Abstract Data Types
(ADT)

Q §%$—H§7<E§ﬂ

Abstract Data Type

* An Abstract Data Type (ADT) is a data
structure that specifies:

— The characteristics of the collection of data

— The operations that can be performed on the
collection of data

— But not its implementation details

® FERKEKE

w THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

Why Abstract Data Type?

 The Abstract Data Type (ADT) hides the details
of the implementation from users

* Key advantages
— Make programming easier
— Do not need to re-implement the data type

— Any changes to the underlying implementation of
the ADT does not affect the usage of the data type

® FERKEKE

w THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

* Many real-life examples involve Stack

— Stack of coins, stack of books, stack of food
trays in cafeteria and stack of shopping
baskets in supermarkets.

— Stack of actions for the “undo” operations
in a software application such as Word or
PowerPoint

® FERBAR
llNJ THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

Stack and Queue

Stack

Addition and removal of entries can only be carried out at
the top

Stack is a Last-In-First-Out (LIFO) data structure
Two commonly operations: push and pop

Queue

Addition of entries can only be carried out at the tail

Removal of entries can only be carried out at the head
Queue is a First-In-First-Out (FIFO) data structure
Two commonly used operations: addLast and removeFirst

® FERKEKE

w THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

Create a Stack

* A stack can be created by using the
constructor for the Stack class: Stack()

— Stack s = new Stack();

* A good practice is to specify the type of
objects that the stack is intended to store

— Example:

Stack<Integer>|intStack = new Stack<|nteger>|();

® FERKEKE

w THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

Methods in Stack

|_import java.util.Stack; |

Method Sample Usage
$ | Constructor // An empty stack of integers
Stac intStack = new Stac();

// An empty stack of floating-point numbers
Stac doubleStack = new Stac();

push() // Assume intStack is created already
intStack.push(3); // push 3 to the top of the stack
intStack.push(4); // push 4 to the top

pop() // Assume intStack is created and it is non-empty
int topValue = intStack.pop(); // remove the top element from the stack

peek() // Assume intStack is created and it is non-empty
int topValue = intStack.peek(); // look at the top element without removing it

empty() // Check whether intStack is empty or not
boolean isEmpty = intStack.empty();
if (isEmpty == false) {

int topValue = intStack.pop();

}

® FERKEKE

w THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

oush/pop/peek examples

4 4 4
2 3 3 3 3
1 1 1 1 1 1 1

Empty push push

stack

1

2

pop push push push peek pop

1 3 4

2

4

1]

4 4

EERBRAR
THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

n=29
n/2 remainder
14 1
7 0
3 1
1 1
0 1

From decimal to binary number

e To convert a decimal number to a binary number

e An initial approach

— For a given number n, repeat the process of
* Find the remainder by dividing the number by 2
* Output the remainder
» Update n to n/2 (using integer division)
 Example: for n = 29

— If the remainders are output in the order they were
computed: 10111

— The correct answer: 11101

— Push the remainders onto a stack and then output the
result by removing the entry on top of the stack

® FERKEKE

w THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

Java Program

import java.util.Stack;
public class ToBinary {

public static Stack<Integer> s = new Stack<Integer>();

public void outputBinary(int n) {
while (n > 0) {

int bit = n%2;
s.push[Integer.valueOf(bit));

n=n/Z;
}

while (!s.empty()) {
int bit =|s.pop().intValue();
System.out.print(bit);

}

System.out.printin("");

}

® FERKEKE

w THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

Java Program

import java.util.Stack;
public class ToBinary {

public static Stack<Integer> s = new Stack<Integer>();

public void outputinBinary(int n) {
while (n > 0) {

int bit = n%2;
s.push(bit); //autoboxing will convert this to s.push(Integer.valueOf(bit));
n=n/2;
}
while (!s.empty()) {

int bit = s.pop(); //unboxing will convert this to int bit = s.pop().intValue();
ystem.out.print(bit);

}

System.out.printin("");

}

® FEREAER

w THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

State Space Representation

State Space Representation

e A problem is represented as a set of states
* A state space is the set of all possible states,
including
~ initial states
-~ final states
* Two states are connected if there is an
operation that can transform one state to the
other

® FEERKAR

w THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

Tic Tac Toe

<——— Start state

X X X X X
: H3r 3

(@)

Final states

® FERBAR
llNJ THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

Backtracking

* Backtracking is a general problem strategy for
searching systematically for a solution to a
problem among all possible options.

