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10.1 Logistic Growth Model

Here you will explore the graph and equation of the logistic function.

Learning Objectives

• Recognize logistic functions.
• Identify the carrying capacity and inflection point of a logistic function.

Logistic Models

Exponential growth increases without bound. This is reasonable for some situations; however, for populations there
is usually some type of upper bound. This can be caused by limitations on food, space or other scarce resources. The
effect of this limiting upper bound is a curve that grows exponentially at first and then slows down and hardly grows
at all. This is characteristic of a logistic growth model.

The logistic equation is of the form:

f (t) = C
1+ab−t =

C
1+ae−kt

The above equations represent the logistic function, and it contains three important pieces: C, a, and b. C determines
that maximum value of the function, also known as the carrying capacity. C is represented by the dashed line in
the graph below.

208

http://www.ck12.org


www.ck12.org Chapter 10. Logistic Models

The constant of a in the logistic function is used much like a in the exponential function: it helps determine the value
of the function at t=0. Specifically:

f (0) = C
1+a

The constant of b also follows a similar concept to the exponential function: it helps dictate the rate of change at the
beginning and the end of the function. Just as in the exponential case, b must be positive. Just as in the exponential
function, when b is greater than 1, we have growth. When b is 0<b<1, then the function is decaying. Remember
that b = ek .

Inflection Point

All logistic functions have a point at which things “turn over,” called the inflection point, indicated by the horizontal
dotted line on the graph. It is at the inflection point that the graph transitions from curving up (concave up) to curving
down (concave down). This point occurs halfway to the carrying capacity:

f (t) = C
2

The vertical dotted line on the graph shows the corresponding value of t for the inflection point. We can find this
value of t by using the equation:

t = ln(a)
ln(b) =

ln(a)
k

Model Parameters

Let’s take a closer look at the parameters a and b. Imagine the following: A sociology major is researching the
spread of rumors on campus. This campus has 50,000 students, and when the rumor starts, only 500 students know
about it. In this example, C is 50,000 and 500 is the number of students that know the rumor at time 0.

The a parameter effectively controls the starting point of the logistic model, just as it did in the exponential model.
For a given value of C, a tells us the where the function crosses the y-axis. Knowing the logistic equation, our C
value, and the initial value of y, we can solve for a when time is 0:

f (t) = C
1+ab−t

500 = 50,000
1+ab−0

500 = 50,000
1+a

a = 50,000
500 −1 = 99

When C and b stay constant, a will shift the graph horizontally. The figure below shows what happens if we change
the value of a for the same carrying capacity and b=10. For values of a equal to 1, 9, and 99, the starting values are
25,000, 5,000, and 500, respectively. We see that all three curves have the same shape and scale; they’re just shifted
horizontally. The larger the value of a is, the more to the right the curve is shifted.
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If we take a closer look at the graph and extend the x-axis to the left, we can see that the three lines are actually the
same shape (because they all have the same C and b parameter values), but simply moved over horizontally:

Now, let’s do the same examination on the parameter of b. If we keep the C and a values constant, what happens to
the logistic model as we alter the value of b? The graph below shows just that:

From this figure, we can graphically see some of the properties for b mentioned earlier. The dashed line (b =
2) doesn’t even hit the Carrying Capacity at the end of 5 weeks. The other lines get progressively steeper as b
increases. This means that higher values of b show a quicker growth to Carrying Capacity –assuming C and a are
constant.

Example A

A rumor is spreading at a school that has a total student population of 1200. Four people know the rumor when it
starts and three days later 300 people know the rumor. About how many people at the school know the rumor by the
fourth day?
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Solution

In a limited population, the count of people who know a rumor is an example of a situation that can be modeled
using the logistic function. The population is 1200 so this will be the carrying capacity.

Identifying information:

First, use the point (0, 4) so solve for .

4 = 1200
1+ab−0

1+ab−0 = 1200
4

1+ab−0 = 300

(Remember, any number raised to an exponent of zero –even a negative zero –is one.)

1+a = 300

a = 299

Next, use the point (3, 300) to solve for b.

300 = 1200
1+299b−3

1+299b−3 = 4

299b−3 = 3

b−3 = 3
299

(Knowing b−x = 1
bx helps here)

299
3 = b3

99.667 = b3

4.636 = b

The modeling equation when x = 4 is:

f (t) = 1200
1+299·4.636−t

Substituting in 4 for t in the logistic equation we get 728.470 or approximately 729 people.

