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Abstract Data Type

* An Abstract Data Type (ADT) is a data
structure that specifies:

— The characteristics of the collection of data

— The operations that can be performed on the
collection of data

— But not its implementation details
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Why Abstract Data Type?

 The Abstract Data Type (ADT) hides the details
of the implementation from users

* Key advantages
— Make programming easier
— Do not need to re-implement the data type

— Any changes to the underlying implementation of
the ADT does not affect the usage of the data type
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* Many real-life examples involve Stack

— Stack of coins, stack of books, stack of food
trays in cafeteria and stack of shopping
baskets in supermarkets.

— Stack of actions for the “undo” operations
in a software application such as Word or
PowerPoint
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Stack and Queue

Stack

Addition and removal of entries can only be carried out at
the top

Stack is a Last-In-First-Out (LIFO) data structure
Two commonly operations: push and pop

Queue

Addition of entries can only be carried out at the tail

Removal of entries can only be carried out at the head
Queue is a First-In-First-Out (FIFO) data structure
Two commonly used operations: addLast and removeFirst
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Create a Stack

* A stack can be created by using the
constructor for the Stack class: Stack( )

— Stack s = new Stack( );

* A good practice is to specify the type of
objects that the stack is intended to store

— Example:

Stack<Integer>|intStack = new Stack<|nteger>|();

® FERKEKE

w THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY



Methods in Stack

|_import java.util.Stack; |

Method Sample Usage
$ | Constructor // An empty stack of integers
Stac intStack = new Stac();

// An empty stack of floating-point numbers
Stac doubleStack = new Stac();

push() // Assume intStack is created already
intStack.push(3); // push 3 to the top of the stack
intStack.push(4); // push 4 to the top

pop() // Assume intStack is created and it is non-empty
int topValue = intStack.pop(); // remove the top element from the stack

peek() // Assume intStack is created and it is non-empty
int topValue = intStack.peek(); // look at the top element without removing it

empty() // Check whether intStack is empty or not
boolean isEmpty = intStack.empty();
if (isEmpty == false) {

int topValue = intStack.pop();

}
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oush/pop/peek examples
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n=29
n/2 remainder
14 1
7 0
3 1
1 1
0 1

From decimal to binary number

e To convert a decimal number to a binary number

e An initial approach

— For a given number n, repeat the process of
* Find the remainder by dividing the number by 2
* Output the remainder
» Update n to n/2 (using integer division)
 Example: for n = 29

— If the remainders are output in the order they were
computed: 10111

— The correct answer: 11101

— Push the remainders onto a stack and then output the
result by removing the entry on top of the stack
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Java Program

import java.util.Stack;
public class ToBinary {

public static Stack<Integer> s = new Stack<Integer>();

public void outputBinary(int n) {
while (n > 0) {

int bit = n%2;
s.push[Integer.valueOf(bit));

n=n/Z;
}

while (!s.empty()) {
int bit =|s.pop().intValue();
System.out.print(bit);

}

System.out.printin("");

}
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Java Program

import java.util.Stack;
public class ToBinary {

public static Stack<Integer> s = new Stack<Integer>();

public void outputinBinary(int n) {
while (n > 0) {

int bit = n%2;
s.push(bit); //autoboxing will convert this to s.push(Integer.valueOf(bit));
n=n/2;
}
while (!s.empty()) {

int bit = s.pop( ); //unboxing will convert this to int bit = s.pop().intValue();
ystem.out.print(bit);

}

System.out.printin("");

}
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State Space Representation

State Space Representation

e A problem is represented as a set of states
* A state space is the set of all possible states,
including
~ initial states
-~ final states
* Two states are connected if there is an
operation that can transform one state to the
other
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Tic Tac Toe

<——— Start state

X X X X X
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Final states
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Backtracking

* Backtracking is a general problem strategy for
searching systematically for a solution to a
problem among all possible options.

 Stacks are often used in the implementation
of backtracking algorithms.

* Example:

* N-Queen problem

* Aim: Place N queens on an NxN
checkerboard so that no two queens can
attack each other.
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N-Queen Problem

N=5  Aim: Place N queens on an NxN
checkerboard so that no two queens
can attack each other.

* Thatis, no two queens can be on the
same:
— oW
— column
— diagonal
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N-Queen Problem

 Aim: Place N queens on an NxN
checkerboard so that no two queens
can attack each other.
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N-Queen Problem

N=5  Aim: Place N queens on an NxN
checkerboard so that no two queens
can attack each other.

* Thatis, no two queens can be on the
same:

— row

— column
— diagonal
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N-Queen Problem
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15t Solution
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N-Queen Problem
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N-Queen Problem
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2"d Solution
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Backtracking Algorithm

* For each row on the checkerboard
— Try placing a queen in a column that doesn’t have any conflict
— If there is no conflict, add the move to a stack
else shift the queen on the next column

— Check if a solution is found, if yes, output the solution and
backtrack to find the next solution.

