
Abstract Data Types
(ADT)

Lecture 5

Abstract Data Type

• An Abstract Data Type (ADT) is a data

structure that specifies:

– The characteristics of the collection of data

– The operations that can be performed on the

collection of data

– But not its implementation details

Why Abstract Data Type?

• The Abstract Data Type (ADT) hides the details

of the implementation from users

• Key advantages

– Make programming easier

– Do not need to re-implement the data type

– Any changes to the underlying implementation of

the ADT does not affect the usage of the data type

Stack
• Many real-life examples involve Stack

– Stack of coins, stack of books, stack of food
trays in cafeteria and stack of shopping
baskets in supermarkets.

– Stack of actions for the “undo” operations
in a software application such as Word or
PowerPoint

Stack and Queue
Stack

• Addition and removal of entries can only be carried out at
the top

• Stack is a Last-In-First-Out (LIFO) data structure

• Two commonly operations: push and pop

Queue

• Addition of entries can only be carried out at the tail

• Removal of entries can only be carried out at the head

• Queue is a First-In-First-Out (FIFO) data structure

• Two commonly used operations: addLast and removeFirst

Create a Stack

• A stack can be created by using the
constructor for the Stack class: Stack()

– Stack s = new Stack();

• A good practice is to specify the type of
objects that the stack is intended to store

– Example:

Stack<Integer> intStack = new Stack<Integer>();

Methods in Stack

Method Sample Usage

Constructor // An empty stack of integers
Stack<Integer> intStack = new Stack<Integer>();
// An empty stack of floating-point numbers
Stack<Double> doubleStack = new Stack<Double>();

push() // Assume intStack is created already
intStack.push(3); // push 3 to the top of the stack
intStack.push(4); // push 4 to the top

pop() // Assume intStack is created and it is non-empty
int topValue = intStack.pop(); // remove the top element from the stack

peek() // Assume intStack is created and it is non-empty
int topValue = intStack.peek(); // look at the top element without removing it

empty() // Check whether intStack is empty or not
boolean isEmpty = intStack.empty();
if (isEmpty == false) {

int topValue = intStack.pop();
}

import java.util.Stack;

push/pop/peek examples

Empty
stack

1

push
1

2

1

push
2

1

pop

2

3

1

push
3

4

3

1

push
4

4

4

3

1

push
4

4

4

3

1

peek

4

3

1

pop

4 4

From decimal to binary number
• To convert a decimal number to a binary number

• An initial approach
– For a given number n, repeat the process of

• Find the remainder by dividing the number by 2

• Output the remainder

• Update n to n/2 (using integer division)

• Example: for n = 29
– If the remainders are output in the order they were

computed: 10111

– The correct answer: 11101

– Push the remainders onto a stack and then output the
result by removing the entry on top of the stack

n/2 remainder

14 1

7 0

3 1

1 1

0 1

n = 29

Java Program
import java.util.Stack;
public class ToBinary {

public static Stack<Integer> s = new Stack<Integer>();

public void outputBinary(int n) {
while (n > 0) {

int bit = n%2;
s.push(Integer.valueOf(bit));
n = n/2;

}
while (!s.empty()) {

int bit = s.pop().intValue();
System.out.print(bit);

}
System.out.println("");
}

}

Java Program
import java.util.Stack;
public class ToBinary {

public static Stack<Integer> s = new Stack<Integer>();

public void outputInBinary(int n) {
while (n > 0) {

int bit = n%2;
s.push(bit); //autoboxing will convert this to s.push(Integer.valueOf(bit));
n = n/2;

}
while (!s.empty()) {

int bit = s.pop(); //unboxing will convert this to int bit = s.pop().intValue();
System.out.print(bit);

}
System.out.println("");
}

}

State Space Representation

State Space Representation

• A problem is represented as a set of states
• A state space is the set of all possible states,

including
⁻ initial states
⁻ final states

• Two states are connected if there is an
operation that can transform one state to the
other

Tic Tac Toe

Start state

Final states

Backtracking
• Backtracking is a general problem strategy for

searching systematically for a solution to a
problem among all possible options.

• Stacks are often used in the implementation
of backtracking algorithms.

• Example:
• N-Queen problem
• Aim: Place N queens on an NxN

checkerboard so that no two queens can
attack each other.

• Aim: Place N queens on an NxN
checkerboard so that no two queens
can attack each other.

• That is, no two queens can be on the
same:
– row

– column

– diagonal

N-Queen Problem

N = 5

• Aim: Place N queens on an NxN
checkerboard so that no two queens
can attack each other.

N-Queen Problem

N = 5

row = 0

row = 1

row = 2

row = 3

row = 4

• Aim: Place N queens on an NxN
checkerboard so that no two queens
can attack each other.

• That is, no two queens can be on the
same:
– row

– column

– diagonal

N-Queen Problem

N = 5

0

Stack

N-Queen Problem

2

1

3

4

1st Solution

0

Stack

N-Queen Problem

2

1

4

3

3

0

Stack

N-Queen Problem

2

4

1

2

3

2nd Solution

Backtracking Algorithm

• For each row on the checkerboard
– Try placing a queen in a column that doesn’t have any conflict
– If there is no conflict, add the move to a stack

else shift the queen on the next column
– Check if a solution is found, if yes, output the solution and

backtrack to find the next solution.
// backtracking can be accomplished by popping the stack

– If there is no more room to shift the queen,
backtrack to the previous row

– After backtracked to the previous row, shift the queen from
the previous column to the next column.