Alternate solution, using equivalent formula and solving for k:

4 = 1200
1+ae−k0

1+ae−k0 = 1200
4

1+ae−k0 = 300

(Remember, any number (even the number e) raised to an exponent of zero –even a negative zero –is one.)

1+a = 300

a = 299

Next. . .

300 = 1200
1+299e−k3

1+299e−k3 = 4

299e−k3 = 3

e−k3 = 3
299
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ln
(
e−k3

)
= ln

( 3
299

)
−k3 =−4.602

k = 1.534

Now, if you substitute the values for a and k into the original equation and solve for x=4, you will get the same
solution: approximately 729 people!

Example B

Long Island has roughly 8 million people. A hundred years ago, it had 2 million people. Suppose that the resources
and infrastructure of the island could only support 20 million people. When will the population reach ten million
inhabitants?

Solution

Identify known points and the carrying capacity. (0, 8,000,000) and (-100, 2,000,000).

Use the first point to solve for .

80,000,000 = 20,000,000
1+ab−0

1+ab−0 = 20,000,000
80,000,000

1+ab−0 = 2.5

ab−0 = 1.5

a = 1.5

Now use the other point to solve for b:

2,000,000 = 20,000,000
1+1.5b−(−100)

1+1.5b−(−100) = 20,000,000
2,000,000

1+1.5b−(−100) = 10

1.5b−(−100) = 9

b−(−100) = 9
1.5

b100 = 6

b = 1.018

The question asks for the value when .

10,000,000 = 20,000,000
1+1.5·1.018−t

1+1.5 ·1.018−t = 20,000,000
10,000,000

1+1.5 ·1.018−t = 2

1.5 ·1.018−t = 1

1.018−t = 0.667
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ln(1.018−t) = ln(0.667)

−t · ln(1.018) = ln(0.667)

−t = ln(0.667)
ln(1.018)

−t =−22.70

t = 22.70

This means that according to your assumption and the two population data points you used, the predicted time from
now that the population of Long Island will reach 10 million inhabitants is about 22.6 years.

Example C

A special kind of algae is grown in giant clear plastic tanks and can be harvested to make biofuel. The algae are
given plenty of food, water and sunlight to grow rapidly and the only limiting resource is space in the tank. The
algae are harvested when 95% of the tank is full leaving the tank 5% full of algae to reproduce and refill the tank.
Currently the time between harvests is twenty days and the payoff is 90% harvest. Would you recommend a more
optimal harvest schedule?

Solution

Identify known quantities and model the growth of the algae.

Known quantities:

The question asks about optimal harvest schedule. Currently the harvest is 90% per 20 day or a unit rate of 4.5% per
day. If you shorten the time between harvests where the algae are growing the most efficiently, then potentially this
unit rate might be higher. Suppose you leave 15% of the algae in the tank and harvest when it reaches 85%. How
much time will that take to yield 70%?

Solve for a:

0.05 = 1
1+ab−0

1+ab−0 = 1
0.05

1+ab−0 = 20

a = 19

Solve for b:

0.95 = 1
1+19b−20

1+19b−20 = 1
0.95

19b−20 = 0.053

b−20 = 0.053
19

19
0.053 = b20

358.491 = b20

1.34 = b

Model for algae growth is:
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f (t) = 1
1+19·1.34−t

The day at which you have 15% algae:

0.15 = 1
1+19·1.34−t1

t1 = 4.137

The day at which you have 85% algae (so that you have a 70% yield):

0.85 = 1
1+19·1.34−t2

t2 = 16.10

t2− t1 = 16.10−4.137 = 11.963

It takes about 12 days for the batches to yield 70% harvest which is a unit rate of about 6% per day. This is a
significant increase in efficiency. A harvest schedule that maximizes the time where the logistic curve is steepest
creates the fastest overall algae growth.

Vocabulary

Carrying capacity is the maximum sustainable population that the environmental factors will support. In
other words, it is the population limit.

The logistic model is appropriate whenever the total count has an upper limit and the initial growth is
exponential. Examples are the spread of rumors and disease in a limited population and the growth of bacteria
or human population when resources are limited.

