {

 towers(num-1, from, temp);

 IO.outputln(“Move disk "+ num +" from "+ from +" to " + to);

 towers(num-1, temp, to);

 }

 }

The Towers of Hanoi

Non-recursive step

Recursive call

The Towers of Hanoi

Recursive call

public void towers(int num, int from, int to) {

 int temp = 6 - from - to;

 if (num == 1){

 IO.outputln(“Move disk 1 from " + from + " to " + to);

 } else {

 towers(num-1, from, temp);

 IO.outputln(“Move disk "+ num +" from "+ from +" to " + to);

 towers(num-1, temp, to);

 }

 }

The Towers of Hanoi

Fractal
• A fractal is a mathematical set that displays

self-similar patterns.

• Fractals appear the same or nearly the same at
different scales.

• The term “fractal” was first used by Mandelbrot
in 1975.

Sierpinski Carpet

• A Sierpinski carpet is created by

– creating a square

– dividing it into nine smaller squares

– removing the central square

– repeating the process for the eight other squares

• Each of the smaller squares is a mini-version of
the whole Sierpinski carpet.

• A recursive definition!

private void drawSierpinskiCarpet(ColorImage image, int left, int top,

 int width, int height, int iterations) {

 if (image == null || width != height || width < 3 || iterations < 1)

 return;

 int size = width /= 3;

 image.drawRectangle(left + 1 * size, top + 1 * size, size, size);

 for (int i = 0; i < 3; i++)

 for (int j = 0; j < 3; j++) {

 if (i == 1 && j == 1) continue;

 drawSierpinskiCarpet(image, left + j * size, top + i * size,

 size, size, iterations - 1);

 }

}

Sierpinski Carpet

