

#### MAN VS. MACHINE

How IBM Built a Jeopardy! Champion

15.071x – The Analytics Edge

#### A Grand Challenge

- In 2004, IBM Vice President Charles Lickel and coworkers were having dinner at a restaurant
- All of a sudden, the restaurant fell silent
- Everyone was watching the game show *Jeopardy!* on the television in the bar
- A contestant, Ken Jennings, was setting the record for the longest winning streak of all time (75 days)

#### A Grand Challenge

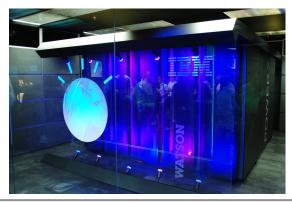
- Why was everyone so interested?
  - Jeopardy! is a quiz show that asks complex and clever questions (puns, obscure facts, uncommon words)
  - Originally aired in 1964
  - A huge variety of topics
  - · Generally viewed as an impressive feat to do well
- No computer system had ever been developed that could even come close to competing with humans on Jeopardy!

#### A Tradition of Challenges

- IBM Research strives to push the limits of science
  - Have a tradition of inspiring and difficult challenges
- Deep Blue a computer to compete against the best human chess players
  - A task that people thought was restricted to human intelligence
- Blue Gene a computer to map the human genome
  - A challenge for computer speed and performance

# The Challenge Begins

- In 2005, a team at IBM Research started creating a computer that could compete at *Jeopardy!* 
  - No one knew how to beat humans, or if it was even possible
- Six years later, a two-game exhibition match aired on television
  - The winner would receive \$1,000,000


#### The Contestants

- Ken Jennings
  - Longest winning streak of 75 days
- Brad Rutter
  - Biggest money winner of over \$3.5 million





- Watson
  - A supercomputer with 3,000 processors and a database of 200 million pages of information



# The Match Begins

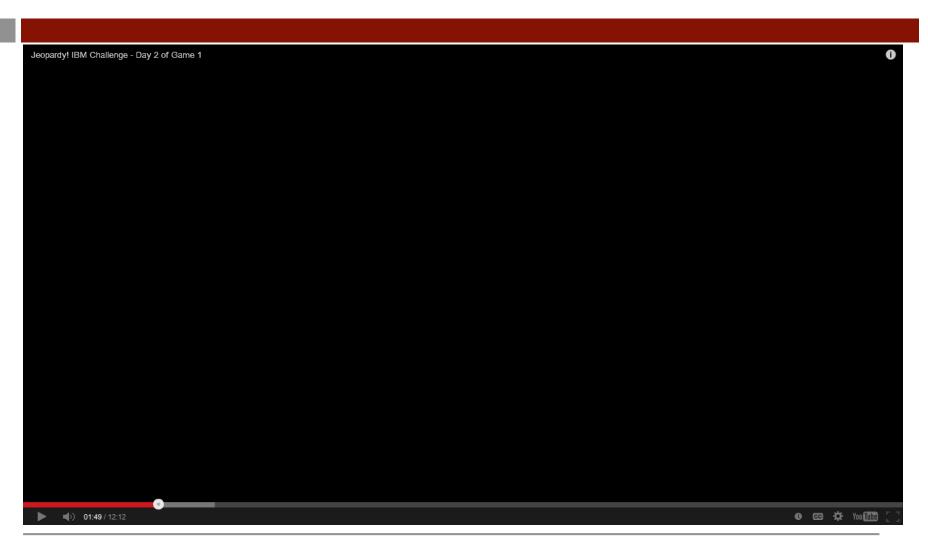


# The Game of Jeopardy!

- Three rounds per game
  - Jeopardy



- Double Jeopardy (dollar values doubled)
- Final Jeopardy (wager on response to one question)
- Each round has five questions in six categories
  - Wide variety of topics (over 2,500 different categories)
- Each question has a dollar value the first to buzz in and answer correctly wins the money
  - If they answer incorrectly they lose the money


# Example Round

| THE<br>DINOSAURS | NOTABLE<br>WOMEN | OXFORD<br>ENGLISH<br>DIGTIONARY | NAME THAT<br>INSTRUMENT | BELGIUM | COMPOSERS<br>BY COUNTRY |
|------------------|------------------|---------------------------------|-------------------------|---------|-------------------------|
| \$200            | \$200            | \$200                           | \$200                   | \$200   | \$200                   |
| \$400            | \$400            | \$400                           | \$400                   | \$400   | \$400                   |
| \$600            | \$600            | \$600                           | \$600                   | \$600   | \$600                   |
| \$800            | \$800            | \$800                           | \$800                   | \$800   | \$800                   |
| \$1000           | \$1000           | \$1000                          | \$1000                  | \$1000  | \$1000                  |

# Jeopardy! Questions

- Cryptic definitions of categories and clues
- Answer in the form of a question
  - Q: Mozart's last and perhaps most powerful symphony shares its name with this planet.
    - A: What is Jupiter?
  - Q: Smaller than only Greenland, it's the world's secondlargest island.
    - A: What is New Guinea?