Guided Practice

1. Determine the logistic model given and the points (0, 9) and (1, 11).

2. Determine the logistic model given and the points (0, 2) and (3, 5).

3. Solve for t when A=14, given C=20, a =4 and b=1.1.

Solutions

1. The two points give two equations, and the logistic model has two variables.

9 = 12
1+ab−t

1+a = 1.333

a = 0.333

11 = 12
1+0.333b−1

1+0.333b−1 = 12
11

0.333b−1 = 0.091

b−1 = 0.091
0.333

3.659 = b

The approximate model is:

f (t) = 12
1+0.333·3.659−t

2. The two points give two equations, and the logistic model has two variables.
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2 = 7
1+ab−t

a = 2.5

Then,

5 = 7
1+2.5·b−3

1.842 = b

The approximate model is:

f (t) = 7
1+2.5·1.842−t

3. You will need to solve for an exponent using logs.

f (t) = 20
1+4·1.11−t

14 = 20
1+4·1.11−t

1+4 ·1.11−t = 20
14

4 ·1.11−t = 0.429

1.11−t = 0.107

−t · ln(1.11) = ln(0.107)

−t = ln(0.107)
ln(1.11)

−t =−21.416

t = 21.416

More Practice

For 1-5, determine the logistic model given the carrying capacity and two points.

1.

2.

3.

4.

5.

For 6-8, use the logistic function.

f (t) = 32
1+20·e−0.45t

6. What is the carrying capacity of the function?
7. What is the -intercept of the function?

8. Use your answers to 6 and 7, with at least two values of x (you choose), to make a sketch of the function.
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For 9-11, use the logistic function.

g(t) = 25
1+4·5−t

9. What is the carrying capacity of the function?
10. What is the -intercept of the function?

11. Use your answers to 9 and 10, with at least two values of x (you choose), to make a sketch of the function.
12. Find and sketch the inflection point of the logistic function. At what value of t does it occur?
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10.2 Conditions Favoring Logistic Growth

Lesson Objectives

• Examine real-life examples of logistic (S-curve) growth.
• Understand the concept of carrying capacity in terms of population growth and resource availability.

Introduction

Imagine a huge bowl of your favorite potato salad, ready for a picnic on a beautiful, hot, midsummer day. The cook
was careful to prepare it under strictly sanitary conditions, using fresh eggs, clean organic vegetables, and new jars of
mayonnaise and mustard. Familiar with food poisoning warnings, s/he was so thorough that only a single bacterium
made it into that vast amount of food. While such a scenario is highly unrealistic without authentic canning, it will
serve as an example as we begin our investigation of how populations change, or population dynamics. Because
potato salad provides an ideal environment for bacterial growth, just as your mother may have warned, we can use
this single bacterial cell in the potato salad to ask:

How Do Populations Grow Under Ideal Conditions?

Given food, warm temperatures, moisture, and oxygen, a single aerobic bacterial cell can grow and divide by binary
fission to become two cells in about 20 minutes. The two new cells, still under those ideal conditions, can each repeat
this performance, so that after 20 more minutes, four cells constitute the population. Given this modest doubling,
how many bacteria do you predict will be happily feeding on potato salad after five hours at the picnic? After you’ve
thought about this, compare your prediction with the “data” below.

Like many populations under ideal conditions, bacteria show exponential. Each bacterium can undergo binary fission
every 20 minutes. After 5 hours, a single bacterium can produce a population of 32,768 descendants.

TABLE 10.1:

Time (Hours and Minutes) Population Size (Number of Bacteria)
0 1
20 minutes 2
40 minutes 4
1 hour 8
1 hour 20 minutes 16
1 hour 40 minutes 32
2 hours 64
2 hours 20 minutes 128
2 hours 40 minutes 256
3 hours 512
3 hours 20 minutes 1024
3 hours 40 minutes 2048
4 hours 4096
4 hours 20 minutes 8192
4 hours 40 minutes 16,384
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TABLE 10.1: (continued)

Time (Hours and Minutes) Population Size (Number of Bacteria)
5 hours 32,768

Are you surprised? This phenomenal capacity for growth of living populations was first described by Thomas
Robert Malthus in his 1798 Essay on the Principle of Population. Although Malthus focused on human populations,
biologists have found that many populations are capable of this explosive reproduction, if provided with ideal
conditions. This pattern of growth is exponential, as the population grows larger, the rate of growth increases.
If you have worked compound interest problems in math or played with numbers for estimating the interest in your
savings account, you can compare the growth of a population under ideal conditions to the growth of a savings
account under a constant rate of compound interest. The graph below, using potato salad bacterial “data,” shows the
pattern of exponential growth: the population grows very slowly at first, but more and more rapidly as time passes.