// backtracking can be accomplished by popping the stack
— If there is no more room to shift the queen,
backtrack to the previous row

— After backtracked to the previous row, shift the queen from
the previous column to the next column.
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Java Program

import java.util.Stack;

public class NQueen {
public static Stack<Integer> s = new Stack<Integer>();
public static int n; // nis the number of queens
public static int total =0; // total is the total number of solution.

public static void solve(int n) {  //finds all solutions to the n-queen problem

int row =0;
int col = 0;

while(row<n){ //go through each row to place a queen
while (col<n){ // go through the columns within each row

if ( isConflict(row, col) ==false ) { // check if there is a conflict
s.push(col); // push col to stack
break; //break out of loop to next row

}

else
col++;
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N-Queen Problem

while (row<n){ } 2 Canvas S
while (col <n){ col =2
if ( isConflict(row, col) == false ) { true
s.push(col); push(2)
break;
}
else col++; <

}

.. row++; col =0;

}
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while (row<n){
while (col <n){

s.push(col);
break;

}

else col++;

}

.. row++; col =0;

if ( isConflict(row, col)

<

N-Queen Problem

== false ) {

= Canvas =

true

push(4)
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Java Program

if (s.empty() == true) break; |// either no solution or all solutions have been found

if (col >=n) { // finished all possible placements in a row
row--;
col =s.pop() + 1;
}
else {
row++;
col = 0;
}
if (s.size()==n){ // if stack size is n a solution is found
total++;
System.out.printin(total + ": " +s);
col =s.pop() + 1; // continue to find next solution
row--;

}
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N-Queen Problem

O

if{ // finished all possible placementsinarow || = Canvas -
row--; <«
col =s.pop() + 1;

}

else{ row++; col =0;

}
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if (s.empty() == true) break; // either no solution or all solutions have been found

if (col >=n) { // finished all possible placements in a row
col =s.pop() + 1;
row--;
}
else {
row++;
col =0;
}
if (s.size()==n){ // if stack size is n a solution is found
total++;
System.out.printin(total + ": " + s);
col =s.pop() + 1, // continue to find next solution
row--;

}
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N-Queen Problem

=]

if (s.size()==n){ // if stack size is n a solution is found } E3 Canvas

total++;
System.out.printin(total + ": " + s);
col=s.pop()+1; // contmue to find next sdjution

row--;
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Java Program

public static boolean isConflict(int row, int col) {
int diff = row-col;
int sum = row+col;
for (inti=0;i<row; i++) {
int t =s.get(i);
if (t==col | | i-t == diff | | i+t == sum) return true;
}

return false;

}
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N-Queen Problem

e How to determine if there is a conflict?
| col=2 |
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N-Queen Problem

e How to determine if there is a conflict?

|co|=2 |

N=5

| row=1|_;

Irow+co|=3 I

& FEiBF AR

w THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY



Java Program

public static boolean isConflict(int row, int col) {
int diff = row-col;
int sum = row+col;
for (inti=0;i<row; i++) {

intt =|s.get(i);|

if(t==col | | i-t == diff | | i+t == sum)}return true;

}

return false;

}
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N-Queen Problem
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3rd Solution
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N-Queen Problem
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4th Solution
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N-Queen Problem
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5th Solution
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N-Queen Problem
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6th Solution
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N-Queen Problem
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7th Solution
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N-Queen Problem
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8th Solution
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N-Queen Problem
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9th Solution
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N-Queen Problem
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10th Solution
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Square Apple Problem

Starting from the middle
cell, would it be possible for
the worm to finish eating all
the apples?

Rules:

= The worm can only move
into another cell that
shares a common wall; and

= a cell that has not been
previously visited.
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2D Square Apple Problem
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Queue

In daily life, we line up for various reasons.

Unlike Stack, Queue is a First-In-First-Out (FIFO)
data structure
— Addition of entries can only be carried out at the tail

— Removal of entries can only be carried out at the
head
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Useful methods in ArrayDeque

|_import java.util.ArrayDeque; |

Method

Sample Usage

P | Constructor

// An empty stack of integers

ArrayDeque<Integer> intQueue = new ArrayDeque<Integer>();

// An empty stack of floating-point numbers

ArrayDeque<Double> doubleQueue = new ArrayDeque<Double>();

> addLast(e)
or offerLast(e)

// Assume intQueue is created

intQueue.addLast ( 50 ); // add 50 to the end of the queue

intQueue.offerLast(10); // add 10 to the end of the queue and return true
// after the insertion

removeFirst()
or pollFirst()

// Assume intQueue is created and it is non-empty
int firstValue = intQueue.removeFirst(); // remove the first element
Int firstValue = intQueue.pollFirst(); // remove the first element

P | isEmpty()

// Boolean method to check whether intQueue is empty
if (lintQueue.isEmpty()) {
int firstValue = intQueue.removeFirst();

}
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addLast/removeFirst examples

import java.util.ArrayDeque;
public class QueueDemo {
private ArrayDeque<Double> queue =
new ArrayDeque<Double>();

public void QueueDemo() {
queue.addLast(4.0);

<

queue.addLast(3.0);

queue.addLast(5.0);

queue.addLast(5.0);

if ('queue.isEmpty()) queue.removeFirst(); —

if ('queue.isEmpty()) queue.removeFirst(); —
if ('queue.isEmpty()) queue.removeFirst(); —
if ('queue.isEmpty()) queue.removeFirst(); —
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