# Watson Playing Jeopardy



### Why is Jeopardy Hard?

- · Wide variety of categories, purposely made cryptic
- Computers can easily answer precise questions
  - What is the square root of (35672-183)/33?
- Understanding natural language is hard
  - Where was Albert Einstein born?
  - Suppose you have the following information: "One day, from his city views of Ulm, Otto chose a water color to send to Albert Einstein as a remembrance of his birthplace."
  - Ulm? Otto?

# A Straightforward Approach

- Let's just store answers to all possible questions
- This would be impossible
  - An analysis of 200,000 previous questions yielded over 2,500 different categories
- · Let's just search Google
  - No links to the outside world permitted
  - It can take considerable skill to find the right webpage with the right information

# Using Analytics

- Watson received each question in text form
  - Normally, players see and hear the questions
- IBM used analytics to make Watson a competitive player
- Used over 100 different techniques for analyzing natural language, finding hypotheses, and ranking hypotheses

#### Watson's Database and Tools

- A massive number of data sources
  - · Encyclopedias, texts, manuals, magazines, Wikipedia, etc.
- Lexicon
  - Describes the relationship between different words
  - Ex: "Water" is a "clear liquid" but not all "clear liquids" are "water"
- Part of speech tagger and parser
  - Identifies functions of words in text
  - Ex: "Race" can be a verb or a noun
    - He won the race by 10 seconds.
    - Please indicate your race.

#### How Watson Works

- Step 1: Question Analysis
  - Figure out what the question is looking for
- Step 2: Hypothesis Generation
  - · Search information sources for possible answers
- Step 3: Scoring Hypotheses
  - Compute confidence levels for each answer
- Step 4: Final Ranking
  - Look for a highly supported answer

# Step 1: Question Analysis

- What is the question looking for?
- Trying to find the Lexical Answer Type (LAT) of the question
  - Word or noun in the question that specifies the type of answer
- Ex: "Mozart's last and perhaps most powerful symphony shares its name with **this planet**."
- Ex: "Smaller than only Greenland, **it's** the world's second-largest island."

# Step 1: Question Analysis

- If we know the LAT, we know what to look for
- In an analysis of 20,000 questions
  - 2,500 distinct LATs were found
  - 12% of the questions do not have an explicit LAT
  - The most frequent 200 explicit LATs cover less than 50% of the questions
- Also performs relation detection to find relationships among words, and decomposition to split the question into different clues

#### Step 2: Hypothesis Generation

- Uses the question analysis from Step 1 to produce candidate answers by searching the databases
- · Several hundred candidate answers are generated
- Ex: "Mozart's last and perhaps most powerful symphony shares its name with **this planet**."
  - Candidate answers: Mercury, Earth, Jupiter, etc.

#### Step 2: Hypothesis Generation

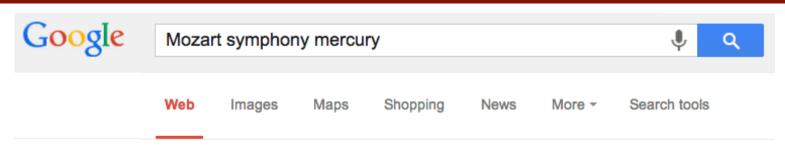
- Then each candidate answer plugged back into the question in place of the LAT is considered a hypothesis
  - Hypothesis 1: "Mozart's last and perhaps most powerful symphony shares its name with **Mercury**."
  - Hypothesis 2: "Mozart's last and perhaps most powerful symphony shares its name with **Jupiter**."
  - Hypothesis 3: "Mozart's last and perhaps most powerful symphony shares its name with **Earth**."

#### Step 2: Hypothesis Generation

- If the correct answer is not generated at this stage, Watson has no hope of getting the question right
- This step errors on the side of generating a lot of hypotheses, and leaves it up to the next step to find the correct answer

# Step 3: Scoring Hypotheses

- Compute confidence levels for each possible answer
  - Need to accurately estimate the probability of a proposed answer being correct
  - Watson will only buzz in if a confidence level is above a threshold
- · Combines a large number of different methods


# Lightweight Scoring Algorithms

- Starts with "lightweight scoring algorithms" to prune down large set of hypotheses
- Ex: What is the likelihood that a candidate answer is an instance of the LAT?
  - If this likelihood is not very high, throw away the hypothesis
- Candidate answers that pass this step proceed the next stage
  - Watson lets about 100 candidates pass into the next stage

# Scoring Analytics

- Need to gather supporting evidence for each candidate answer
- Passage Search
  - Retrieve passages that contain the hypothesis text
  - Let's see what happens when we search for our hypotheses on Google
  - Hypothesis 1: "Mozart's last and perhaps most powerful symphony shares its name with **Mercury**."
  - Hypothesis 2: "Mozart's last and perhaps most powerful symphony shares its name with **Jupiter**."