 Stacks are often used in the implementation
of backtracking algorithms.

* Example:

* N-Queen problem

* Aim: Place N queens on an NxN
checkerboard so that no two queens can
attack each other.

& EERBAS
[N) THE HONG KONG UNIVERSITY OF

SCIENCE AND TECHNOLOGY

N-Queen Problem

N=5 Aim: Place N queens on an NxN
checkerboard so that no two queens
can attack each other.

* Thatis, no two queens can be on the
same:
— oW
— column
— diagonal

® FERKEKE

w THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

N-Queen Problem

 Aim: Place N queens on an NxN
checkerboard so that no two queens
can attack each other.

® FERBAR
llAJJ THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

N-Queen Problem

N=5 Aim: Place N queens on an NxN
checkerboard so that no two queens
can attack each other.

* Thatis, no two queens can be on the
same:

— row

— column
— diagonal

® FERKEKE

w THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

N-Queen Problem

ES Canvas - O

15t Solution

® FERBAR
llAJJ THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

N-Queen Problem

ES Canvas - O

® FERBAR
llAJJ THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

N-Queen Problem

ES Canvas - O

2"d Solution

® FERBAR
llAJJ THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

Backtracking Algorithm

* For each row on the checkerboard
— Try placing a queen in a column that doesn’t have any conflict
— If there is no conflict, add the move to a stack
else shift the queen on the next column

— Check if a solution is found, if yes, output the solution and
backtrack to find the next solution.

// backtracking can be accomplished by popping the stack
— If there is no more room to shift the queen,
backtrack to the previous row

— After backtracked to the previous row, shift the queen from
the previous column to the next column.

® FERKEKE

w THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

Java Program

import java.util.Stack;

public class NQueen {
public static Stack<Integer> s = new Stack<Integer>();
public static int n; // nis the number of queens
public static int total =0; // total is the total number of solution.

public static void solve(int n) { //finds all solutions to the n-queen problem

int row =0;
int col = 0;

while(row<n){ //go through each row to place a queen
while (col<n){ // go through the columns within each row

if (isConflict(row, col) ==false) { // check if there is a conflict
s.push(col); // push col to stack
break; //break out of loop to next row

}

else
col++;

Ll J) ITHE AUNG KOUNG UNIVERSITY OF
lL SCIENCE AND TECHNOLOGY

N-Queen Problem

while (row<n){ } 2 Canvas S
while (col <n){ col =2
if (isConflict(row, col) == false) { true
s.push(col); push(2)
break;
}
else col++; <

}

.. row++; col =0;

}

& EEHBAL
lULJJ THE HONG KONG UNIVERSITY OF

SCIENCE AND TECHNOLOGY

while (row<n){
while (col <n){

s.push(col);
break;

}

else col++;

}

.. row++; col =0;

if (isConflict(row, col)

<

N-Queen Problem

== false) {

= Canvas =

true

push(4)

® =iEhEAB

w THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

Java Program

if (s.empty() == true) break; |// either no solution or all solutions have been found

if (col >=n) { // finished all possible placements in a row
row--;
col =s.pop() + 1;
}
else {
row++;
col = 0;
}
if (s.size()==n){ // if stack size is n a solution is found
total++;
System.out.printin(total + ": " +s);
col =s.pop() + 1; // continue to find next solution
row--;

}

® FEREAER

w THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

N-Queen Problem

O

if{ // finished all possible placementsinarow || = Canvas -
row--; <«
col =s.pop() + 1;

}

else{ row++; col =0;

}

® FERBAR
llNJ THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

if (s.empty() == true) break; // either no solution or all solutions have been found

if (col >=n) { // finished all possible placements in a row
col =s.pop() + 1;
row--;
}
else {
row++;
col =0;
}
if (s.size()==n){ // if stack size is n a solution is found
total++;
System.out.printin(total + ": " + s);
col =s.pop() + 1, // continue to find next solution
row--;