Java Program
import java.util.Stack;

public class NQueen {
public static Stack<Integer> s = new Stack<Integer>();
public static int n; // n is the number of queens
public static int total = 0; // total is the total number of solution.

public static void solve(int n) { //finds all solutions to the n-queen problem
int row = 0;
int col = 0;

while (row < n) { // go through each row to place a queen
while (col < n) { // go through the columns within each row

if (isConflict(row, col) == false) { // check if there is a conflict
s.push(col); // push col to stack
break; //break out of loop to next row

}
else

col++;
}

0

Stack

N-Queen Problem

2

while (row < n) {
while (col < n) {

if (isConflict(row, col) == false) {
s.push(col);
break;

}
else col++;

}
… row++; col = 0;
}

row = 0
col = 0
row = 1
col = 1col = 2

falsetrue

push(0)push(2)

0

Stack

N-Queen Problem

2

while (row < n) {
while (col < n) {

if (isConflict(row, col) == false) {
s.push(col);
break;

}
else col++;

}
… row++; col = 0;

}

col = 0col = 1col = 2
falsetrue

push(4)

row = 2
col = 3col = 4

4

Java Program
if (s.empty() == true) break; // either no solution or all solutions have been found

if (col >= n) { // finished all possible placements in a row
row--;
col = s.pop() + 1;

}
else {
row++;
col = 0;

}
if (s.size()==n){ // if stack size is n a solution is found

total++;
System.out.println(total + ": " + s);
col = s.pop() + 1; // continue to find next solution
row--;

}
}

}

if (col >= n) { // finished all possible placements in a row
row--;
col = s.pop() + 1;

}
else { row++; col = 0;
}

0

Stack

N-Queen Problem

2

1

4

3

Java Program
if (s.empty() == true) break; // either no solution or all solutions have been found

if (col >= n) { // finished all possible placements in a row
col = s.pop() + 1;
row--;

}
else {
row++;
col = 0;

}
if (s.size()==n){ // if stack size is n a solution is found

total++;
System.out.println(total + ": " + s);
col = s.pop() + 1; // continue to find next solution
row--;

}
}

}

if (s.size()==n){ // if stack size is n a solution is found
total++;
System.out.println(total + ": " + s);
col = s.pop() + 1; // continue to find next solution
row--;

}

0

Stack

N-Queen Problem

2

1

4

3

2

1: [0, 2, 4, 1, 3]

Java Program

public static boolean isConflict(int row, int col) {
int diff = row-col;
int sum = row+col;
for (int i = 0; i < row; i++) {

int t = s.get(i);
if (t==col || i-t == diff || i+t == sum) return true;

}
return false;

}

• How to determine if there is a conflict?

N-Queen Problem

N = 5

row = 1

col = 2

(1,2)

(3,4)

(2,3)

(0,1)

row – col = -1

row – col = 0

row – col = 1

• How to determine if there is a conflict?

N-Queen Problem

N = 5

row = 1

col = 2

(1,2)

(0,3)

(2,1)

(3,0)row + col = 3

row + col = 4

row + col = 5

Java Program

public static boolean isConflict(int row, int col) {
int diff = row-col;
int sum = row+col;
for (int i = 0; i < row; i++) {

int t = s.get(i);
if (t==col || i-t == diff || i+t == sum) return true;

}
return false;

}

1

Stack

N-Queen Problem

2

2

0

4

3

3rd Solution

1

Stack

N-Queen Problem

2

0

2

3

4

4th Solution

2

Stack

N-Queen Problem

2

1

3

4

0

5th Solution

2

Stack

N-Queen Problem

2

3

1

0

4

6th Solution

3

Stack

N-Queen Problem

2

4

2

1

0

7th Solution

3

Stack

N-Queen Problem

2

2

4

0

1

8th Solution

4

Stack

N-Queen Problem

2

0

3

2

1

9th Solution

4

Stack

N-Queen Problem

2

3

0

1

2

10th Solution

Square Apple Problem

Starting from the middle
cell, would it be possible for
the worm to finish eating all
the apples?

Rules:
 The worm can only move

into another cell that
shares a common wall; and

 a cell that has not been
previously visited.

2D Square Apple Problem

Queue

• In daily life, we line up for various reasons.

• Unlike Stack, Queue is a First-In-First-Out (FIFO)
data structure
– Addition of entries can only be carried out at the tail

– Removal of entries can only be carried out at the
head

Useful methods in ArrayDeque

44

Method Sample Usage

Constructor // An empty stack of integers
ArrayDeque<Integer> intQueue = new ArrayDeque<Integer>();
// An empty stack of floating-point numbers
ArrayDeque<Double> doubleQueue = new ArrayDeque<Double>();

addLast(e)
or offerLast(e)

// Assume intQueue is created
intQueue.addLast (50); // add 50 to the end of the queue
intQueue.offerLast(10); // add 10 to the end of the queue and return true

// after the insertion

removeFirst()
or pollFirst()

// Assume intQueue is created and it is non-empty
int firstValue = intQueue.removeFirst(); // remove the first element
Int firstValue = intQueue.pollFirst(); // remove the first element

isEmpty() // Boolean method to check whether intQueue is empty
if (!intQueue.isEmpty()) {

int firstValue = intQueue.removeFirst();
}

import java.util.ArrayDeque;

addLast/removeFirst examples

45

4.0

4.0 3.0

4.0 3.0 5.0

3.0 5.04.0
3.0 5.0 5.0

5.0 5.0

5.0

3.0

5.0
5.0

import java.util.ArrayDeque;
public class QueueDemo {

private ArrayDeque<Double> queue =
new ArrayDeque<Double>();

public void QueueDemo() {
queue.addLast(4.0);
queue.addLast(3.0);
queue.addLast(5.0);
if (!queue.isEmpty()) queue.removeFirst();
queue.addLast(5.0);
if (!queue.isEmpty()) queue.removeFirst();
if (!queue.isEmpty()) queue.removeFirst();
if (!queue.isEmpty()) queue.removeFirst();

}
}