### Passage Search



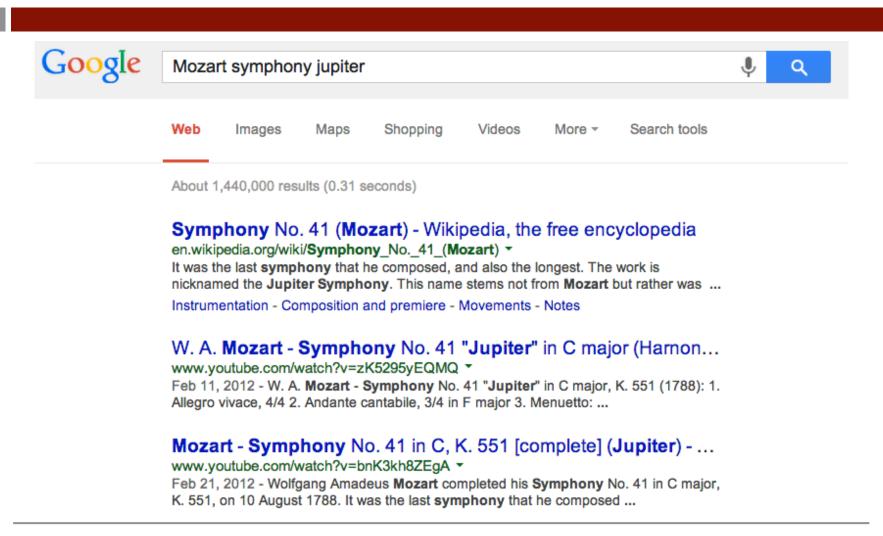
About 938,000 results (0.55 seconds)

#### Mercury: Mozart's Jupiter Symphony - The Front Row

www.thefrontrow.org/.../1349112026-Mercury-Mozarts-Jupiter-Sympho...  $\bullet$  Oct 1, 2012 - Antoine Plante, artistic director of the period-instruments group Mercury - The Orchestra Redefined, talks about the program of symphonies and ...

#### Mozarts Jupiter Symphony | Mercury (formerly Mercury Baro...

www.artshound.com > MUSIC \*


Opening the **Mercury** season at the Wortham Center's Cullen Theatre on Saturday, October 6, 2012 will be a program featuring **Mozart's** "Jupiter" **Symphony**.

#### Event - Mozart's "Jupiter" Symphony Mercury Houston - The ...

mercuryhouston.org/events/7/ \*

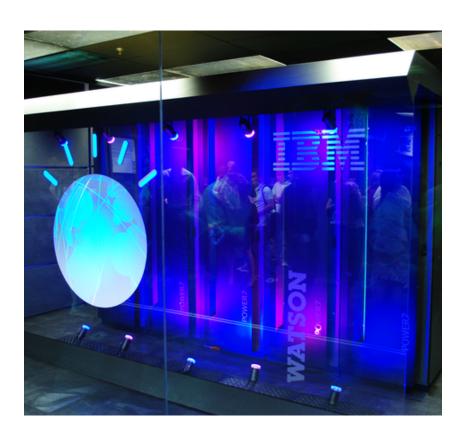
**Mercury** combines the forces of Haydn and **Mozart** for a memorable concert event, highlighted by **Mozarts** iconic Jupiter **Symphony**. A wonderful way to kick off ...