}

® FEREAER

w THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

N-Queen Problem

=]

if (s.size()==n){ // if stack size is n a solution is found } E3 Canvas

total++;
System.out.printin(total + ": " + s);
col=s.pop()+1; // contmue to find next sdjution

row--;

® FERBAR
lUL THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

Java Program

public static boolean isConflict(int row, int col) {
int diff = row-col;
int sum = row+col;
for (inti=0;i<row; i++) {
int t =s.get(i);
if (t==col | | i-t == diff | | i+t == sum) return true;
}

return false;

}

® =EREAR

w THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

N-Queen Problem

e How to determine if there is a conflict?
| col=2 |

® FERBAR
llNJ THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

N-Queen Problem

e How to determine if there is a conflict?

|co|=2 |

N=5

| row=1|_;

Irow+co|=3 I

& FEiBF AR

w THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

Java Program

public static boolean isConflict(int row, int col) {
int diff = row-col;
int sum = row+col;
for (inti=0;i<row; i++) {

intt =|s.get(i);|

if(t==col | | i-t == diff | | i+t == sum)}return true;

}

return false;

}

® FERKEKE

w THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

N-Queen Problem

ES Canvas - O

3rd Solution

® FERBAR
llAJJ THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

N-Queen Problem

1) Canvas - O

4th Solution

® FERBAR
llAJJ THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

N-Queen Problem

ES Canvas - O

5th Solution

® FERBAR
llAJJ THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

N-Queen Problem

ES Canvas - O

6th Solution

® FERBAR
llAJJ THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

N-Queen Problem

1) Canvas - O

7th Solution

® FERBAR
llAJJ THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

N-Queen Problem

ES Canvas - O

8th Solution

® FERBAR
llAJJ THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

N-Queen Problem

(= Canvas =

9th Solution

® FERBAR
llAJJ THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

N-Queen Problem

(= Canvas =

10th Solution

® FERBAR
llAJJ THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

Square Apple Problem

Starting from the middle
cell, would it be possible for
the worm to finish eating all
the apples?

Rules:

= The worm can only move
into another cell that
shares a common wall; and

= a cell that has not been
previously visited.

® FERKEKE

w THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

2D Square Apple Problem

® FERBAR
llNJ THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

Queue

In daily life, we line up for various reasons.

Unlike Stack, Queue is a First-In-First-Out (FIFO)
data structure
— Addition of entries can only be carried out at the tail

— Removal of entries can only be carried out at the
head

® FERKEKE

w THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

Useful methods in ArrayDeque

|_import java.util.ArrayDeque; |

Method

Sample Usage

P | Constructor

// An empty stack of integers

ArrayDeque<Integer> intQueue = new ArrayDeque<Integer>();

// An empty stack of floating-point numbers

ArrayDeque<Double> doubleQueue = new ArrayDeque<Double>();

> addLast(e)
or offerLast(e)

// Assume intQueue is created

intQueue.addLast (50); // add 50 to the end of the queue

intQueue.offerLast(10); // add 10 to the end of the queue and return true
// after the insertion

removeFirst()
or pollFirst()

// Assume intQueue is created and it is non-empty
int firstValue = intQueue.removeFirst(); // remove the first element
Int firstValue = intQueue.pollFirst(); // remove the first element

P | isEmpty()

// Boolean method to check whether intQueue is empty
if (lintQueue.isEmpty()) {
int firstValue = intQueue.removeFirst();

}

® FERKEKE

w THE HONG KONG UNIVERSHY OF
SCIENCE AND TECHNOLOGY

addLast/removeFirst examples

import java.util.ArrayDeque;
public class QueueDemo {
private ArrayDeque<Double> queue =
new ArrayDeque<Double>();

public void QueueDemo() {
queue.addLast(4.0);

<

queue.addLast(3.0);

queue.addLast(5.0);

queue.addLast(5.0);

if ('queue.isEmpty()) queue.removeFirst(); —

if ('queue.isEmpty()) queue.removeFirst(); —
if ('queue.isEmpty()) queue.removeFirst(); —
if ('queue.isEmpty()) queue.removeFirst(); —

BEERBEAKE

@
P

U-U THE HONG KONG UNIVERSHY OF
SCIENCE AND TECHNOLOGY