FIGURE 10.1
Exponential or geometric growth is very
slow at first, but accelerates as the pop-
ulation grows. Because rate of growth
depends on population size, growth rate
increases as population increases. Most
populations have the ability to grow expo-
nentially, but such growth usually occurs
only under ideal conditions that are not
found in nature. Note the “J” shape of the
curve.

Of course, if bacterial populations always grew exponentially, they would long ago have covered the Earth many
times over. While Thomas Malthus emphasized the importance of exponential growth on population, he also
stated that ideal conditions do not often exist in nature. A basic limit for all life is energy. Growth, survival,
and reproduction require energy. Because energy supplies are limited, organisms must “spend” them wisely. We
will end this lesson with a much more realistic model of population growth and the implications of its limits, but
first, let’s look more carefully at the characteristics of populations which allow them to grow.

How Do Populations Grow in Nature?

You learned above that populations can grow exponentially if conditions are ideal. While exponential growth occurs
when populations move into new or unfilled environments or rebound after catastrophes, most organisms do not
live in ideal conditions very long, if at all. Let’s look at some data for populations growing under more realistic
conditions.
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Biologist Georgyi Gause studied the population growth of two species of Paramecium in laboratory cultures. Both
species grew exponentially at first, as Malthus predicted. However, as each population increased, rates of growth
slowed and eventually leveled off. Each species reached a different maximum, due to differences in size of individ-
uals and space and nutrient needs, but both showed the same, S-shaped growth pattern.

FIGURE 10.2
Two species of Paramecium illustrate logistic growth, with different plateaus due to differences in size and space
and nutrient requirements. The growth pattern resembles and is often called an S-curve. Slow but exponential
growth at low densities is followed by faster growth and then leveling.

Perhaps even more realistic is the growth of a sheep population, observed after the introduction of fourteen sheep to
the island of Tasmania in 1800. Like the lab Paramecia, the sheep population at first grew exponentially. However,
over the next 20 years, the population sharply declined by 1/3. Finally, the number of sheep increased slowly to a
plateau. The general shape of the growth curve matched the S-shape of Paramecium growth, except that the sheep
“overshot” their plateau at first.

FIGURE 10.3
Sheep introduced to Tasmania show lo-
gistic growth, except that they overshoot
their carrying capacity before stabilizing.
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As Malthus realized, no population can maintain exponential growth indefinitely. Inevitably, limiting factors such as
reduced food supply or space lower birth rates, increase death rates, or lead to emigration, and lower the population
growth rate. After reading Malthus’ work in 1938, Pierre Verhulst derived a mathematical model of population
growth which closely matches the S-curves observed under realistic conditions. In this logistic (S-curve) model,
growth rate is proportional to the size of the population but also to the amount of available resources. At higher
population densities, limited resources lead to competition and lower growth rates. Eventually, the growth rate
declines to zero and the population becomes stable.

FIGURE 10.4
Growth of populations according to
Malthus’ exponential model (A) and Ver-
hulst’s logistic model (B). Both models
assume that population growth is propor-
tional to population size, but the logistic
model also assumes that growth depends
on available resources. A models growth
under ideal conditions and shows that
all populations have a capacity to grow
infinitely large. B limits exponential growth
to low densities; at higher densities, com-
petition for resources or other limiting fac-
tors inevitably cause growth rate to slow to
zero. At that point, the population reaches
a stable plateau, the carrying capacity
(K).

The logistic model describes population growth for many populations in nature. Some, like the sheep in Tasmania,
“overshoot” the plateau before stabilizing, and some fluctuate wildly above and below a plateau average. A few
may crash and disappear. However, the plateau itself has become a foundational concept in population biology
known as carrying capacity (K). Carrying capacity is the maximum population size that a particular environment
can support without habitat degradation. Limiting factors determine carrying capacity, and often these interact. In
the next section, we will explore in more detail the kinds of factors which restrict populations to specific carrying
capacities and some adaptations that limit growth.

Lesson Summary

• Few populations in nature grow exponentially. No population can continue such growth indefinitely.
• The logistic (S-curve) model best describes the growth of many populations in nature.
• In the logistic model, growth rate depends on both population size and availability of resources. Growth is

slow at first, but as size increases, growth accelerates. At higher densities, limited resources cause growth rate
to decline, and populations stabilize at carrying capacity.
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