ITMO UNIVERSITY

How to Win Coding Competitions: Secrets of Champions

Week 3: Sorting and Search Algorithms
Lecture 2: Insertion sort

Maxim Buzdalov
Saint Petersburg 2016

Idea of the algorithm:

- A sequence of one element is sorted. Let's grow it!
- Increase the sorted part, step by step, until everything is sorted
- Take the element adjacent to the sorted part
- Push it backwards, step by step, while it is greater than the predecessor

Idea of the algorithm:

- A sequence of one element is sorted. Let's grow it!
- Increase the sorted part, step by step, until everything is sorted
- Take the element adjacent to the sorted part
- Push it backwards, step by step, while it is greater than the predecessor
procedure InsertionSort (A, \leq)
for i from 1 to $|A|$ by 1 do
$k \leftarrow i$
while $(k>1)$ and $\operatorname{not}(A[k-1] \leq A[k])$ do
$A[k-1] \Leftrightarrow A[k]$
$k \leftarrow k-1$
end while
end for
end procedure

Theorem
After $t \geq 1$ iterations of the insertion sort, the $A[1: t]$ part of the input is sorted.

Theorem
After $t \geq 1$ iterations of the insertion sort, the $A[1: t]$ part of the input is sorted.
Proof.
We use mathematical induction.

Theorem
After $t \geq 1$ iterations of the insertion sort, the $A[1: t]$ part of the input is sorted.
Proof.
We use mathematical induction.

- Induction base. For $t=1, A[1: 1]$ consists of one element, thus it is sorted.

Theorem
After $t \geq 1$ iterations of the insertion sort, the $A[1: t]$ part of the input is sorted.
Proof.
We use mathematical induction.

- Induction base. For $t=1, A[1: 1]$ consists of one element, thus it is sorted.
- Induction step. Let $x=A[t]$. By induction assumption, $A[1: t-1]$ is sorted.

Theorem
After $t \geq 1$ iterations of the insertion sort, the $A[1: t]$ part of the input is sorted.
Proof.
We use mathematical induction.

- Induction base. For $t=1, A[1: 1]$ consists of one element, thus it is sorted.
- Induction step. Let $x=A[t]$. By induction assumption, $A[1: t-1]$ is sorted. Thus, there exists an index $j \in[1 ; t]$ such that:
- for all $i<j, A[i] \leq x$
- for all $i \geq j, A[i]>x$

Theorem
After $t \geq 1$ iterations of the insertion sort, the $A[1: t]$ part of the input is sorted.
Proof.
We use mathematical induction.

- Induction base. For $t=1, A[1: 1]$ consists of one element, thus it is sorted.
- Induction step. Let $x=A[t]$. By induction assumption, $A[1: t-1]$ is sorted. Thus, there exists an index $j \in[1 ; t]$ such that:
- for all $i<j, A[i] \leq x$
- for all $i \geq j, A[i]>x$

The relative order of the elements from $A[1: t-1]$ is not changed while x is propagated backwards. So when $A[j]$ becomes $x, A[1: t]$ becomes ordered.

Theorem
After $t \geq 1$ iterations of the insertion sort, the $A[1: t]$ part of the input is sorted.
Proof.
We use mathematical induction.

- Induction base. For $t=1, A[1: 1]$ consists of one element, thus it is sorted.
- Induction step. Let $x=A[t]$. By induction assumption, $A[1: t-1]$ is sorted. Thus, there exists an index $j \in[1 ; t]$ such that:
- for all $i<j, A[i] \leq x$
- for all $i \geq j, A[i]>x$

The relative order of the elements from $A[1: t-1]$ is not changed while x is propagated backwards. So when $A[j]$ becomes $x, A[1: t]$ becomes ordered.

Correctness of the insertion sort follows from this theorem with $t=|A|$.

- Let $N=|A|$
- Running time of a t-th iteration: at most $t-1$ comparisons and swaps
- At least one comparison for $t>1$
- Let $N=|A|$
- Running time of a t-th iteration: at most $t-1$ comparisons and swaps
- At least one comparison for $t>1$
- Upper bound on the total running time:

$$
O\left(\sum_{i=1}^{N}(t-1)\right)=O\left(\frac{N(N-1)}{2}\right)=O\left(N^{2}\right)
$$

- Let $N=|A|$
- Running time of a t-th iteration: at most $t-1$ comparisons and swaps
- At least one comparison for $t>1$
- Upper bound on the total running time:

$$
O\left(\sum_{i=1}^{N}(t-1)\right)=O\left(\frac{N(N-1)}{2}\right)=O\left(N^{2}\right)
$$