### Passage Search



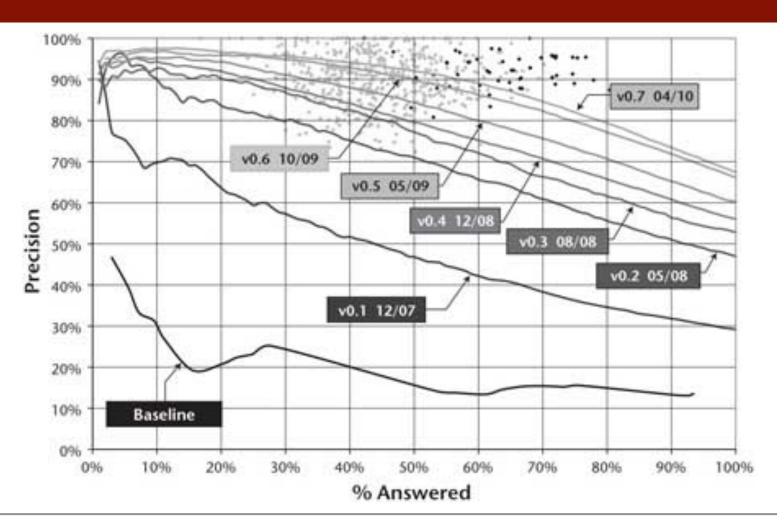
# Scoring Analytics

- Determine the degree of certainty that the evidence supports the candidate answers
- More than 50 different scoring components
- Ex: Temporal relationships
  - "In 1594, he took a job as a tax collector in Andalusia"
  - Two candidate answers: Thoreau and Cervantes
  - Thoreau was not born until 1817, so we are more confident about Cervantes


# Step 4: Final Merging and Ranking

- Selecting the single best supported hypothesis
- First need to merge similar answers
  - Multiple candidate answers may be equivalent
    - Ex: "Abraham Lincoln" and "Honest Abe"
  - Combine scores
- Rank the hypotheses and estimate confidence
  - Use predictive analytics

#### Ranking and Confidence Estimation

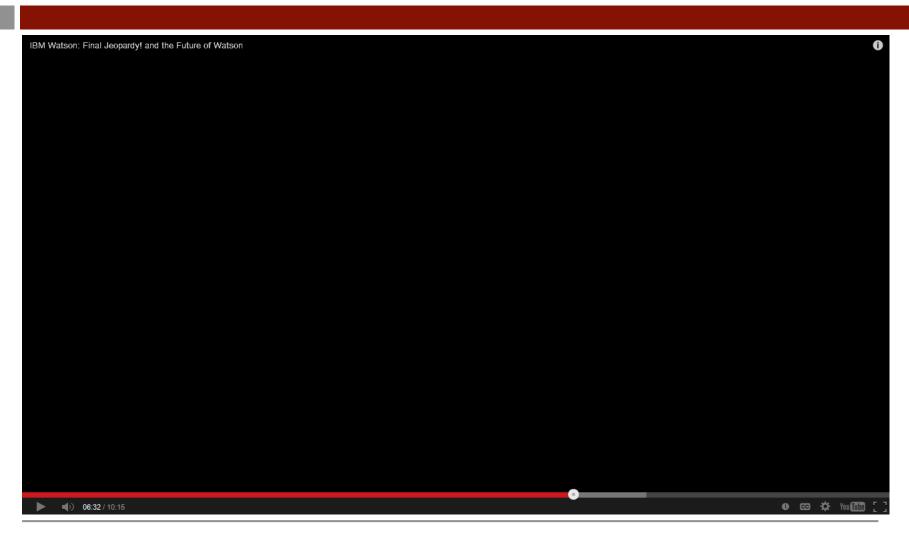

- Training data is a set of historical Jeopardy! questions
- Each of the scoring algorithms is an independent variable
- Use logistic regression to predict whether or not a candidate answer is correct, using the scores
- If the confidence for the best answer is high enough, Watson buzzes in to answer the question

### The Watson System



- Eight refrigerator-sized cabinets
- High speed local storage for all information
- Originally took over two hours to answer one question
  - This had to be reduced to 2-6 seconds

# Progress from 2006 - 2010




15.071x - Man vs. Machine: How IBM Built a Jeopardy! Champion

# Let the games begin!

- The games were scheduled for February 2011
- Two games were played, and the winner would be the contestant with the highest winnings over the two games

# The Jeopardy Challenge



#### The Results

|        | Ken Jennings | Brad Rutter | Watson   |
|--------|--------------|-------------|----------|
| Game 1 | \$4,800      | \$10,400    | \$35,734 |
| Game 2 | \$19,200     | \$11,200    | \$41,413 |
| Total  | \$24,000     | \$21,600    | \$77,147 |

#### What's Next for Watson

- Apply to other domains
  - Watson is ideally suited to answering questions which cover a wide range of material and often have to deal with inconsistent or incomplete information
- Medicine
  - The amount of medical information available is doubling every 5 years and a lot of the data is unstructured
  - Cancer diagnosis and selecting the best course of treatment
    - MD Anderson and Memorial Sloan-Kettering Cancer Centers

# The Analytics Edge

- Combine many algorithms to increase accuracy and confidence
  - Any one algorithm wouldn't have worked
- Approach the problem in a different way than how a human does
  - Hypothesis generation
- Deal with massive amounts of data, often in unstructured form
  - 90% of data is unstructured