- Lower bound on the total running time: $\Omega\left(\sum_{i=2}^{N} 1\right)=\Omega(N)$
- Let $N=|A|$
- Running time of a t-th iteration: at most $t-1$ comparisons and swaps
- At least one comparison for $t>1$
- Upper bound on the total running time:

$$
O\left(\sum_{i=1}^{N}(t-1)\right)=O\left(\frac{N(N-1)}{2}\right)=O\left(N^{2}\right)
$$

- Lower bound on the total running time: $\Omega\left(\sum_{i=2}^{N} 1\right)=\Omega(N)$
- Both bounds are strict:
- Best case: $A=[1,2, \ldots, N-1, N]$
- Worst case: $A=[N, N-1, \ldots, 2,1]$
- Let $N=|A|$
- Running time of a t-th iteration: at most $t-1$ comparisons and swaps
- At least one comparison for $t>1$
- Upper bound on the total running time:

$$
O\left(\sum_{i=1}^{N}(t-1)\right)=O\left(\frac{N(N-1)}{2}\right)=O\left(N^{2}\right)
$$

- Lower bound on the total running time: $\Omega\left(\sum_{i=2}^{N} 1\right)=\Omega(N)$
- Both bounds are strict:
- Best case: $A=[1,2, \ldots, N-1, N]$
- Worst case: $A=[N, N-1, \ldots, 2,1]$
- What about the average case?

A more precise running time estimation...

A more precise running time estimation... Inversion: the number of situations when $i<j$ and $A_{i}>A_{j}$

A more precise running time estimation...
Inversion: the number of situations when $i<j$ and $A_{i}>A_{j}$
Observations:

- The number of swaps in the insertion sort is equal to the number of inversions
- Each swap decreases the number of inversions by one
- At the end, we have a sorted array, which has zero inversions

A more precise running time estimation...
Inversion: the number of situations when $i<j$ and $A_{i}>A_{j}$
Observations:

- The number of swaps in the insertion sort is equal to the number of inversions
- Each swap decreases the number of inversions by one
- At the end, we have a sorted array, which has zero inversions
- The running time is proportional to the number of inversions
- ... plus at most $N-1$ comparisons which do not result in swaps

A more precise running time estimation...
Inversion: the number of situations when $i<j$ and $A_{i}>A_{j}$
Observations:

- The number of swaps in the insertion sort is equal to the number of inversions
- Each swap decreases the number of inversions by one
- At the end, we have a sorted array, which has zero inversions
- The running time is proportional to the number of inversions
- ... plus at most $N-1$ comparisons which do not result in swaps
- The average running time of the insertion sort over all permutations is $\Theta\left(N^{2}\right)$

A more precise running time estimation...
Inversion: the number of situations when $i<j$ and $A_{i}>A_{j}$
Observations:

- The number of swaps in the insertion sort is equal to the number of inversions
- Each swap decreases the number of inversions by one
- At the end, we have a sorted array, which has zero inversions
- The running time is proportional to the number of inversions
- ... plus at most $N-1$ comparisons which do not result in swaps
- The average running time of the insertion sort over all permutations is $\Theta\left(N^{2}\right)$
- Count the total number of inversions in all permutations

A more precise running time estimation...
Inversion: the number of situations when $i<j$ and $A_{i}>A_{j}$
Observations:

- The number of swaps in the insertion sort is equal to the number of inversions
- Each swap decreases the number of inversions by one
- At the end, we have a sorted array, which has zero inversions
- The running time is proportional to the number of inversions
- ... plus at most $N-1$ comparisons which do not result in swaps
- The average running time of the insertion sort over all permutations is $\Theta\left(N^{2}\right)$
- Count the total number of inversions in all permutations
- Consider two arbitrary indices $1 \leq i<j \leq N$
- Each permutation with $A_{i}<A_{j}$ has $=1$ corresponding one with $A_{i}>A_{j}$
- $N!/ 2$ permutations with inversion on i and j

A more precise running time estimation: $\Theta\left(N^{2}\right)$ on average Inversion: the number of situations when $i<j$ and $A_{i}>A_{j}$ Observations:

- The number of swaps in the insertion sort is equal to the number of inversions
- Each swap decreases the number of inversions by one
- At the end, we have a sorted array, which has zero inversions
- The running time is proportional to the number of inversions
- ... plus at most $N-1$ comparisons which do not result in swaps
- The average running time of the insertion sort over all permutations is $\Theta\left(N^{2}\right)$
- Count the total number of inversions in all permutations
- Consider two arbitrary indices $1 \leq i<j \leq N$
- Each permutation with $A_{i}<A_{j}$ has $=1$ corresponding one with $A_{i}>A_{j}$
- $N!/ 2$ permutations with inversion on i and j
- Average number of inversions per permutation: $\frac{N!}{2} \cdot \frac{N(N-1)}{2} \cdot \frac{1}{N!}=\frac{N(N-1)}{4}=\Theta\left(N^{2}\right)$

